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Brownian microhydrodynamics of active filaments

Abhrajit Laskar∗ and R. Adhikari†

The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India

Slender bodies capable of spontaneous motion in the absence of external actuation in an other-
wise quiescent fluid are common in biological, physical and technological contexts. The interplay
between the spontaneous fluid flow, Brownian motion, and the elasticity of the body presents a
challenging fluid-structure interaction problem. Here, we model this problem by approximating the
slender body as an elastic filament that can impose non-equilibrium velocities or stresses at the
fluid-structure interface. We derive equations of motion for such an active filament by enforcing
momentum conservation in the fluid-structure interaction and assuming slow viscous flow in the
fluid. The fluid-structure interaction is obtained, to any desired degree of accuracy, through the so-
lution of an integral equation. A simplified form of the equations of motion, that allows for efficient
numerical solutions, is obtained by applying the Kirkwood-Riseman superposition approximation
to the integral equation. We use this form of the equation of motion to study dynamical steady
states in free and hinged minimally active filaments. Our model provides the foundation to study
collective phenomena in momentum-conserving, Brownian, active filament suspensions.

I. INTRODUCTION

Slender bodies capable of spontaneous motion in vis-
cous fluids are common in biological, chemical, physical
and technological contexts. Examples from biology, in
increasing degree of molecular complexity, include micro-
tubules driven by molecular motors, axonemes, cilia, flag-
ella [1–12], their synchronization and metachronal wave
[13, 14]. In chemistry and physics, self-assembled bundles
of microtubules driven by kinesin motors yields a model
experimental system in which broken symmetry, collec-
tive excitations, and topological defects can be studied
out of equilibrium [1, 2]. In technology, much recent re-
search has been directed towards the synthesis of slen-
der bodies capable of spontaneous motion [15–17]. Such
self-actuated slender bodies are expected to have many
microfluidic and biomimetic applications [18].
Despite the great variety in both the structure of the

body and its mechanism of self-actuation, the examples
above have three features in common: the spontaneous
motion of the slender body produces flow in the ambient
fluid, the body is of a size sufficiently small to make Brow-
nian fluctuations important, and the body resists defor-
mation produced by the spontaneous flow and Brownian
fluctuations. Any universal emergent behaviour in active
slender bodies must appear from the interplay between
fluid flow, Brownian fluctuations and the elasticity. Such
systems present a new class of fluid-structure interaction
problems.
In this paper, we construct a theory of active slen-

der bodies, by modeling them as filaments that enforce
slip velocities or non-equilibrium stresses at the fluid-
structure boundary. A multitude of microscopic mecha-
nisms can produce such velocities or stresses. Our theory
isolates the specific microscopic details of self-actuation

∗ abhra@imsc.res.in
† rjoy@imsc.res.in

in the boundary conditions, from which universal, macro-
scopic fluid flow can be generated. Such flow results from
the exchange of momentum between the body and the
fluid, and since no external forces act on the body or the
fluid, the sum of their linear momenta is conserved. In
the absence of external torques, the sum of their angular
momenta is similarly conserved. These two constraints
are explicitly taken into account when computing the
fluid flow within our theory.

The flow is computed through a discretization which
replaces the continuous filament by a chain of spheres
connected by non-linear springs. The spheres produce
spontaneous hydrodynamic flow while the springs penal-
ize changes in filament length and filament curvature.
The antecedent of such a bead-spring discretization of a
continuous filament traces back to Kramers, who used it
to model the dynamics of a polymer. The crucial dif-
ference between the model of Kramers and our adapta-
tion of it is that the spheres in our theory produce spon-
taneous flows. Each sphere must, therefore, be active.
Such chains of active spheres have been used previously
to model active filaments. In the earliest such model
[19, 20], the spheres produce dipolar stresslet flows but
are individually non-motile and are assumed so large that
Brownian effects are negligible. In a subsequent contri-
bution [21], the spheres are taken to be motile, Brownian
effects are included in two-dimensions, but contributions
from non-local hydrodynamic flow are neglected. In a re-
lated model, passive spheres are driven by tangential ac-
tive stresses, hydrodynamically correlated Brownian mo-
tion is included in three-dimensions, but active flow is
neglected [22, 23]. Our theory presented here contains
all previous models as special cases.

In our recent work [24], the problem of computing the
fluid flow of N active bodies has been solved by trans-
forming the local conservation law for momentum, which
under the conditions relevant to the microhydrodynamic
regime is the Stokes equation, into an integral equation
over the sphere boundaries. The solution of this bound-
ary integral equation gives the rigid body motion of the
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active spheres, constrained by the conservation of linear
and angular momentum, as a linear function of the forces,
torques and the active boundary condition:

Vn =

N∑

m=1

[
µTT

nm · Fe
m + µTR

nm ·Te
m

]

+

N∑

m 6=n

∞∑

l=1

[

π(T, l+1)
nm ⊙V(l+1)

m

]

+Va
n, (1a)

Ωn =
N∑

m=1

[
µRT

nm · Fe
m + µRR

nm ·Te
m

]

+

N∑

m 6=n

∞∑

l=1

[

π(R, l+1)
nm ⊙V(l+1)

m

]

+Ωa
n. (1b)

In the above, Vn and Ωn are the velocity and angular
velocity of the n-th particle, Va

n and Ωa
n are the self-

propulsion and self-rotation contributions to the rigid
body motion, the µ are the usual mobility matrices that
relate external forces and torques to the rigid body mo-
tion and the π are propulsion matrices [24] that relate

V
(l+1)
m , the l-th mode of the non-equilibrium slip veloc-

ity on the surface of the m-th particle, to the rigid body
motion (see below). These relations clearly show that
rigid body motion of active particles is possible in the
absence of external forces and torques, Fe

m = 0, Te
m = 0,

and even in the absence of self-propulsion, Va
n = 0 and

self-rotation Ωa
n = 0. Propulsion matrices, and not mo-

bility matrices, are the key quantities that describe the
correlated motion of active particles in a viscous fluid,
constrained by the conservation of momentum and an-
gular momentum [24]. While mobility and propulsion
matrices have to be computed numerically for particles
of general shape, analytical expressions can be derived
when the particles are spheres [24].
Here, we use mobility and propulsion matrices for

spheres of radius a, computed in the superposition ap-
proximation first introduced by Kirkwood and Riseman
[25], again, in the context of the dynamics of a poly-
mer. In this approximation, the mobility matrices re-
duce to the well-known Rotne-Prager-Yamakawa tensors
while the propulsion matrices are obtained analytically
[24] as gradients of the fundamental solution of the Stokes
equation for an unbounded fluid. For a passive polymer,
Yoshizaki and Yamakawa [26] verified that the superposi-
tion approximation is correct to O((a/b)3), where b is the
mean separation between spheres, as N → ∞ . Since the
propulsion matrices decay more rapidly with separation
than mobility matrices, the superposition approximation
for active filaments is also accurate to O((a/b)3) [24].
The resulting equations of motion are used to study the
dynamics of active filaments where the spheres produce
dipolar flows and, so, are not individually motile. This
part of our work complements studies of active filaments
consisting of individually motile particles. We empha-
sis that our general theory includes both the motile and
non-motile cases studied previously.

In the next section we present a generalization of the
theory of Brownian motion of hydrodynamically inter-
acting spherical particles to include surface activity. In
section III, we construct equations of motion for active fil-
aments using the results of this general theory. In section
IV we introduce a minimal model for an active filament
by discarding all but leading terms in the filament equa-
tions of motion derived previously. Here we also study
dynamics of such active filaments when both ends of the
filament are free and when one end is tethered and the
other end is free. In the first case, for sufficient strength
of activity the filament is unstable to transverse pertur-
bations, which results in a sequence of translational, ro-
tational and oscillatory dynamical steady states. In the
second case, we find a sequence of rotational and oscilla-
tory dynamical steady states, both of which are limit cy-
cles in the phase space of the dynamical system described
by the equations of motion. In section V, linear stability
analysis shows that the transition to a dynamic state hap-
pens due a simple instability in both cases. This analysis
shows that non-local hydrodynamic interactions are es-
sential for the dynamic instability to occur. We conclude
with a discussion of the application of our equations of
motion to study collective phenomena in suspensions of
active filaments [27, 28] and other soft dissipative struc-
tures.

II. BROWNIAN MICROHYDRODYNAMICS OF

ACTIVE SPHERES

We consider the motion of N spherical active parti-
cles of radius a in an incompressible viscous fluid. The
center of the n-th sphere is at Rn and its orientation
is specified by the unit vector pn. The fluid can ex-
change both momentum and angular momentum with
the particles, of amounts determined by integrals of the
momentum flux over the particle boundaries. In addi-
tion to this contact contribution, the particles may be
acted on by body forces and torques. At low Reynolds
numbers inertia, of both the particles and the fluid, can
be neglected, which results in an instantaneous balance
of surface and body contributions to forces and torques.
Newton’s laws, therefore, reduce to a pair of constraints
on the fluid stress at the surface of every particle,

MV̇n =

∮

n · σdSn + Fe
n = 0, (2a)

IΩ̇n =

∮

ρn × n · σdSn +Te
n = 0. (2b)

where ρn is distance from the center of the n-th sphere
to a point on its surface. The fluid stress σ = −pI +
η(∇v + ∇vT ) has both hydrostatic and viscous contri-
butions and is determined from conditions of incompress-
ibility and local momentum conservation

∇ · v = 0; ∇ · σ = 0. (3)
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where v is the fluid velocity, p is pressure and η is the
viscosity. The solution of this Stokes system provides the
stress, from which the contact contribution of the force
and torque on the every particle can be determined. In
the absence of inertia and body forces, the conservation
of particle momentum requires that the net contact force
and the net contact torque on every particle be zero.
The solution of the Stokes equation is determined by the
boundary conditions on the particle surfaces and at in-
finity. While activity can be expressed through a variety
of boundary conditions on both the fluid velocity and on
the fluid stress , we assume here an active slip at the sur-
face of the particle [24]. This encompasses a wide variety
of active phenomena, including electrophoresis, diffusio-
phoresis [29], self-phoresis due to chemical catalysis [30],
and even swimming of microorganisms [31, 32]. We chose
the fluid to be at rest at infinity. The boundary condi-
tions, therefore, are

v(Rn + ρn) = Vn +Ωn × ρn + va(ρn) (4a)

|v(r)| → 0, |p(r)| → 0, |r| → ∞. (4b)

The first two terms in Eq. (4a) are the usual kinematic
contribution from the rigid body motion while the third
term, of dynamical origin, is the active slip.
The task of obtaining the solution of the Stokes equa-

tion is substantially simplified by recognizing that the
three-dimensional partial differential equation can be re-
duced, instead, to a two-dimensional integral equation
over the particle boundaries. The starting point of this
development is the integral representation of Stokes flow
[33, 34],

8πηvi(r) =−
N∑

m=1

∫

Gij(r, rm)fj(rm)dSm

+ η

N∑

m=1

∫

Kjik(r, rm)nkvj(rm)dSm (5)

which provides the solution of Stokes equation in terms of
the velocity and the traction, f = n ·σ, over the particle
boundaries. The kernels in the integral representation
are the Green’s function G, the pressure vector p and
the stress tensor, K.

pi(r, r
′) = −∇i∇

2ρ =
ρi
ρ3

(6a)

Gij(r, r
′) =

(
∇

2δij −∇i∇j

)
ρ =

δij
ρ

+
ρiρj
ρ3

; (6b)

Kijk(r, r
′) = −δikpj +∇kGij +∇iGjk. (6c)

In the absence of boundaries, these kernels are transla-
tionally invariant and, so, are functions of the separation
ρ = r− r′. The boundary integrals can be evaluated an-
alytically by expanding the boundary fields in complete
orthogonal bases [24, 35], which are most conveniently
chosen to be the tensorial spherical harmonics, Y(l)

Y(l)
α1α2...αl

(ρ̂) = (−1)l+1ρl+1
∇α1

. . .∇αl

(
1

ρ

)

. (7)

In this basis, the surface velocity and traction on each
particle is expanded as [35, 36]

f (Rm + ρm) =

∞∑

l=0

2l + 1

4πa2
F(l+1)

m ⊙Y(l)(ρ̂m), (8a)

v (Rm + ρm) =

∞∑

l=0

1

l!(2l − 1)!!
V(l+1)

m ⊙Y(l)(ρ̂m), (8b)

where ⊙ indicates a contraction over the last l indices of
the preceeding tensor with all indices of the succeeding
tensor. The orthogonality of the basis functions yields
the expansion coefficients as

F(l+1)
m =

1

l!(2l − 1)!!

∫

f(Rm + ρm)Y(l)(ρ̂m)dSm, (9a)

V(l+1)
m =

2l + 1

4πa2

∫

v(Rm + ρm)Y(l)(ρ̂m)dSm. (9b)

These expansion coefficients are tensors of rank l + 1,
symmetric and irreducible in their last l indices [24, 35].
The forces, torques, velocities and angular velocities are
obtained from

F(1)
m = −Fe

m; 2ǫ · aF(2)
m = Te

m

V(1)
m = Vm − 〈va

m〉; 2ǫ ·V(2)
m = −aΩm +

3

2a
〈ρm × va

m〉

where the angle brackets indicate integration of the en-
closed term over the surface of the sphere and dividing
the result by the surface area. For brevity, we have set
va(ρm) = va

m. Inserting the expansions in the boundary
integral representation leads to a succinct expression for
the fluid flow in terms of the expansion coefficients [24],

8πηv(r) =−

N∑

m=1

∞∑

l=0

G(l+1)(r,Rm)⊙ F(l+1)
m

+ η

N∑

m=1

∞∑

l=1

K(l+1)(r,Rm)⊙V(l+1)
m . (10)

The boundary integrals G(l) and K(l) can be evaluated
explicitly in terms of the Green’s function G and its
derivatives. In this expression, the velocity coefficients
can be computed from the boundary condition, but the
traction coefficients remain unknown. To determine the
traction coefficients, the boundary condition is first en-
forced on the boundary of n-th particle, the resulting
equation is weighted by the l-th tensorial harmonic and
finally integrated over the n-th boundary. This Galerkin
procedure yields an infinite-dimensional linear system of
equations for the unknown traction coefficients [24],

4πηV(l+1)
n = −

N∑

m=1

∞∑

l=0

G(l+1,l′+1)
nm (Rn,Rm)⊙ F(l′+1)

m

+ η

N∑

m=1

∞∑

l=1

K(l+1,l′+1)
nm (Rn,Rm)⊙V(l′+1)

m .

(11)
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where the matrix elements G
(l,l′)
nm and K

(l,l′)
nm can, again,

be evaluated analytically in terms of the Green’s function
G and its derivatives [24]. The formal solution of this lin-
ear system yields Eq. 1, which expresses the rigid body
motion in terms of the body forces and body torques and
the coefficients of the active slip velocity. These equations
reflect the linearity of both the Stokes equations and the
boundary conditions. The hydrodynamically correlated
motion is a sum of passive terms, proportional to the
external body forces and torques, and active terms, pro-
portional the modes of the active velocity. The last terms
in each of the equations are the self-propulsion and self-
rotation velocities of an isolated active sphere, which are
given in terms of the active slip velocity as

4πa2Va
n = −

∫

va(ρn)dSn (12a)

4πa2Ωa
n = −

3

2a2

∫

ρn × va(ρn)dSn (12b)

The above two equations have been known in the con-
text of phoresis [37] and swimming by surface distortions
[38]. They were later derived by the use of the Lorentz
reciprocal relation [39]. The work of [35] derives these
from the boundary integral representation of Stokes flow.
The propulsion matrices emerge naturally from the solu-
tion of the boundary integral equation as coefficients that
determine the active contribution to the hydrodynamic
interaction. Thus, Eq. 1 expresses hydrodynamic inter-
actions between active particles acted upon by external
forces and torques [24].
We note that the boundary integral method yields the

hydrodynamic interaction between particles without the
need to resolve bulk fluid degrees of freedom. This makes

Eq. 1 especially useful for computing the hydrodynamic
interaction of active particles in three dimensions, as the
computational cost of resolving fluid degrees of freedom
is completely eliminated [24, 40].

The addition of Brownian fluctuations to Eq. 1 is ac-
complished by appeal to linearity, the balance of dissipa-
tion and fluctuation and Onsager symmetry of the mo-
bilities. The generalization of the Einstein-Smoluchoswki
description of the diffusion of a passive colloidal particle
to the hydrodynamically correlated diffusive motion of N
colloidal particles was completed by several authors us-
ing Liouville, kinetic theory, Fokker-Planck and Langevin
approaches [41]. The Langevin approach provides the
most direct way of incorporating in Eq. 1 by promoting
them to a set of stochastic differential equations with a
state-dependent fluctuation. The fluctuations are cho-
sen to compensate each source of dissipation such that
distribution of positions and orientations is Gibbsian in
the absence of activity. The fluctuations, then, are cor-
related Wiener processes with variances proportional to
the mobility matrices. The positivity of dissipation en-
sures that mobility matrices are positive-definite and On-
sager symmetry constrains them to be symmetric in both
the particle and translation-rotation indices. These two
properties ensure that a mobility matrix can be factorised
into a lower triangular matrix and its transpose, any one
of which is a “square-root” of the mobility matrix. The
fluctuations can then be expressed as products of uncor-
related Wiener processes ξT , ξR,ηT ,ηR and the “square-
root” Cholesky factors. By linearity, dissipative, Brow-
nian and active motions are additive. Therefore, the
generalization of Brownian hydrodynamics to N active
particles, expressed as coupled Langevin equations, is

Vn =
N∑

m=1

µTT
nm · Fm + µTR

nm·Tm
︸ ︷︷ ︸

Passive

+
N∑

m=1

√

2kBTµTT
nm · ξTm +

√

2kBTµTR
nm· ξRm

︸ ︷︷ ︸

Brownian

+
N∑

m 6=n

∞∑

l=1

π(T, l+1)
nm ⊙V(l+1)

m +Va
n

︸ ︷︷ ︸

Active

(13a)

Ωn =
N∑

m=1

µRT
nm·Fm + µRR

nm ·Tm
︸ ︷︷ ︸

Passive

+
N∑

m=1

√

2kBTµRT
nm· ηT

m +
√

2kBTµRR
nm· ηR

m
︸ ︷︷ ︸

Brownian

+
N∑

m 6=n

∞∑

l=1

π(R, l+1)
nm ⊙V(l+1)

m +Ωa
n

︸ ︷︷ ︸

Active

(13b)

These equations are the main result of this section. In
the absence of activity, they reduce to the equation of
Brownian dynamics with hydrodynamic interactions [42].
When the forces derive from positional and angular po-
tentials, the form chosen for the fluctuations ensures that
the Gibbs distribution of the positions and orientations
is the stationary distribution. When activity is included,
the balance between fluctuation and dissipation is no
longer maintained and stationary states are no longer
described by the Gibbs distribution. As we show in the
remainder of the paper, non-trivial stationary states are

obtained when the spheres are chained together into fil-
aments.

III. BROWNIAN MICROHYDRODYNAMICS

OF ACTIVE FILAMENTS

The equations of active Brownian hydrodynamics pre-
sented in the previous section form the basis of our the-
ory of active slender bodies. As mentioned before, we
approximate the slender body as a filament, and then
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IV. DYNAMICS OF MINIMALLY ACTIVE

FILAMENTS

In this section, we study in detail the simplest member
of the family of models described by the general equations
of motion (Eq. 17) of the previous section. The three
leading irreducible components of the flow are plotted
in Fig. 1. The first panel shows the flow due a sphere
translating under the action of a force F, the second panel
shows the minimal flow due to a non-motile (Va

n = 0)
particle, while the third panel shows the minimal flow due
to a motile (Va

n 6= 0) particle. In our minimal model, the
spheres are non-motile, Va

n = 0, and all active velocity

components other than the symmetric part of V
(2)
n are

zero. Thus each individual sphere produces the flow show
in Fig. 1b. The velocities and tractions are, therefore,

v(Rm + ρm) = Ṙm + sm · ρm (18a)

4πa2f (Rm + ρm) = −∇mU + 3Sm · ρm (18b)

where sm and Sm are, respectively, the symmetric parts
of the second-rank velocity and traction coefficients. The
solution of the boundary integral equation, in the diag-
onal approximation, relates the unknown traction coeffi-
cient to the known value of the velocity coefficient [24, 35]

Sm = −
3

20πηa3
sm (19)

To complete the model, it is necessary to specify the ori-
entation pn of the spheres, and hence the principal axis
of the stresslet, in relation to the filament conformation.
Motivated by the experimental observation that molecu-
lar motors walking on microtubules generate tangential
stresses [1], we parametrize sm uniaxially, with its prin-
cipal axis always parallel to the local tangent tm of the
filament,

sm = s0(tmtm −
1

3
δ). (20)

The coefficient s0 is positive for extensile stresses and
negative for contractile stresses. Additionally, we assume
that the activity is so large that the Brownian fluctu-
ations make a negligible contribution to the dynamics.
Active flow is balanced entirely by the filament elastic-
ity. This leads to deterministic equations of motion for
an active filament composed of non-motile beads,

Ṙn = −
1

6πηa
∇nU −

1

8πη

∑

m 6=n

F0F0G ·∇mU

+
7a3

6

∑

m 6=n

F0F1
∇G⊙ sm

︸ ︷︷ ︸

Active

. (21)

These equations, without finite-sized corrections to the
hydrodynamic flow, were first proposed in [19] and sub-
sequently used in [20] to study the dynamics of clamped
active filaments.

The flow produced by the filament is sum of contribu-
tions from the potentials and the activity,

v(r) = −
1

8πη

N∑

n=1

F0G ·∇nU +
7a3

6

N∑

n=1

F1
∇G⊙ sn

︸ ︷︷ ︸

Active

.

(22)

The resultant flow is shown for three conformations, for
both extensile and contractile filaments, in Fig 2. In the
linear conformation, shown in the first column of Fig 2,
the flow tends to compress contractile filaments and ex-
tend extensile filaments. The stationary length of the fil-
ament, then, is somewhat shorter in the contractile flow
but somewhat longer in the extensile flow. In a symmet-
rically curved conformation, shown in the second column
of Fig, 2, the spontaneous flow tends to suppress cur-
vature in the contractile filaments but tends to enhance
it for extensile filaments. The suppression and enhance-
ment is seen for antisymmetrically curved conformations
in the third column of Fig. 2. This shows that the in-
terplay of flow and curvature is generally stabilizing for
contractile filaments while it is destabilizing for extensile
filaments. On dimensional grounds, a linear instability is
expected when the filament length L > lA ∼ κ/s0. In the
remainder of the paper, we shall focus only on extensile
filaments and study the non-equilibrium stationary states
that appear as a consequence of the linear instability.
In d spatial dimensions, activity introduces a new rate

Γs = s0/ηL
d in addition to the rate of elastic relaxation

Γκ = κ/ηLd+1 of the filament bending modes. The ratio,
As = Ls0/κ, of these two time scales provides a dimen-
sionless measure of activity. The activity number As also
measures the departure from equilibrium and the amount
of energy is injected into the fluid by the filament. We
vary both the filament length and the activity number in
studying the dynamics of the filament in d = 3 dimen-
sions.
We integrate the equations of filament equations of mo-

tion numerically using a variable coefficient method. We
chose the following parameters for the model : spring
constant k = 1, bondlength b0 = 4a, rigidity parameter
κ̄ = 0.4, stresslet strength s0 = 0.0 − 0.5 and number
of spheres N = 32 − 128. We obtain the mobility and
propulsion matrices using the PyStokes library [40]. We
simulate the system for several hundred active relaxation
time scales with an initial condition that is linear with
small random, transverse perturbations. We study two
cases, the first in which the filament is free at both ends
and second in which it is free at one end and tethered at
the other end.
Our results are summarised in Fig. 3, which shows the

non-equilibrium stationary states for both free filaments
in panels (a) - (f) and for tethered filaments in panels (g)
- (i). A linear instability appears at As ∼ 12 in free fil-
aments which leads to spontaneous symmetric curvature
and an emergent autonomous motility, shown in panel
(a). The conformation corresponds, roughly, to the first
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tive, local equations of motion may be accurate for de-
scribing some aspects of the dynamics of active filaments.

V. LINEAR STABILITY ANALYSIS

To better understand the linear instability which is
expected from the flows shown in Fig 2, we perform a
stability analysis of the equations of motion, about the
linear conformation. Taking the equations of motion to
represent a dynamical system, Ṙn = f(R1,R2, · · · ,Rn),

we compute the Jacobian J = −∇nf
∣
∣
∣
R0

n

at the station-

ary state with linear conformation R0
n. The linearised

dynamics, then, is

δṘn = J · δRn (25)

We numerically compute the eigenvalues of this stability
matrix as a function of activity As for both free and teth-
ered filaments. To evaluate the importance of non-local
hydrodynamic interactions, we also compare the eigen-
values for the dynamics in which all non-local (that is
m 6= n) terms are deleted. The results are shown in
Fig. 5(a) and Fig. 5(b) for free and tethered filaments,
respectively.
We see that the largest eigenvalue becomes positive at

As ∼ 12 for free filaments and As ∼ 5 for tethered fila-
ments. The bifurcation is thus a simple instability and
not of the Hopf type reported in the previous study of a
clamped minimally active filament [20]. The first eigen-
mode instability flows to the symmetrically curved con-
formation shown in Fig 3 (a). Instabilities of the higher
eigenmodes leads, the first of which is visible in Fig. 5a
at As ∼ 40, produces the more complicated states shown
in panels (b) - (g) of Fig 5. The presence of the tether
increases the threshold value of the activity at which the
instability occurs to As ∼ 5, but the sequence of insta-
bilities remains identical. Remarkably, there is no insta-
bility, in the same range of activity, when hydrodynamic
interactions are ignored, as shown in the right panels of
Fig 5. Thus, non-local active hydrodynamic flow is essen-
tial to produce the instabilities and the non-equilibrium
stationary states reported above.
Subsequent bifurcations with increasing values of ac-

tivity are expected to have a more complicated character,
as the stationary states are typically limit cycles. The nu-
merical study of limit cycle instabilities is considerably
more involved than that of time-independent stationary
states. We shall explore this aspect of the dynamics of
active filaments in a future study.

VI. DISCUSSION AND CONCLUSION

Previous work on bead-spring models of active fila-
ments have focused on three distinct mechanisms of ac-
tivity. In the earliest work of Jayaraman et al [19], ac-

tivity arises from the hydrodynamic flow of the active
spheres. In that work, the equations of motion for fila-
ment dynamics in three dimensions contained contribu-
tions from the leading order hydrodyamic flow due to
stresslets and degenerate quadrupoles. A detailed study
and all results were given for non-motile active spheres,
thus ignoring the velocity quadrupoles. In subsequent
work, Chellakot et al [21] studied a chain of motile active
spheres, subject to Brownian motion, in two dimensions
but ignored all non-local hydrodynamic effects, both pas-
sive and active. In related work, Jiang and Hou [22] stud-
ied a chain of passive spheres, subject to forces of non-
equilibrium origin, directed along the filament tangent.
In their model, both passive hydrodynamic flow and hy-
drodynamically correlated Brownian motion is included
in three dimensions, but active flow is absent. Remark-
ably, in spite of these differences between the models,
they yield a broadly similar phenomenology : linear in-
stabilities, spontaneous motion, and oscillatory states.

To understand why this might be, it is best to situate
all the previous models within the equations of motion
presented here. The model studied in detail by Jayara-
man et al [19] is obtained when self-propulsion veloci-
ties, Va

n, are set to zero, only the dipolar contribution
to active flow is retained, and finite-sized corrections to
hydrodynamic flow as well as Brownian motion are ne-
glected. The model of Chellakot et al [21] is obtained
when the self-propulsion velocity is directed along the
axis pn, V

a
n = vspn, and this axis is itself determined

from the balance of a restoring and Brownian torques.
This requires the angular velocity to be retained as a
dynamical variable and all off-diagional contributions to
mobility and propulsion matrices to be ignored. Finally,
the model of Jiang and Hou [22] is obtained by ignoring
all active components of flow, va = 0, but representing
the force on the spheres as Fn = −∇nU + αtn, as sum
of contributions from the potentials and an unspecified
non-equilibrium source. The common feature of all these
models is that they produce motion in the direction of
the curvature. This arises from the non-local hydrody-
namic flow in the model of Jayaraman et al, and from
the local contributions due to self-propulsion and non-
equilibrium activity in the models of Chellakot et al and
Jiang et al respectively. The present work shows that a
phenomenology beyond curvature instabilities remains to
be explored. In particular, torsional instabilities, possible
with self-rotating active spheres that are unhindered by
torsional potentials, are likely to yield further surprises
in the dynamics of active filaments.

We have neglected, here, the active self-propulsion and
set Va to zero. The motion of an active filament chain
composed of self-propelling particles will be dominated
by the self-propulsion terms which are all O(1), and the
hydrodynamic interactions that have been studied here
in detail will be subdominant. Such a model, especially
in the case where the self-propulsion axis is aligned to the
filament tangent, is expected to show the kinds of transi-
tion between translational and rotational states observed
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(a)Free filament with and without HI
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(b)Tethered Filament with and without HI

Figure 5. Variation of the largest non-zero eigenvalues of the stability matrix, J, plotted against activity number, As, for a
free filament in (a) and a tethered filament in (b). In each case, the eigenvalues are computed including full hydrodynamic
interactions (HI) (left panels) and neglecting all non-local hydrodynamic contributions (right panels). The eigenvalues remain
negative, for all values of As in a large range, when hydrodynamic interactions are neglected. Hydrodynamic interactions,
therefore, are essential for the instability of the linear conformation and the bifurcation to dynamical steady states, signalled
by the positive eigenvalues in each of the left panels.

in the work of Jiang and Hou [22].

The equations of motion presented provide the foun-
dation for studying non-equilibrium statistical mechanics
of active filaments. The coupled Langevin equation for
the positions can be recast as Fokker-Planck equations,
whose stationary solutions in the absence of activity are
given by the Gibbs distribution. Activity, in the forms
envisaged in this work, introduces an additional drift
in the Fokker-Planck equation, destroying the balance
between fluctuation and dissipation. This will lead to

non-Gibbsian distributions in the stationary state, and,
likely change well-known equilibrium properties like stat-
ics of the coil-globule transition [43] and the distribution
of loop closure times [30]. We urge that some of these
problems be addressed both experimentally and through
theory and simulations.

As a final remark, we draw attention to the similarity
between the instabilities reported here and the convective
instability by active stress studied in the pioneering work
of Finlayson and Scriven [44].
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Appendix A: Integrals and Matrix elements

The expressions for the boundary integrals G(l) and K(l) and the matrix elements G
(l,l′)
nm and K

(l,l′)
nm are given as

[24],

G(l+1)(r,Rm) =
2l + 1

4πa2

∫

G(r,Rm + ρm)Y(l)(ρ̂m)dSm = al∆(l)F l
∇

(l)
m G(r,Rm) (A1a)

K(l+1)(r,Rm) =
1

l!(2l − 1)!!

∫

K(r,Rm + ρm) · nY(l)(ρ̂m)dSm =
4πa al∆(l)

(l − 1)!(2l + 1)!!
F l

∇
(l−1)
m K(r,Rm) (A1b)

G(l+1,l′+1)
nm (Rn,Rm) =







δll′
2l + 1

2πa

∫

Y(l)(ρ̂) (δ − ρ̂ρ̂)Y(l)(ρ̂) dΩ; m = n;

al+l′F l
nF

l′

m∇
(l)
n ∇

(l′)
m G(Rn,Rm); m 6= n;

(A2a)

K(l+1,l′+1)
nm (Rn,Rm) =







−δll′4πδ∆
(l); m = n;

4πa(l+l′+1)

(l′ − 1)!(2l′ + 1)!!
F l

nF
l′

m∇
(l)
n ∇

(l′−1)
m K(Rn,Rm); m 6= n;

(A2b)

Appendix B: Constraining Force on the tethered bead

Tethering the filament generates a conformation dependent constraint force at the tethered point. We take care of
hydrodynamics to satisfy the boundary condition appropriately, such that net velocity of the respective end vanishes.
Then we back-calculate the constrained force self-consistently on the course of simulation.

Ṙ1 =−
1

6πηa
(∇1U + Fc)−

1

8πη

N∑

m=2

F0F0G(R1,Rm) ·∇mU +
7a3

6

N∑

m=2

F0F1
∇G(R1,Rm)⊙ sm

Fc = −∇1U −
3

4η

N∑

m=2

F0F0G(R1,Rm) ·∇mU + 7πηa4
N∑

m=2

F0F1
∇G(R1,Rm)⊙ sm.
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[8] Sébastien Camalet and Frank Jülicher. Generic aspects
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