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Soft particles can be better emulsifiers than hard particles because they stretch at fluid interfaces.
This deformation can increase adsorption energies by orders of magnitude relative to rigid particles.
The deformation of a particle at an interface is governed by a competition of bulk elasticity and
surface tension. When particles are partially wet by the two liquids, deformation is localized within
a material-dependent distance L from the contact line. At the contact line, the particle morphology
is given by a balance of surface tensions. When the particle radius R ≪ L, the particle adopts a
lenticular shape identical to that of an adsorbed fluid droplet. Particle deformations can be elastic
or plastic, depending on the relative values of the Young modulus, E, and yield stress, σp. When
surface tensions favour complete spreading of the particles at the interface, plastic deformation can
lead to unusual fried-egg morphologies. When deformable particles have surface properties that are
very similar to one liquid phase, adsorption can be extremely sensitive to small changes of their
affinity for the other liquid phase. These findings have implications for the adsorption of microgel
particles at fluid interfaces and the performance of stimuli-responsive Pickering emulsions.

Emulsions are vital in many fields, including foods, cos-
metics, pharmaceuticals, and oil recovery [1–4]. Emul-
sions are typically stabilised by molecular surfactants,
but they can also be stabilised with microparticles [5, 6].
The resulting Pickering emulsions have many benefits
over regular emulsions. In particular, they are highly
stable and avoid the use of potentially harmful or irritat-
ing surfactants [5].
A recent development is the use of soft colloidal

particles (typically microgels) to make Pickering emul-
sions [6–9]. These form easily [6, 10, 11], and can be
tuned in situ, for instance by altering solvent proper-
ties, such as temperature and pH [12–17]. This has
been demonstrated with emulsions created with poly(N-
isopropylacrylamide) (pNIPAM) particles. Since pNI-
PAM undergoes a reversible swelling/shrinking transition
at a temperature close to body temperature, they have
potential for stimuli-responsive release of encapsulated
active ingrediants for drug delivery [6].
A key difference between soft and hard particles as

Pickering emulsifiers is that soft particles stretch as they
adsorb [8, 18]. For example, microgel particles can have
a much larger diameter at the interface than they do in
the bulk. The extent of stretching depends on the cross-
linking ratio of the hydrogel [18, 23, 24]. Figure 1 shows
a side view of a p(NIPAM) microgel at a water/n-decane
interface using cryo-SEM after freeze-fracture [25]. While
these soft particles have a spherical shape in solution,
they are strongly deformed at the interface. The central
region of the particle remains somewhat spherical, espe-
cially the part exposed to the bulk water phase. However,
the particles are pulled strongly outward at the contact
line, and a thin film of polymer spreads across the inter-
face.

∗ style@maths.ox.ac.uk

Here, we lay the groundwork for a theoretical un-
derstanding of the adsorption of soft particles at fluid-
fluid interfaces. In Section I, we contrast the adsorption
of rigid particles with the adsorption of fluid droplets.
These limits bound the full range of behaviour for de-
formable particles. We identify a critical point where
deformable particles are extremely sensitive to small
changes in the surface tensions. Particles near this crit-
ical point could be ideally suited to making stimuli-
responsive emulsions. We then discuss two important
scenarios for intermediate particle deformability. In Sec-
tion II, we calculate analytically the deformation of
linear-elastic particles that neutrally wet a fluid inter-
face. We find that elastic deformation is localized near
the contact line, over a zone of width given by the ratio
of the particle surface tension to Young’s modulus, γp/E.
When the particle is much smaller than this lengthscale,
it adopts a surface-energy-minimizing lenticular shape.
In Section III, we outline scaling arguments describing
the plastic deformation of particles at a fluid interface.
Similar to the case of elastic deformations, we expect
that plastic deformation should be localized over a zone
near the contact line whose width is given by the ratio
of the particle surface tension to its yield stress, σp. In
the limit of large fluid-fluid surface tensions, particles can
be driven far beyond the elastic limit and adopt unusual
‘fried-egg’ morphologies. We conclude by discussing the
implications of our findings for microgel particles.

Throughout this paper, we make the following sim-
plifying assumptions. First, we limit our attention to
homogeneous spherical particles made of fluids or linear-
elastic solids. Second, we assume that surface tension of
the particles is fluid-like. This means that the surface
tension is isotropic and strain-independent, with numer-
ical equivalence of the surface energy and surface stress.
This should be a good approximation for gels, including
microgels, where the surface tension may be dominated

Page 1 of 8 Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



2

FIG. 1: pNIPAM particles at an oil-water interface,
imaged using cryo-SEM. The microgels were synthesized
by free-radical precipitation polymerization with a 5 %
cross-linking density [19] following standard routes

[20–22]. The cryo-SEM sample was prepared creating
an interface between a 0.36 w/v % aqueous suspension
of the microgels and purified n-decane in a custom
copper holder, letting the microgels spontaneously
adsorb at the interface over 10 minutes. After shock

freezing by liquid propane jets, the sample was
fractured under high-vacuum and cryo conditions,
removing the oil and exposing the particle-laden

interface. A crack in the interfacial film (coated by a
3nm layer of tungsten for imaging) allowed a side view
of the microgels adsorbed at the interface, where the
aqueous phase was at the bottom of the field of view.

by the properties of the embedded liquid phase [26]. Thus
we will use the same symbol, γ, to refer to surface stress
and surface energy throughout this paper. Finally, we
will simplify our notation by referring to the fluid-fluid
interface as an oil-water interface, with the particles be-
ing initially dispersed in the aqueous phase.

I. ADSORPTION OF FLUID DROPLETS AND

RIGID PARTICLES

The natural starting point is the two extreme cases of
particle adsorption: (i) perfectly-soft particles (that be-
have like liquid droplets), and (ii) rigid particles. These
two cases will give us bounds on particle behaviour at in-
terfaces. In Section II, we show that particles will behave
like one of these two extremes unless their undeformed
radius, R, is near a characteristic material length scale.
In the limits of perfectly-soft and rigid particles, ad-

sorption is completely determined by the surface tensions
of the oil-water, oil-particle, and water-particle inter-
faces: γow, γop and γwp respectively. Perfectly-soft parti-

cles take a lenticular shape, given by by Neumann’s trian-
gle construction [27] which requires force balance at the
contact line (Figure 2a). Rigid particles float so that they
obey the Young-Dupré relation: γow cos θ + γwp = γop,
where θ is the angle between the particle surface and
oil-water interface on the water side (Figure 2b).

Soft particles can spread to cover up much more oil-
water interface than hard particles. We use Neumann’s
triangle and the Young-Dupré relation to calculate the
contact radii, a, of perfectly-soft, and rigid particles at
interfaces respectively. In both cases, a/R only depends
on γop/γow and γwp/γow. When γop/γow or γwp/γow are
big, soft and rigid particles adsorb similarly at the in-
terface, Figure 2(c,d). This is because large surface ten-
sions γop, γwp keep soft particles approximately spheri-
cal – like a hard particle. However, when γop/γow and
γwp/γow are small, γow can strongly deform soft parti-
cles, so they cover up far more interface than hard parti-
cles. In particular, for γop/γow + γwp/γow ≤ 1, perfectly-
soft particles will completely spread, as indicated by the
lower-left corner of Figure 2(c). This is analogous to
complete wetting of a liquid on a rigid substrate. In
this limit, surface tensions drive spreading that is ulti-
mately limited by molecular-scale physics [27]. When
γwp/γow > γop/γow + 1 or when γwp/γow + 1 < γop/γow,
particles do not adsorb to the interface, and instead sit
completely in the oil/water phase respectively, regardless
of their stiffness. This is indicated by the upper-left and
lower-right corners of Figures 2(c,d)

Intriguingly, we find a critical point for perfectly-soft
particles at γwp/γow = 0 and γop/γow = 1, see Figure
2(c). Here, deformable particles are poised between com-
plete spreading and total desorption. Therefore, the ad-
sorption of deformable particles lying near the critical
point is extremely sensitive to small changes in surface
tension. Such particles could be ideally suited for the
formation of stimuli-responsive emulsions.

Deformable particles can bind much more tightly to
the oil-water interface. From the results above, we cal-
culate the adsorption energy of particles from the wa-
ter phase onto the oil-water interface: Ead ≡ −∆E =
4πR2γwp + πa2γow −Awγwp −Aoγop, where Aw and Ao

are the final particle-oil/particle-water surface areas re-
spectively. Figure 3 shows how the ratio of hard-particle
to soft-particle adsorption energies Eh

ad/E
s
ad depends on

γop/γow and γwp/γow. For large γwp/γow, adsorption of
hard and soft particles is approximately the same: in
both cases, the particle mostly moves from the water
phase into the oil phase, and Ead ∼ 4πR2γwp. How-
ever, as γwp/γow gets smaller, soft particles are much
more strongly adsorbed to the oil-water interface. This
is due to much greater spreading of the soft particles
which covers up the oil-water interface. When surface
tension favours total spreading, γop/γow + γwp/γow < 1,
the adsorption energies of soft particles are arbitrarily
larger than those of rigid particles (bottom-left corner of
Figure 3).
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with θ = π/2 corresponding to the plane of the oil-water
interface.
We calculate the particle’s deformed shape by solving

for the displacements in the particle u = (ur, uθ, uφ),
which satisfy the Navier equations:

(1− 2ν)∇2
u+∇(∇.u) = 0. (1)

Stresses in the solid are given by

σij + p0Iij =
E

1 + ν

(

ǫij +
ν

1− 2ν
ǫkkIij

)

, (2)

where Iij is the Kronecker delta, and ǫij = (∂ui/∂xj +
∂uj/∂xi)/2 is the strain. p0 = 2γp/R is the Laplace
pressure in the undeformed particle at zero strain caused
by the particle’s surface stress γp. Note without γp there
is a strain singularity at the contact line [31].
For boundary conditions we require that stress is

bounded inside the particle, and that traction stresses
at the particle’s surface balance stresses caused by γp
and γow:

σ.n =
[

−γpK +
γow
r

δ
(

θ −
π

2

)]

n (3)

(e.g. [28, 32, 33]). Here n and K are the normal and
curvature of the surface respectively and δ is the Dirac
delta function. Note that this boundary condition implies
no shear stress at the particle surface.

We linearise the equations about the undeformed-
particle state with u = 0 and σij = −(2γp/R)Iij (e.g.
[33]) to find that equation (3) becomes:

σrr = −p0+
γp
R2

(

2ur + cot θ
∂ur

∂θ
+

∂2ur

∂θ2

)

+
γow
R

δ
(

θ −
π

2

)

(4)
and

σrθ = 0. (5)

We solve the governing equations (1,2,4,5) using Leg-
endre series (e.g. [34]). The general solution of equation
(1) inside the particle is:

ur = a0r +

∞
∑

n=1

(

anr
n+1 + bnr

n−1
)

Pn(cos θ), (6)

uθ =

∞
∑

n=1

(

an(5 + n− 4ν)

(1 + n)(−2 + n+ 4ν)
rn+1 +

bn
n
rn−1

)

d

dθ
Pn(cos θ)

(7)
and uφ = 0, where Pn(x) are Legendre polynomials of
order n. Then applying equations (4,5) and the identity

δ
(

θ −
π

2

)

=

∞
∑

n=0

2n+ 1

2
Pn(0)Pn(cos θ). (8)

gives the solution for n = 0, 1, ...,∞:

an =
γow
4γp

(

(n− 2)(n+ 1)(2n+ 1)(1 + ν)(n− 2 + 4ν)Pn(0)R
−n

2(n2 + n− 2)(1 + ν)(1 + 2n2(−1 + ν)− 2ν − nν) + RE
γp

(2(1 + ν) + (n− 1)n(−2− ν + n(−3 + 2ν)))

)

(9)

bn = −
γow
4γp

(

n2(2n+ 1)(n+ 5− 4ν)(1 + ν)R−n+2

2(n2 + n− 2)(1 + ν)(1 + 2n2(−1 + ν)− 2ν − nν) + RE
γp

(2(1 + ν) + (n− 1)n(−2− ν + n(−3 + 2ν)))

)

.

(10)

These theoretical results allow us to investigate the
parametric dependence of the deformation of adsorbed
particles. Equations (6,7,9,10) show that ur/R and
uθ/R only depend on the two dimensionless parameters
R/L = RE/γp and γp/γow. This dependence is shown in
Figure 4 for ur/R with ν = 1/2. When R & 20L, there
is little particle deformation except in a small region at
the contact line. For smaller particles, deformations in-
crease with decreasing particle size until, when R ≪ L,
the particle adopts a fixed lenticular shape that only de-
pends on the ratio of surface tensions. When R ≫ L,
changing γp/γow makes relatively little difference to the
overall particle shape. When the particle starts to stretch
out (R . 10L), decreasing γp/γow increases the particle
aspect ratio.

The results in Figure 4 illustrate the transition be-
tween ‘perfectly-soft’ particle behaviour for R ≪ L and
‘rigid’ particle behaviour for R ≫ L. This interpretation
of the limiting scenarios can be understood by studying
how equations (9,10) vary with R/L. When R ≪ L, the
second term in the denominators drops out, and particle
response is independent of E. Then particle shape only
depends on surface tension and particle compressibility,
analogous to a droplet at the oil-water interface – i.e.
it behaves like an ‘perfectly-soft’ particle. On the other
hand, when R ≫ L, an and bn are independent of γp
for small n. Thus overall particle shape is unperturbed
by adsorption, except near the contact line where small
displacements should be O(γow/E) (e.g. [29, 35–39]).

We can quantify when particles enter the ‘perfectly-
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tact line over a region of width L. This deformation is
negligible unless γow > 2γp. In this limit, corresponding
to the complete spreading discussed in Section I, classi-
cal surface tensions cannot balance, leaving a divergent
stress in the solid. Unless Lpl is comparable to or less
than molecular dimensions [42, 43], this divergent stress
will drive plastic flow of material out from the particle
waist. Surface tension favours the growth of this skirt to
arbitary dimensions. We expect its ultimate extent will
be limited by the available surface area or molecular-
scale physics. We propose that this could contribute to
the peculiar ‘fried-egg’ morphologies observed in microgel
particles at oil-water interfaces (Fig. 1 and [23, 44]).

IV. CONCLUSIONS

We have considered the efficacy of soft particles as
Pickering emulsifiers. Since soft particles spread out at
fluid-fluid interfaces, they can have much higher adsorp-
tion energies than hard particles. Furthermore, in certain
regions of phase-space, soft particles can be driven be-
tween complete spreading and desorption with extreme
sensitivity to the surface tensions. Whether a parti-
cle is ‘soft’ or ‘hard’ depends on the ratio of its size
to elastocapillary and plastocapillary lengthscales. Pro-
vided that the fluid-fluid surface tension is not too large,
larger particles appear ‘rigid’. Smaller particles appear
‘perfectly-soft’ and behave similarly to liquid droplets
at interfaces. We have fully determined the transition
between these two cases for neutrally wetting elastic
spheres. Our results suggest that plasticity becomes im-
portant when σp . E. More generally, we expect plas-

tocapillarity to play an important role in a wide range
of interfacial phenomena of solids where elastocapillar-
ity is known to be important, including soft wetting
[28, 36, 37, 41, 42, 45, 46], surface flattening [47, 48], in-
stabilities [35, 49], adhesion [29, 50–52], and composites
[30, 33].

From a theoretical perspective, there are still many
problems to be tackled. Our analytic model is con-
strained to small deformations. However, we expect this
to break down when the surface tensions favour complete
spreading. In this case, nonlinear elasticity [38, 52, 53],
or molecular dynamics modelling [50] will be especially
important. It may also be interesting to explore what
happens when the particle’s surface energy is not equiv-
alent to its surface stress. Finally, an important question
is how particles behave when they are no longer dilute,
but packed (e.g. hexagonally) at interfaces [8, 19, 54].

Packed particles lose their spherical symmetry and do
not fully stretch out on the interface – this is expected
to significantly affect their adsorption energy, and thus
emulsion behaviour [55].
Experimental studies of soft particles at interfaces have

focused on microgel particles. What are the implications
of our results on highly idealized particles for these real
systems? A number of limitations of our model are evi-
dent. First, our idealized particles are homogenous, while
microgels typically have a gradient in crosslinking den-
sity, which may even include long dangling chains at the
outmost layer. Second, real microgels are a two-phase
system comprised of solvent and a swollen elastic net-
work. Our model does not consider the complex thermo-
mechanical properties of such systems, but simply treats
them as a one-phase system. However, the two-phase
nature of microgels does lead to one exciting implication
of our work for real microgel particles: Since the elastic
network of a microgel particle is highly swollen by the
solvent, the surface properties of microgels can be dom-
inated by the solvent [26]. In that case, there is little
surface tension between the particle and the solvent (i.e.
γwp/γow approaches zero) and the surface tension of sol-
vent against the other liquid phase would be very close
to the surface tension of the particle against the other
liquid phase (i.e. γop/γow ≈ 1). This places microgel
particles near the predicted critical point between com-
plete spreading and desorption, as described in Section
I and shown in Figure 2(c). Thus, small changes in the
affinity of the polymer for the oil phase due to changes in
temperature or pH could potentially drive microgel par-
ticles between the extremes of complete spreading and
desorption. This could be an ideal basis for a stimuli-
responsive emulsion. The precise location of a microgel
particle on the phase diagram in Figure 2(c) will depend
on the details of the polymer and solvent composition.
While common microgel systems may not already lie near
the critical point, we argue that it may be advantageous
to design future microgel systems to do so.
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