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Γeq is the equilibrium surface concentration. For simplicity we

will define ∆ as:

∆ =

[

1 + Θ(1 +Ma
∂Γ∗

∂θ
)

]

(8)

Analytical solutions to Eqs. 4 and 6 have been previously ob-

tained in two limits for the time dependence of the film thick-

ness at the apex of the dome (θ = 0) by Bhamla et al26. The

first of these limits is the case of a surfactant free draining liquid

layer, where Bq = 0, while the second limit corresponds to an

extremely viscous interface, where Bq → ∞. In both cases, the

form of the solution is

H =
1

√
1 + 4ατ

(9)

where α = 1/3 for Bq = 0 and α = 1/12 for Bq → ∞. The

parameter α hence enables us to distinguish between a perfectly

mobile interface (α = 1/3) and an immobile one (α = 1/12),

where the immobilisation can arise due to rheological properties,

providing significant resistance to either shear or dilation, or due

to the occurrence of Marangoni stresses. In reporting the experi-

mental data, it will be fit to Eq. 9, with α as a fitting parameter,

which will be used as a measure for interfacial immobilisation.

3 Materials and methods

3.1 Lung Surfactant Replacements

Three commercial lung surfactant replacements are compared:

Curosurf (Chiesi, Italy), Survanta (AbbVie, USA) and Infasurf

(ONY Inc, USA). These are, respectively, a porcine, bovine and

bovine calf surfactant containing 76, 28 and 35 mg phospholipids

(PL) per ml (see SI Table S.1). Survanta is obtained from minced

bovine lung tissue, extracted and precipitated and supplemented

with synthetic DPPC, palmitic acid and tripalmitin27. Curosurf

comes from minced porcine lung tissue. It is depleted of

cholesterol during manufacture 28. Infasurf is prepared from lung

lavage of newborn calves and contains all of the hydrophobic

components, including cholesterol18. All three were diluted in

a phosphate buffered saline (PBS) solution (pH 7.4; Gibco) to

identical concentrations of 0.8 mg PL ml−1. The concentration

was chosen based on the dependence of surface tension on

concentration as shown in the SI - Fig. S.1, where the surface

tension of the lung surfactant mixture as measured with a

Wilhelmy plate is approximately constant from a concentration

of 0.4 mg PL ml−1 onwards. The clinical lung surfactant

replacements were allowed to come to adsorption equilibrium

at a temperature of 37 ◦C, so surface tensions were in the range

of 25-30 mN/m before the start of the drainage experiments.

Temperature was maintained at 37 ◦C, except in the visualisation

experiments, which had to be performed at room temperature.

DPPC is procured from Avanti Polar Lipids Inc. (Alabaster,

AL) in 25 mg mL−1 glass vials. Stock solutions of 1 mg mL−1

in chloroform (Sigma-Aldrich, St. Louis, MO) were created

and stored in a freezer until required. DPPC was spread at the

interface using chloroform as a spreading solvent and was then

compressed to a surface pressure of 20 mN/m before starting

any experiment. This particular surface pressure was chosen as

to give it the same order of magnitude of surface viscosity as

Curosurf and Infasurf (see further).

3.2 Interfacial rheology

The Double Wall Ring (DWR) geometry accessory combined

with a sensitive magnetic bearing stress rheometer (Discovery

HR-3, TA instruments, USA) and magnetic needle Interfacial

Shear Rheometer (ISR) were used to characterise the interfacial

rheology of the lung surfactant replacements and the DPPC 29–31.

Only Survanta had sufficiently high viscosities and elasticities to

be measured with the DWR, the other systems were outside of

the sensitivity limits and necessitated the use of the ISR. In all

cases, the results were corrected for subphase drag as described

in literature29–32.

The three lung surfactant replacements are used from their

stock solutions as described above and dispersed into the

rheometer trough. Following natural adsorption of a monolayer

from the bulk fluid and attainment of an equilibrium surface

pressure of 47 mN m−1, the interfacial rheology was measured.

Infasurf and Curosurf interfacial rheologies were only obtainable

at room temperature where as Survanta, being much more

viscoelastic, could be studied at 37◦C.

DPPC is spread at the air-water interface in a Langmuir trough

by touching microdrops of lipid stock solution (1 mg mL−1) us-

ing a clean Hamilton syringe. We use deionized-distilled water

as the subphase from a Milli-Q filtering system (EMD Millipore,

Billerica, MA) with a resistivity of 18.2 MΩ·cm and surface ten-

sion of 72 mN m−1. The surface pressure is monitored using a

platinum Wilhelmy plate connected to a surface pressure sensor

(KSV NIMA Ltd., Helsinki, Finland). The volume of DPPC spread

is 35 µL, and the spreading pressure is less than 0.5 mN m−1.

After chloroform is allowed to evaporate for 30 min, the inter-

face is compressed using symmetric Teflon barriers at a speed of

10 mm min−1 till a surface pressure of 20 mN m−1 is achieved, in

order to compare with earlier drainage experiments 26. The rhe-

ology measurements are performed at a strain amplitude of 1%,

which is in the linear viscoelastic regime for this material19.

3.3 Drainage apparatus.

To characterise the effect the different substances on film mobil-

ity, the drainage of thin films is observed using a modification

of a device used previously for study of tear film lipids 26,33. A

picture and schematic of the instrument are shown in Fig. 3. The

device consists of a hemi-spherical glass dome (Newport KPX579,

with a (curvature) radius of 19.97 mm mounted on a pedestal

that is initially submerged below the air-solution interface. In

the case of DPPC, the dome is submerged below an air-liquid

interface on which DPPC is spread and then compressed to

a known surface pressure. For the lung surfactants barrier

compression is not required and experiments are commenced

once adsorption to the interface has achieved equilibrium. In
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In the present work, we investigate the mechanisms affecting the stability of surfactant-laden thin films 
during spreading, using drainage flows from a hemispherical dome. Three commercial lung surfactant 

replacements Survanta, Curosurf and Infasurf, along with the phospholipid Dipalmitoylphosphatidylcholine 
(DPPC), are used.  
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