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Hierarchical assembly may be a way to make large information-rich structures

Stephen Whitelam∗

Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

Self-assembly in the laboratory can now yield ‘information-rich’ nanostructures in which each
component is of a distinct type and has a defined spatial position. Ensuring the thermodynamic
stability of such structures requires inter-component interaction energies to increase logarithmically
with structure size, in order to counter the entropy gained upon mixing component types in solution.
However, self-assembly in the presence of strong interactions results in general in kinetic trapping,
so suggesting a limit to the size of an (equilibrium) structure that can be self-assembled from
distinguishable components. Here we study numerically a two-dimensional hierarchical assembly
scheme already considered in experiment. We show that this scheme is immune to the kinetic
traps associated with strong ‘native’ interactions (interactions designed to stabilize the intended
structure), and so, in principle, offers a way to make large information-rich structures. In this
scheme the size of an assembled structure scales exponentially with the stage of assembly, and
assembly can continue as long as random motion is able to bring structures into contact. The
resulting superstructure could provide a template for building in the third dimension. The chief
drawback of this scheme is that it is particularly susceptible to kinetic traps that result from ‘non-
native’ interactions (interactions not required to stabilize the intended structure); the scale on which
such a scheme can be realized therefore depends upon how effectively this latter kind of interaction
can be suppressed.

I. INTRODUCTION

Molecular self-assembly in the laboratory is a promis-
ing way of making useful materials [1–4]. Self-assembly
mediated by DNA [5], in particular, has been used to cre-
ate a wide range of nanostructures [6–8], some of which
can perform basic functions [9]. Recent work has demon-
strated the self-assembly of DNA ‘brick’ nanostructures,
which are solid, equilibrium structures in which each
component or brick is of a distinct type and has a defined
position [10, 11]. These structures self-assemble in solu-
tion because inter-component interactions, which are me-
diated by DNA basepairs, are stronger between compo-
nents designed to be adjacent in the assembled structure
than between components not designed to be adjacent in
the assembled structure. A growing body of theoretical
work [12–21] indicates that this principle of component-
type complementarity might be used quite generally to
create defined, multicomponent assemblies of e.g. col-
loids or other nanoscale building blocks. ‘Information-
rich’ materials [22] of this kind have considerable techno-
logical potential [23, 24].

However, theoretical work also suggests that some ob-
stacles must be overcome before we can self-assemble
information-rich structures of arbitrary size (DNA brick
nanostructures are about 1000 components in size [10,
11]). For one, the growth rate of a structure made of Q
distinguishable components will likely be of orderQ times
less than that of the corresponding indistinguishable-
particle structure, because only about 1 in Q inter-
component collisions can promote growth [19]. For an-
other, the energy scale of inter-component bonds must

∗swhitelam@lbl.gov

grow on the scale of kBT lnQ in order to render the de-
sired structure thermodynamically stable, because bond
energies must counter the entropy associated with per-
muting component types in solution [19, 20, 23] (see Ap-
pendix A). This energy scale is, for macroscopic objects
with Q ∼ 1024, in excess of 50 kBT . Molecular self-
assembly in the presence of interaction energies large on
the scale of kBT generally results in kinetic trapping, be-
cause strong bonds can prevent the correction of mistakes
that happen when components undergoing Brownian mo-
tion collide randomly [26–32]. This is so even if the only
interactions present are those designed to stabilize the
intended structure – we will call these native interactions
– so suggesting a limit to the scale on which information-
rich structures may be self-assembled.

To overcome this limitation one must either seek to
make defined nonequilibrium structures [33–36], or else
engineer an assembly pathway that is immune to the ki-
netic traps associated with strong native inter-component
interactions. This paper focuses on the second of these
options.

We will focus on a 2D assembly scheme, a version of
which has been used in experiment to create DNA nan-
otile lattices [25] (that scheme aimed to produce many
copies of a small target structure; here we will be con-
cerned with making one copy of a large target structure).
In this scheme, each stage of assembly involves the forma-
tion of distinct squares, stabilized by four internal bonds.
Each bond is in general mediated by multiple compo-
nents. In the presence of native interactions only, each
square can be formed only from four particular pieces.
No matter the strength of the bonds between these four
pieces, or the order in which bonds are made, no mis-
binding can happen during construction of the square.
In other words, this scheme is immune to the kinetic
traps associated with strong native inter-component in-
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FIG. 1: Self-assembly of large, information-rich structures in thermal equilibrium will likely require strong inter-component
interactions [19, 20, 23]. (a) The hierarchical assembly scheme demonstrated experimentally in Ref. [25] is immune to the
kinetic traps associated with strong native interactions, i.e. interactions designed to stabilize the assembled structure. Each
stage of assembly involves the formation of squares, mediated by four chemically-specific internal bonds. No matter the strength
of these bonds or the order in which they form, kinetic trapping in the form of mis-binding cannot occur. (b) The resulting
two-dimensional assembly could provide a template for building a three-dimensional structure, which could in principle also be
done in a way that avoids kinetic traps associated with strong native interactions.

teractions. To enable such an assembly pathway one
can either combine reactants in stages [25], or ‘switch
on’ inter-component interactions in stages, as illustrated
in Fig. 1(a). In the first stage of assembly, selected in-
teractions between monomers promote the assembly of
squares of size 4. One then turns on additional inter-
actions to promote the formation of second-stage struc-
tures, squares of size 16, and so on, with stage n struc-
tures being of size 22n. This process can continue as long
as structures can be brought into contact, so permitting
the generation of an arbitrarily large information-rich ar-
ray. This array could provide a template for building
in the third dimension, with e.g. subsequent layers de-
posited one at a time [24]; see panel (b).

The chief drawback of this scheme it that it is, like
other forms of hierarchical assembly [37–39], particularly
susceptible to kinetic traps caused by ‘undesigned’ or
non-native interactions, by which we mean interactions
that are not required to stabilize the intended structure.
Such interactions include those between components not
designed to be adjacent in the assembled structure, or
interactions between intended neighbors that promote
binding incompatible with the target structure. Non-

native interactions might arise in experiment because of
‘accidental’ complementarity between DNA sequences, or
because of nonspecific van der Waals attractions. ‘Non-
hierarchical’ many-component self-assembly can proceed
in the presence of such interactions [10, 18], provided that
the difference in energy scales between the set of native
and non-native interactions is large enough [19, 20]. But
attractive non-native interactions are tolerated poorly by
a stage-by-stage hierarchical scheme, in which the effec-
tive building block size is ever-increasing, because un-
desirable interactions between two clusters increase in
strength in proportion to their surface area. Therefore,
above some size scale, kinetic trapping of a hierarchical
assembly scheme in the presence of attractive non-native
interactions would seem to be inevitable.

In view of these considerations, the hierarchical scheme
is likely to be inferior to a non-hierarchical scheme if non-
native interactions are not intentionally suppressed. In-
deed, the authors of Ref. [25] found for DNA tiles that the
‘square-upon-square’ hierarchical assembly scheme was
inferior to a non-hierarchical scheme (in which all com-
ponent types were combined directly), even when used
to make a relatively small 4× 4 array. Despite this find-
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FIG. 2: Simulation model of the idea sketched in Fig. 1. (a) Disc geometry and patch-patch native interaction rules. (b)
Target structure for self-assembly, a ‘stage 5’ square of size 210 = 1024. All discs in the structure are of a distinct type, as
indicated by their color. (c) Maximally-bonded configurations of stage 2 and stage 4.

ing, we argue here that the hierarchical scheme can in
principle be used to build larger information-rich struc-
tures than can the non-hierarchical scheme (which cannot
tolerate strong native interactions), if one can suppress
non-native interactions. Perhaps this could be done by
combining DNA-mediated interactions with some form
of inter-particle repulsion (we discuss this point further
in the conclusions section). If so, the stage-by-stage hier-
archical assembly pathway offers a potential route to the
assembly of large information-rich structures in thermal
equilibrium.

In Section II we introduce an off-lattice particle-based
computer model that can be used to study stage-by-stage
hierarchical assembly. In Section III we show that simu-
lations of this model confirm that stage-by-stage assem-
bly results in error-free formation of a desired structure,
even in the presence of arbitrarily strong native interac-
tions. We show that the same scheme fares poorly in
the presence of attractive non-native interactions. We
also discuss the efficiency of a conventional self-assembly
process in the presence of irreversible or reversible native
interactions. We conclude in Section IV.

II. MODELING STAGE-BY-STAGE ASSEMBLY

The idea of assembling structures in a stage-by-stage
manner has been studied theoretically in the DNA tile lit-
erature [40–42], where the possibility of extending stage-
by-stage assembly to large scales was noted. The par-
ticular case of square-upon-square assembly sketched in
Fig. 1(a) has been demonstrated in experiments in which
DNA tiles formed many distinct 4×4 arrays [25]. Here we
study this process numerically, using off-lattice molecular
simulation, in order to demonstrate that it can in prin-
ciple be used to avoid kinetic traps associated with very
strong native interactions. For the reasons discussed in
Section I, such avoidance is a necessary feature of a pro-
cess designed to make large information-rich structures in
thermal equilibrium. We shall also show that this scheme
is particularly vulnerable to kinetic trapping caused by
non-native interactions.

Our model of stage-by-stage assembly comprises 1024
hard discs of radius a on a smooth, two-dimensional sub-
strate. Each disc is of a distinct type, one of 1024 pos-
sibilities, labeled (i, j), with i, j = 0, 1, . . . , 31. Discs are
decorated with 4 sticky patches, each of opening angle
π/6, arranged in a regular way (i.e. neighboring patch
bisectors are separated by an angle π/2), so as to allow
self-assembly of a square lattice structure. As shown in
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FIG. 3: A time-ordered series of snapshots from a single trajectory of the stage-by-stage hierarchical assembly procedure
described in Section II, modeled on the experiments reported in Ref. [25]. The procedure results in error-free assembly of the
target structure (see Fig. 2). Times of snapshots, clockwise from top left, are (in millions of MC sweeps) 5, 15, 50, 117, 163,
332.

Fig. 2(a), patches p are numbered 0, 1, 2, 3 in a clock-
wise fashion. Discs possess attractive pairwise interac-
tions that are square-well in both angle [43] and range.
If the centers of two discs (i, j) and (i′, j′) are separated

by a distance d that satisfies 2a < d ≤ 2a + a/5, and if
the line joining disc centers cuts through one patch on
each disc, then discs receive a pairwise energetic reward
of −E kBT , where

E = f(i, j, p; i′, j′, p′)ǫnative + (1− f(i, j, p; i′, j′, p′)) ǫnon−native. (1)

Here ǫnative > 0 and ǫnon−native > 0 are the energy scales
of native and non-native interactions. Unless otherwise
stated we took ǫnative → ∞ and ǫnon−native = 0. The
function f depends on the disc- and patch identities in-
volved in the pairwise contact: p is the patch number of
disc (i, j) involved in the pairwise contact, and p′ is the
patch number of disc (i′, j′) involved in the pairwise con-
tact. f is chosen so that the structure shown in Fig. 2(b)
is the thermodynamically stable one. This structure, the
target for self-assembly, is a square lattice in which disc

type (i, j) is found at the intersection of the the ith col-
umn and jth row of the lattice, numbered from the bot-
tom left. That is, the bottom left disc is of type (0,0),
and the top right disc is of type (31,31). Disc types are
colored so that the target structure possesses a green-to-
blue-to-red color gradient. To stabilize this structure we
require f(i, j, p; i′, j′, p′) to be 1 if patch 1 on disc (i, j)
interacts with patch 3 on disc (i+ 1, j), or if patch 0 on
disc (i, j) interacts with patch 2 on disc (i, j + 1); these
are ‘native’ interactions. Otherwise f is 0, indicating a
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FIG. 4: For the trajectory shown in Fig. 3, we plot as a func-
tion of time t the fraction fs of the system’s mass contained
within (natively-bonded) clusters of size s. The completion
of each stage of assembly corresponds to the point at which
each line reaches the value unity, at which point the inter-
actions required to promote the next stage of assembly are
automatically switched on. Assembly went to completion at
time t ≈ 3× 108.

‘non-native’ interaction.

In equation form these requirements read

f(i, j, p; i′, j′, p′) = δ(i+ 1, i′)δ(j, j′)δ(p, 1)δ(p′, 3)

+δ(j + 1, j′)δ(i, i′)δ(p, 0)δ(p′, 2), (2)

where δ(a, b) is 1 if a = b, and 0 otherwise. In pictures,
in general, patches are shown white when engaged in a
native contact, and black when unbound or engaged in a
non-native contact.
To allow assembly of the target structure in a hierar-

chical manner we further distinguish disc native inter-
actions by ‘stage’. Interactions up to stage n allow the
self-assembly of distinct squares of 22n discs. Thus, inter-
actions of stage 1 can promote the formation of squares of
4 discs (of 256 possible types); stage 1 and 2 interactions
allow the formation of 64 distinct square 16-mers; stage
1, 2, and 3 interactions allow the formation of 16 distinct
square 64-mers; stage 1, 2, 3 and 4 interactions allow the
formation of 4 distinct square 256-mers; and stage 1,2,3,4
and 5 interactions allow the formation of one square of
size 1024. Maximally-bonded configurations that result
from interactions of all stages up to 2, 4 and 5 are shown
in Fig. 2(b,c).
In equation form we distinguish interactions that par-

ticipate in different stages of assembly by modifying
Eq. (2) to read

f(i, j, p; i′, j′, p′) = δ(i+ 1, i′)δ(j, j′)δ(p, 1)δ(p′, 3)

5
∏

n=1

Mn(i
′) + δ(j + 1, j′)δ(i, i′)δ(p, 0)δ(p′, 2)

5
∏

n=1

Mn(j
′), (3)

where Mn(i) = Gn if i is a multiple of 2n−1, and is
unity otherwise. The parameter Gn, which we control
externally, is either 0, signaling that stage n interactions
are ‘turned off’, or 1, signaling that stage n interactions
are ‘turned on’. We shall restrict ourselves to the case in
which Gn = 1 implies Gm = 1 for all m < n, e.g. if stage
3 interactions are ‘turned on’ (G3 = 1), then so too are
stage 1 and stage 2 interactions (G1 = G2 = 1).

We did simulations of 1024 discs, one of each type, in
the NV T ensemble. Simulation boxes were square, with
periodic boundaries, of size such that the disc hard-core
packing fraction was 32%. To demonstrate the fact that
error-free hierarchical assembly can occur in the pres-
ence of strong interactions we took ǫnative → ∞, so that
contacts, once made, could not be broken. Disc struc-
tures therefore do not dissociate, although they possess
internal flexibility on account of the finite range and an-
gular specificity of disc-disc interactions. Discs were ini-
tially randomly dispersed and oriented, subject to there
being no hard-core overlaps. We used the virtual-move
Monte Carlo algorithm [44] described in the appendix
of Ref. [45] to move discs according to an approxima-
tion of overdamped motion. Translation and rotation of

interacting clusters of discs occurs under this dynamical
scheme, and the rate of cluster diffusion can be controlled
to a degree by the user. We chose to reject moves of clus-
ters of hydrodynamic radius R so that, approximately,
translational and rotational cluster diffusion constants
scaled as Dtrans(R) ∝ R−1 and Drot(R) ∝ R−3 (see the
SI of [46]). Different choices may be appropriate for dif-
ferent types of surface. We chose the basic scale of disc
displacement so that an isolated disc will diffuse a char-
acteristic length equal to its own diameter in 33.3 Monte
Carlo sweeps.
To promote stage-by-stage assembly we began simula-

tions with only stage 1 interactions turned on, i.e. we
set G1 = 1 and Gn = 0 for n > 1. When the first
stage of assembly was complete, i.e. when the simulation
box contained 256 distinct square 4-mers, we turned on
stage 2 interactions, i.e. we set G2 = 1 (with the con-
dition G1 = 1 unchanged). Stage 2 interactions allow
the 256 square 4-mers to assemble hierarchically into 64
distinct square 16-mers. When stage 2 of self-assembly
was complete we turned on stage 3 interactions, and so
on until stage 5 of self-assembly was complete. For com-
parison, we also carried out hierarchical simulations in
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FIG. 5: (a) Size Nmax of the largest natively-bonded cluster, shown for 4 independent trajectories of the stage-by-stage
hierarchical assembly scheme. (b) Mean (symbols) and standard deviation (error bars) of the time tfin required to finish each
stage of assembly (the times between the peaks of adjacent curves in a plot such as Fig. 4), averaged over 8 independent
trajectories. The blue and red lines correspond to cases in which non-native interaction strengths were set to zero and to kBT ,
respectively.

which non-native patch-patch interactions (those that re-
turn zero on the right-hand side of Eq. (3)) were nonzero
(Fig. 5(b), Fig. 6, Fig. 7), and we did ‘non-hierarchical’
simulations in which all native interactions were turned
on from the start of the simulation, i.e. we set Gn = 1
for n = 1, 2, 3, 4, 5 (Fig. 8, Fig. 9, Fig. 10).

III. SIMULATION RESULTS

Stage-by-stage assembly works in the presence

of arbitrarily strong native interactions. In Fig. 3
we show snapshots of simulation configurations, ordered
clockwise from the top left, from a single dynamic trajec-
tory of the stage-by-stage assembly procedure described
in Section II. The scheme works – the result is the low-
energy, 1024-particle structure with no errors – even
though native interactions are unbreakably strong (non-
native interactions are absent). Assembly is a diffusion-
limited process, and no mis-bound configurations exist.
This scheme is also unaffected by the ‘monomer starva-
tion’ kinetic trap seen in the study of viral capsid self-
assembly [27, 47] or in models of DNA brick assembly
if one aims to produce multiple copies of a target struc-
ture [39]: all pieces have a prescribed set of binding part-
ners, and so it is not possible to use up the monomer
supply by making (say) a large number of trimers that
cannot be completed. One needs to wait long enough for
components to find their native partners, but the result
is guaranteed to be free of error.
In Fig. 4 we show, as a function of time (number of

Monte Carlo sweeps), the fraction fs of the system’s mass
contained within natively-bonded clusters of size s. The

completion of each stage of assembly corresponds to the
point at which the individual lines reach the value unity,
at which point the interactions required to promote the
next stage of assembly are automatically switched on.
From trajectory to trajectory we found that that time
required to complete each stage varied, the more so as
assembly progressed. This variability can be seen in
Fig. 5(a), which shows for 4 independent trajectories the
size of the largest (natively-bonded) cluster as a function
of time. In panel (b) we show the mean and standard
deviation of the time required to complete each stage
of assembly, averaged over 8 independent trajectories.
Stage completion time generally increases as assembly
progresses, because larger clusters diffuse more slowly
than smaller ones, even though the effective number of
component types diminishes (see Appendix B).
Stage-by-stage assembly is vulnerable to kinetic

traps associated with non-native attractions. We
have shown that the stage-by-stage assembly scheme
works in the presence of strong native interactions. How-
ever, its major weakness is that it is susceptible to kinetic
traps associated with non-native interactions. The red
line Fig. 5(b) corresponds to simulations done in the pres-
ence of non-native interactions of energy kBT , meaning
that such an attraction exists between every patch-pair
in the system that does not participate in a native inter-
action. Native contacts are again unbreakably strong. At
stage 4 there is a slight slowing of assembly, relative to
the case of zero non-native interaction, because of brief
mutual adhesion of large clusters.
For stronger non-native interactions we found that as-

sembly is arrested prior to stage 4. In Fig. 6(a) we
show, as a function of time, the size Nmax of the largest

Page 6 of 13Soft Matter

S
of

tM
at

te
r

A
cc

ep
te

d
M

an
us

cr
ip

t



7

0
2
3
5

4

16

64

256

N
m
a
x

0 5×107 1×108 1.5×108

t

0

0.5

1

f

0 5×107 1×108 1.5×108

t

(a) (b)

FIG. 6: (a) Size Nmax of the largest natively-bonded cluster in the system from 4 trajectories run in the presence of attractive
non-native interactions of 0 kBT , 2 kBT , 3 kBT, and 5 kBT . In all cases, native contacts are unbreakably strong. Assembly in
the presence of non-native interactions becomes very slow at some point, the earlier the stronger the interaction. (b) Fraction
f ≤ 1 of possible native contacts made at time t, for the same 4 trajectories.

natively-bonded cluster in the system, from independent
trajectories run in the presence of attractive non-native
interaction energies of 0, 2 kBT , 3 kBT, and 5 kBT . In all
cases, native contacts are unbreakably strong. Assembly
in the presence of non-native interactions becomes very
slow at some point, the earlier the stronger the interac-
tion. In panel (b) we show the fraction f ≤ 1 of possible
native contacts that have been made at time t for all tra-
jectories; these fractions show behavior similar to that of
Nmax.

The cause of this dynamical slowdown can be seen
clearly in configuration snapshots. In Fig. 7(a) we show
a time-ordered series of snapshots from a simulation run
in the presence of attractive non-native contacts of en-
ergy 3 kBT . The square-upon-square hierarchical assem-
bly process is subverted by a second organizational pro-
cess, that of square 4-mers into a structure in which clus-
ter types are arranged essentially at random (compare
the color pattern to that of the target structure). As a
result, 4-mers combine to form natively-bonded higher-
order structures only slowly. In panel (b) we show pic-
tures of structures assembled in the presence of attractive
non-native contacts of energy 2 kBT , 3 kBT , and 5 kBT .
These pictures show that assembly of compositionally-
random structures occurs from smaller building blocks as
non-native contact energy decreases. Non-native interac-
tions of energy 5 kBT cause a compositionally-nonspecific
assembly of monomers, so preventing even stage 1 of the
hierarchical assembly process from happening.

‘Conventional’ self-assembly does not work in

the presence of arbitrarily strong native interac-

tions. The hierarchical assembly procedure’s chief virtue
is its ability to tolerate arbitrarily strong native inter-

actions. This ability is not common in molecular self-
assembly, and is not shared by a self-assembly process
involving the same set of components whose native inter-
actions are all turned on from the start of the simulation.
A typical result of this process is shown in Fig. 8. Even
though only native interactions operate, if these form in
the wrong order – which, inevitably, they do – then the
target structure cannot assemble because of steric ob-
structions.
However, conventional self-assembly done in the pres-

ence of reversible native interactions can result in the tar-
get structure with few errors. By running a large number
of simulations with different values of the native interac-
tion energy, we found that, for native interaction energy
of 8.6 kBT , nucleation happened after some delay but
was still rapid enough to be seen in direct simulation.
Data from two such simulations are shown in Fig. 9 and
Fig. 10. Some mistakes result when multiple nucleation
events occur and the resulting large clusters fuse in a way
that blocks certain binding sites. But assembly is largely
successful, reiterating the results of Refs. [18] and [10]:
nucleation and growth of an ‘information-rich’ structure
of about 103 components can occur in the presence of
reversible interactions of fixed strength.

IV. CONCLUSIONS

Ensuring the thermodynamic stability of a structure
made from Q distinguishable components requires the
energy scale of inter-component interactions to grow in
proportion to kBT lnQ. But self-assembly done in the
presence of strong interactions results in general in ki-
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(a)

(b)

FIG. 7: (a) A time-ordered series of snapshots (time increases left to right) from a simulation run in the presence of attractive
non-native contacts of energy 3 kBT . The square-upon-square hierarchical dynamics is overcome by a second organizational
process that sees 4-mers assemble into compositionally-disordered structures. As a result, the hierarchical assembly procedure
all but stops. (b) Structures assembled in the presence of attractive non-native contacts of energy 2 kBT , 3 kBT , and 5 kBT
(the only patches shown are those engaged in native contacts).

netic trapping, suggesting a limit to the size of a self-
assembled structure built from distinguishable compo-
nents. Here we have used simulation to show that the
stage-by-stage assembly of squares demonstrated in ex-
periment in Ref. [25] can work even in the presence of
arbitrarily strong interactions, as long as those interac-
tions are the ‘native’ ones required to stabilize the target
structure. This property is not shared by most other
forms of self-assembly, and is required if one wishes to
make large, information-rich structures in equilibrium.

Note that we have assembled a single structure of size
210 to demonstrate that error-free hierarchical assembly
can occur even in the face of arbitrarily strong inter-
actions. We stopped at stage 5 of the procedure be-
cause simulating larger systems is too time-consuming,
but the hierarchical procedure can be used in principle
to assemble a single “information-rich” structure of any
size. One way to see this is to consider a visual proof
by induction. Fig. 3 shows the hierarchical assembly of
a 210-particle structure from monomer building blocks.
Imagine now that we have 210 such reactions occurring
in parallel. Provided that disc-disc native interactions are

chosen in the appropriate manner, combining the results
of all reactions would lead to the hierarchical assembly of
a 220-particle structure: imagine a time-series like that
shown in Fig. 3 in which the smallest discs shown are
not monomers but the 210-particle assemblies that result
from the first set of reactions. And so on. Size limitations
then result from practical considerations.

One such consideration is that the stage-by-stage
scheme is particularly susceptible to kinetic trapping
caused by attractive non-native interactions, and so these
must be suppressed if the scheme is to be used to
make large objects. With DNA-mediated interactions
alone, as noted in Ref. [23], it seems difficult to guaran-
tee strong native interactions and very weak non-native
ones, on account of accidental basepair complementar-
ity. Choosing complementary sequences at random,
one would expect two ‘non-complementary’ 4-letter se-
quences of length M to be ‘accidentally’ complementary
in M/4 places on average. To suppress non-native inter-
actions it may be necessary to equip components with
repulsive interactions intermediate in energy scale be-
tween fully-complementary interactions and accidentally-
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FIG. 8: Non-stage-by-stage self-assembly results in kinetic
trapping in the presence of strong native interactions. Here
we show a structure that results from self-assembly in the
presence of the same set of interactions use to produce Fig. 3;
here, however, all stages of interaction were ‘switched on’ from
the start.

complementary ones.
If this can be done, then in principle the scheme pre-

sented in Ref. [25] and simulated here can be used to
make large objects. However, technical challenges ex-
ist, of which four are as follows (more detailed discus-
sions of several of these points can be found in the
DNA tile literature [25, 40–42]). First, one must be
able to ‘switch on’ interactions selectively. Perhaps
if native interactions correspond to a certain number
of fully-complementary basepairs, then selected strands
could initially be ‘turned off’ or ‘protected’ by partially-
complementary single strands. At the required stage
of the process the system temperature could be raised
slightly, so as to allow thermal dissociation of protec-
tor strands only. Protector strands of subsequent stages
must be successively more strongly bound, and all must
be much less strongly bound than native inter-component
bonds. Second, one must be able to monitor the progress

of assembly with sufficient precision to know when all the
structures in the current stage have assembled (or wait
long enough to be sure that this has happened); pre-
mature activation of the next stage’s bonds could cause
kinetic trapping. Perhaps ‘smarter’ ways to vary inter-
component interactions without requiring explicit inter-
vention by the user can be developed, by using novel
feedback schemes [48] or other nonequilibrium controls
of assembly [49–51]. Third, large clusters diffuse slowly,
particular when bound to a surface, and so it is likely
that stirring the solution or shaking the surface will be
required to allow assembly to proceed beyond a cer-
tain lengthscale (shaking may also help break up ki-
netic traps caused by residual non-native interactions).
Fourth, this scheme confronts the challenges inherent to
any scheme involving a large number of component types,
such as difficulties of synthesis (the number of DNA la-
bels must increase with system size, for instance; see the
SI of Ref. [25]) and issues of long timescales. That said,
Ref. [25] shows that square-upon-square assembly reac-
tions can be run in parallel: one could in principle com-
bine the outcome of K separate hierarchical processes as
the starting point for the next stage of assembly, thereby
achieving K-fold speed-up relative to the case of sequen-
tial self-assembly. Table I compares conventional and
hierarchical assembly schemes.
We note finally that the scheme proposed here can-

not be applied (without introducing the idea of twist-
sensitive, protein-like interactions [52, 53]) to two-
dimensional objects free to move in three-dimensional
space: flip over a square and it can bind with its intended
partner in a non-ideal way. A similar observation applies
to three-dimensional structures. Therefore, we speculate
that building 3D information-rich structures may be best
done by using a hierarchical scheme to generate large
2D surface-bound assemblies, and then building layer by
layer on top of them.
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Appendix A: Note on the consequences of particle

distinguishability

Imagine that our goal is to promote the self-assembly,
from solution, of a solid, equilibrium structure made of
Q components. Components generally lose translational
and rotational entropy upon going from solution to a
solid structure, and so the energy scale ǫ/(kBT ) of inter-
component bonds in the solid structure must be large
enough that a monomer’s energetic gain upon solidifica-
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(a)

(b)

FIG. 9: Non-stage-by-stage self-assembly results in the target structure with only a few errors if reversible interactions are
used. Here we show time-ordered snapshots from two simulations (one in (a), one in (b)) run with native interactions of energy
8.6 kBT (and with no non-native interactions). Some mistakes result when multiple nucleation events occur and the resulting
large clusters fuse.

TABLE I: Pros and contras of assembly schemes

conventional stage-by-stage

Intolerant of strong native interactions Tolerant of strong native interactions

Tolerant of weak non-native interactions Intolerant of weak non-native interactions

No need for user intervention Requires user intervention

Reaction not easily parallelizable Reactions can be run in parallel

tion exceeds temperature times the entropic cost of its re-
moval from solution. If components are distinguishable,
and if the solid structure of interest conforms to one par-
ticular arrangement of components, then upon solidifica-
tion one also loses an entropy Q−1kB lnQ! ≈ kB(lnQ−1)
per particle, because the number of accessible config-
urations of the solution phase is Q! times that of its
distinguishable counterpart. The inter-component bond
strength ǫ/(kBT ) must therefore grow on the scale of lnQ
in order to ensure the stability of a distinguishable struc-
ture built from Q components. The average bond energy
per particle must be at least kBT/(z/2) × lnQ greater
than in the corresponding single-component case, where

z is the number of contacts made by each particle. For Q
macroscopic, of order 1024, this excess bond energy ex-
ceeds 27 kBT when z = 4 (appropriate to the case mod-
eled here or the experiments of Ref. [10]), and is about
9 kBT for z = 12.

A similar result can be obtained by considering the
microscopic dynamics of growth. Say that in the in-
distinguishable case the rate of arrival of a component
at a given point on a solid structure is Rarrive, which is
proportional to component concentration. Say that the
rate of departure of that particle from the structure is
Rdepart ∝ exp(−βzǫ), where β ≡ 1/(kBT ) and z is the
number of bonds made by the particle. In general, the
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FIG. 10: Size Nmax of the largest natively-bound cluster in
the system, for the two trajectories shown in Fig. 9. The green
(resp. cyan) line here corresponds to the top (resp. bottom)
panel in Fig. 9. The final yield of assembly is slightly lower
for the case of the cyan/bottom trajectory.

arrival rate must exceed the departure rate in order to en-
sure stability of the structure with respect to dissolution.
Now in the distinguishable case the arrival rate, for fixed
total component concentration, is ≈ Rarrive/Q, because
only about 1 in Q encounters involves the component de-
signed to fit at that point on the structure (now we imag-
ine for simplicity that the number of components in solu-
tion is very large, and does not diminish upon binding).
So upon going from indistinguishable to distinguishable
the rate of arrival of material has dropped by a factor of
Q. To guarantee structural stability, therefore, the rate
of departure of material must drop by a similar factor,
i.e. Rdepart → Rdepart/Q. Hence stability requires that
βzǫ must increase in proportion to lnQ.

We tested this expectation by building the 1024-
particle target structure and simulating it (in the same
square simulations boxes that we used for dynamic sim-
ulations) in the presence of native interactions only, and
in the presence of native and nonnative interactions of

equal strength. In the former case particles make en-
ergetic bonds only if they adopt one particular position
in the structure, while in the latter case the energy of
the system is invariant under particle permutation, or if
particles are rotated by multiples of π/2. We therefore
expect the extra pair energy (in units of kBT ) required
to stabilize the structure in the native-interaction case
to be ∆ǫ = 1

2Q
−1 ln

(

4QQ!
)

≈ 1
2 (ln 4 + lnQ− 1) ≈ 3.66

(for Q = 1024). By performing simulations for different
values of binding energies we determined that in the pres-
ence of native interactions the structure melted for bond
energy values ǫ between 7.3 and 7.1, while in the presence
of native and nonnative interactions of equal strength the
condensed structure melted for values of ǫ between 3.8
and 3.6. Although simulations of this nature do not give
us a precise measure of structural stability, the difference
between these two ‘melting points’ is 3.5±0.2, consistent
with our expectation of 3.66.

The same considerations also suggest that the growth
rate of a distinguishable structure will be a factor of Q
less than that of its indistinguishable counterpart, i.e.
Rarrive − Rdepart → Q−1(Rarrive − Rdepart) upon going
from indistinguishable to distinguishable.

Appendix B: Stage completion times

Let us assume that collisions between squares are un-
correlated events. During stage n of assembly these
events occur with mean time τ(n) ∝ 1/D(n − 1), where
D(n − 1) ∝ 2−n for translation-limited events, and
D(n− 1) ∝ 2−3n for rotation-limited events. To go from
stage n − 1 to stage n of assembly there must occur of
order 210−2(n−1) ∝ 2−2n events. So the mean time to
complete stage n of assembly scales, very roughly, as
2−n if assembly is translation-limited, and 2n if assem-
bly is rotation-limited. The data of Fig. 5(b) lie between
these extremes but appear to generally increase with n,
suggesting that assembly is dominated, especially at late
stages, by the rotational component of diffusion.
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