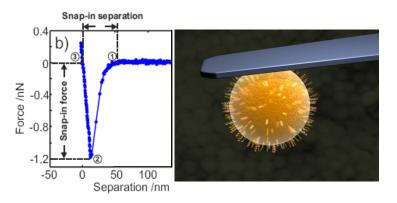
Soft Matter




## Soft Matter

## Stochastic binding of Staphylococcus aureus to hydrophobic surfaces

| Journal:                      | Soft Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                | SM-ART-04-2015-000963.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Article Type:                 | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Date Submitted by the Author: | 02-Jul-2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:     | Thewes, Nicolas; Saarland University, Experimental Physics<br>Jacobs, Karin; University of Saarland, Department of Experimental Physics<br>Thewes, Alexander; Saarland University, Theoretical Physics<br>Loskill, Peter; Saarland University, Experimental Physics; University of<br>California at Berkeley, Department of Bioengineering and California<br>Institute of Quantitative Biosciences (QB3)<br>Peisker, Henrik; Saarland University, Institute of Medical Microbiology and<br>Hygiene<br>Bischoff, Markus; Saarland University, Institute of Medical Microbiology and<br>Hygiene<br>Herrmann, Mathias; Saarland University, Institute of Medical Microbiology<br>and Hygiene<br>Santen, Ludger; Saarland University, Theoretical Physics |

SCHOLARONE<sup>™</sup> Manuscripts Via a combined experimental and computational approach, the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus is studied. By AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations contact formation is investigated. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins.

