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chains present in the inner disk. (b) A schematic representation of 2D

plate morphing into a 3D shell.
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material (ν = 0.5), the stretching energy may be written as17

Us ≃ h

∫

E[tr 2(a−a)+ tr (a−a)2]
√

|a| dA . (1)

1 Geometric Composites

1.1 Membrane Approximation

Before we consider the dynamic problem of a swelling–induced

changing metric, we construct as a proof of concept a mechanical

analog of the geometric composite and consider the static case

of a mechanically prescribed hyperbolic or elliptic metric over a

disk. In the simplest case, when homothetic transformation radi-

ally stretches a circular disk, the radial and azimuthal distances

all expand uniformly, and the disk stays flat since the surface’s

metric remains Euclidean (Fig. 2a). If we consider, instead, a cir-

cular disk of radius R and an annulus of inner radius Ri and outer

radius Re (Fig. 2b), we can then impose a homothetic transforma-

tion independently on either the disk or the annulus. By defining

α ≡ Ri/R as the mismatch between the disk and the annulus, it is

immediately apparent that if α 6= 1 the two structures are incom-

patible and the annulus must be stretched (α < 1) or compressed

(α > 1) to fit the circular disk (Fig. 2c). When the inner radius of

the annulus is bonded to the edge of the circular disk, the result-

ing disk is a geometric composite that may be roughly modeled

as a body having the following target metric in polar coordinates

a = f 2(r)

(

1 0

0 r2

)

, f 2(r) =

{

1, r ≤ R

α2, r > R
. (2)

This metric is flat within each of the two domains, but the metric

of the geometric composite is not flat, i.e. there does not exist

any parabola that fits aθθ (r), the azimuthal covariant metric co-

efficient. As in 26, we approximate all the strains to zero but

aθθ −aθθ ; therefore, if the disk and the annulus are made of the

same material, the stretching energy from equation (1) reads (see

Appendix)

Us ≃ Eh

∫ R

0

(aθθ − r2)2

r3
dr+Eh

∫ Re/α

R

(aθθ −α2r2)2

α2r3
dr . (3)

Physical intuition tells that when the annulus is stretched

(compressed), the disk will bend into a dome–like (saddle–like)

shape. This statement may be mathematically represented as

sgn K = sgn (1 − α). To describe the resulting shape, we use

Gaussian normal coordinates (ρ, θ) to express the realized met-

ric27, where ρ(r) =
∫ r

0

√

arr(r′)dr′ measures the arc length along

radial geodesics while θ is the azimuthal angle. In these co-

ordinates, the first fundamental form is written as ds2 = dρ2 +

aθθ (ρ)dθ 2, and by the Gauss theorem, the Gaussian curvature is

−∂ρρ
√

aθθ/
√

aθθ , where ∂ρρ is the second order partial deriva-

tive with respect to ρ. We minimize the stretching energy by

looking for metrics with constant Gaussian curvature, that is

aθθ (ρ) = (sin(
√

Kρ)/
√

K)2. † As long as |K| < 1/R2
e

‡, we can

† Notice that when the Gaussian curvature is negative, i.e. K < 0, the metric may be

rewritten as aθθ (ρ) = (sinh(
√
−Kρ)/

√
−K)2.

‡ This upper bound means that each principal direction cannot have a curvature that

Taylor expand aθθ (ρ) to linearize the metric in K as

aθθ (ρ) = ρ2 − K

3
ρ4 +O(ρ5) . (4)

Note that the first order term corresponds to a flat metric whereas

the second one dictates the kind of non–Euclidean geometry that

the disk will develop depending on the sign of K. The energy is

quadratic in K and therefore can be minimized analytically; no-

tice that, if the annulus is neither deformed (α = 1) nor present

(Ri = Re), the energy is a simple parabola in K with the minimum

at K = 0 since the disk is not constrained, and does not need to

bend. Similarly, when the disk is not considered (R = 0), the an-

nulus does not need to bend either, and stays flat (K = 0) with

a radial stretch equal to α. Once the stretching energy is min-

imized, we observe that the bending energy density is equal to

3H2 for dome–like shapes (K = H2) and to 4H2 −K for saddle–

like shapes. In the latter case, since K < 0, the disk tries to morph

into a minimal surface (H = 0). Important aspects, albeit beyond

the scope of this work, are the study of the discontinuities in the

metric and the effect of a finite thickness.

When the target metric is elliptic, the resulting shape is

unique20. On the other hand, when the target metric is hyper-

bolic, the embedding is not unique, and shapes that are more

complex then a saddle may develop when the thickness is very

small28. In our case, both experimental and numerical evidence

indicate that the thickness to radius ratio (≃ 0.16) is sufficiently

high to avoid the development of complex shapes other than the

saddle, yet small enough for the structure to be considered thin.

2 Mechanical Analog

2.1 Experiments and Numerics

To test our model, we prepared geometrically frustrated struc-

tures to realize dome–like and saddle–like disks, and measured

their Gaussian curvatures. Circular molds were laser cut out of

acrylic sheets, and used to cast samples with polyvinylsiloxane

(PVS – Zhermack Elite Double 32). In these model experiments,

we use an elastomer with a Young modulus E = 0.96 MPa and

a Poisson ratio ν = 0.5. The molds had a thickness h = 1.6 mm

with the radii of the disks varying between 5 and 12 mm. We

designed the geometry so that the outer radius of the stretched

disks was equal to 10 mm. Bonding between the stretched an-

nulus and the disk was accomplished by a small amount of un-

crosslinked PVS. To measure their Gaussian curvature, we pro-

jected a laser sheet normal to the disk, and captured images of

the reflected light with a Edmund–Optics GigE camera with a

Nikkor lens (35 mm f: 1-1.4) at 24 equally spaced points along

the disk’s diameter. Image analysis was performed using Matlab

to reconstruct the deformed shape. The annuli of polyvinylsilox-

ane elastomer were stretched homothetically and bonded to the

inner disk. Upon release from the molds, the disks spontaneously

morphed into domes or saddles. The annuli may be thought of as

springs that want to release the energy by recovering their origi-

nal shapes: for example, figure 2 (c) shows how the annulus must

exceeds 1/Re.
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sian curvature cannot be approximated as homogenous through-

out the disk but attains two constant values in the inner disk and

the annulus. However, the metric does not diverge much from the

constant curvature solution, and the analytical model gives a re-

sult that is in good agreement with the mean Gaussian curvature

of the disk, which is exactly what we measured experimentally.

The inset in figure 2 shows the agreement between experiments,

numerics and analytics as R/Reα varies. Notice that the analyt-

ical model always overestimates the Gaussian curvature since it

is based on a membrane approximation. The numerical model

shows that, when the target metric is hyperbolic, wrinkles arise

below a critical thickness as also shown in 28. We then expect

our hypothesis of constant Gaussian curvature to hold in a finite

range of thicknesses.

3 Residual Swelling

3.1 Experiments

Residual swelling is a fairly more complicated phenomenon than

the geometrical confinement that dictated the shape change in

the simplified mechanical problem. Swelling–induced deforma-

tions cannot be seen as distortions, as they are related to both

the elastic properties of the gel, and the chemical conditions of

the residual free polymer chains. Moreover, in this case swelling

is driven by the concentration gradient of these chains across the

entire structure. We used the circular molds of the mechanical

analog to cast samples with polyvinylsiloxane as shown in fig-

ure 1 (PVS – Zhermack Elite Double 32 for the annulus and Zher-

mack Elite Double 8 for the inner disk). Both elastomers are in-

compressible (ν = 0.5) and their Young’s moduli were measured

as 0.96 MPa and 0.23 MPa for PVS 32 (annulus) and PVS 8 (in-

ner disk), respectively. The inner disks (radius R) and the annuli

(radii R and Re) were geometrically compatible so that they could

be bonded without pre–stretch. Once released from the molds,

the geometric composites were flat, and the plates morphed into

curved disks over time due to residual swelling – the flow of free

polymer chains from high density regions (softer gel, disk) to low

density regions (stiffer gel, annulus). To study the influence of

R/Re on the morphing process, we fixed the radius of the whole

disk to 12 mm and varied the radius of the inner disk from 5 mm

to 11 mm casting 7 disks with different R/Re. We measured the

time evolution of the Gaussian curvature of each disk with the

same procedure used for the mechanical analog, repeated every

three hours.

3.2 Residual Swelling of Geometric Composites

While this problem couples nonlinear geometric mechanics with

elastomer swelling, we can provide insight into this process by in-

corporating swelling into our mechanical analogy. The stretching

ratio α now dictates the metric that each part of the disk would

realize upon swelling if it were free (not bonded to the other).

The inner disk and the annulus would like to shrink and swell, re-

spectively, as molecules are flowing from the former to the latter.

We assume that if the annulus would like to swell by a factor α,

the inner disk would like to shrink by a factor α−1. Incorporating

the difference between the two Young’s moduli, the functional in

equation (3) is modified as

Us ≃
∫ R

0

(aθθ −α−2r2)2

α−2r3
dr+

Ea

Ed

∫ Re

R

(aθθ −α2r2)2

α2r3
dr . (5)

Notice that, since no pre–stretch is applied, the radius of the disk

is Re, i.e. it coincides with the outer radius of the green annu-

lus. The Young’s moduli of the green annulus and the pink disk

are denoted as Ea and Ed , respectively.¶ To analytically determine

how α should vary with R/Re, we denoted as cd and ca the con-

centrations of the diffusive species in the disk and in the annulus,

respectively. Since molecules flowed from the disk to the annu-

lus, we fixed ca < cd and imposed the conservation of mass as

ceqπR2
e = cdπR2 + caπ(R2

e −R2), where ceq denotes the concentra-

tion at equilibrium. Then, we reasoned that the stretching ratio

α will be proportional to the cubic root of the mass uptake in-

side the annulus so that α3 −1 ∼ (ceq − ca)π(R
2
e −R2). Finally, by

expressing ceq from the mass conservation, we got

α =

[

1+η (cd − ca)

(

R

Re

)2
(

1−
(

R

Re

)2
)]1/3

, (6)

where η is a proportionality coefficient having the dimension

of the inverse of a concentration and representing the link be-

tween mass uptake and stretch.‖ The presence of a concentra-

tion gradient of polymer chains with a polydisperse molecular

weight makes identifying this parameter difficult, and beyond

the scope of this work. Qualitatively, the bigger the free chains,

the higher η should be. Notice that α is equal to 1 when the

mass uptake is zero, that is when the structure is homogeneous

(R/Re = 0 or 1). This is the important difference with the me-

chanical analog, since η is not known for swelling as it depends

on the material and chemical properties of the elastomers; we

therefore used it as a fitting parameter. Figure 3 shows the sta-

tionary values of the Gaussian curvature of the seven disks af-

ter residual swelling as obtained in the experiments (triangles),

numerics (circles) and analytics (solid curve). Numerical and

analytical results are obtained by using (6) in (5) and setting

η(cd − ca) equal to 0.54 that sets αmax = 1.043 from (6). The

three linear regimes identified in figure 3 point out that the max-

imum of the Gaussian curvature is not attained for R/Re = 1/2

but for R/Re ≃ 0.77. A similar result was obtained for the me-

chanical analog as can be seen in the inset in figure 2. These two

observations let us conclude that both the dimensionality of the

swelling and simple geometry shift the maximum of the Gaus-

sian curvature to high radii ratios instead of R/Re = 1/2. By the

conservation of mass, it can be demonstrated that if the swelling

had been 1D, the maximum mass uptake would have been at-

tained at R/Re = 1/2; if it had been 3D, the maximum would have

been attained at R/Re = 1/21/3 ≃ 0.8. In our 2D case, the max-

imum is attained when R/Re = 1/
√

2 ≃ 0.7 as also experiments

showed. So, in general, if n is the dimensionality of the swelling,

¶ Their ratio is roughly equal to 4 and its variation with swelling is neglected.

‖Similar to the hydrophilicity coefficient introduced in 30 to describe stretching in-

duced by cation’s motion in ionic polymer–metal composites.
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the maximum mass uptake is achieved for R/Re = 1/21/n. The

agreement among experiments, numerics and analytics is quite

good, and it is remarkable that the analytical model captures the

linear regimes with the same slopes. The closed form analytical

solution of the problem is cumbersome, but it may be simplified

by noticing that αmax ≃ 1, which allows us to perform a Taylor

expansion in terms of αmax − 1. At the leading order, defining

Ē = Ea/Ed and R̄ = R/Re, it reads

KR2
e ≃ 96(1−αmax)ĒR̄3

(

1− R̄2
)(

1− R̄3
)

R̄6
(

1− Ē
)

+ Ē
, (7)

which we think can be interpreted as the 2D analog of Timo-

shenko’s formula for beams25 as it expresses how the dimension-

less Gaussian curvature varies with material and geometric ratios

(see Appendix). To the best of our knowledge, this is the first an-

alytical formula relating the Gaussian curvature of a geometric

composite to its material and geometrical properties, i.e. moduli

and radii ratios. This simplified expression is represented in fig-

ure 3 as a grey dashed line, and is very close to the full solution:

the linear regimes highlighted in the figure are in excellent agree-

ment with our Timoshenko–like formula. The physical interpre-

tation of our first order Taylor approximation is that the strains

are assumed to be small, which is the same limit that Timoshenko

obtained his formula within. It is worth noting that, unlike ther-

mal stretches in uniformly heated bimetallic strips, the stretching

ratio α should depend on the elastic properties of the geometric

composites, as discussed in 31.

3.3 Swelling Dynamics

Our model successfully captures the steady–state morphology

of residually swollen plates. Unlike the mechanical analog

presented earlier, the residual swelling process adds a time–

dependency to the deformation. The experimental results in fig-

ure 4 (a) show the time evolution of the Gaussian curvature of

disks with seven different R/Re, and the shape evolution contains

two notable features: 1.) there is a critical activation time, i.e. the

time it takes for the structure to start deforming that depends on

R/Re, and 2.) following actuation, the disks deform in a diffusive

manner.

We assume that the swelling dynamics may be described as a

diffusive process with a Fourier–like differential equation. The

main features of a diffusive equation are that it is of the first or-

der in time, giving rise to transients that are described by the

exponential of time up to the steady–state, and of the second

order in space (quasi–1D in our case). As we are studying the

transient by looking at a homogeneous field – the Gaussian cur-

vature K – we focus on its variation with time, and note that the

dashed lines in figure 4 (a) correspond to an exponential of time

(KsteadyR2
e(1− e−t/τ )), as expected. Figure 4 (b) shows that the

activation time varies with R/Re as ta ∼ Ae−BR/Re , where A and

B are positive real numbers equal to 21038 h and 10.862, respec-

tively, in our case.∗∗ This numerical fitting is shown in the plot

∗∗Error bars correspond to ±3 h since we measured K every three hours.

.
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Fig. 3 (a) Stationary Gaussian curvature vs R/Re achieved by residual

swelling. Three different regimes may be identified as the radii ratio

varies. In the first one (I) the curvature is very small. The second one (II,

linear increasing) shows a linear scaling of the Gaussian curvature with

the radii ratio up to its maximum when the third regime (III, linear

decreasing) starts with a steeper linear scaling of the curvature now

decreasing to zero. The solid black line is the analytical solution, the

dashed grey line is its Taylor approximation (eq. (7)); triangles and

circles represent experimental and numerical results, respectively. (b)

Deformed shapes for four different radii ratios and corresponding

experimental profiles of the Gaussian curvature.

as a straight dashed grey line. Following activation, the diffusive

shape change is characterized by the time constant τ that dic-

tates the time scale of the transient as it is the time at which the

Gaussian curvature reaches the 63% of its stationary value. Fig-

ure 4 (a) shows that the disk corresponding to R/Re = 11/12 is

faster than the other geometries; indeed, we found that its time

constant is approximately τ ≃ 40 h whereas all the other disks

have τ ≃ 90 h as shown in figure 4 (c).

As this is a diffusive process, we expect the dynamics will scale

with the square of the characteristic length scale in the problem.

We believe the observed difference in dynamics is the result of a

change in the relevant characteristic length scale, i.e. from the

total radius of the disk to the width of the annulus. The charac-

teristic time scale (time constant) of a diffusive process is equal to

τ = ℓ2/D, where ℓ is the characteristic length and D is the diffu-

sivity. While the latter is a property of the materials, the former is

dictated by geometry. To identify the characteristic length, we ex-

amined a simpler geometry – a bilayer beam. Using the same ma-
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terials as in section 3.1, we prepared a bilayered beam of equiva-

lent thickness (figure 4 a - inset), and measured the time it took

equilibrate into an arch, finding τbeam ≃ 10 h represented by a di-

amond in figure 4 (c). In this case, a reasonable assumption for

the characteristic length is ℓ∼ h, where h is the total thickness of

the beam as shown in the inset of figure 4 (a). Since the materi-

als for the beam and disk are the same, they share the same value

of D. Therefore, we compared the 1D diffusion in the beam with

the 2D diffusion in the disk with R/Re = 1/2 and assumed ℓ ∼ Re

obtaining τdisk = (Re/h)2τbeam ≃ 90 h: this analytical estimate is

shown in figure 4 (c) as a square and it excellently predicts the

experimental time constant of the disk. The experimental data

show a decay of the time constant as the radii ratio approaches 1

that we interpret as the result of a decaying characteristic length,

which represents the portion of the radius where swelling is actu-

ally taking place. When R/Re ≃ 0.5, our approximation ℓ ∼ Re is

a good estimate for the characteristic length but when R/Re → 1

the inner area of the disk is shielded from swelling and the char-

acteristic length is smaller than Re. We suggest that, as R/Re → 1,

the characteristic length approaches the width of the annulus.
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Fig. 4 (a) Normalized Gaussian curvature versus time for the different

radii ratios. (b) Activation times versus R/Re (triangles) and numerical

fitting (dashed curve). (c) Time constants of the disks versus R/Re

(circles), time constant of the beam (diamond) and analytical estimate of

the time constant of the disk corresponding to R/Re = 1/2 (square)

assuming ℓ∼ Re.

4 Conclusions

We have studied the morphing of geometric composites from

flat plates into curved, three–dimensional shapes. The geomet-

ric composites morph by residual swelling, a phenomenon that

we gained insight into by considering a mechanical analog that

copies their geometry and morphs by geometrical confinement.

The morphing problem of the mechanical analog is purely ge-

ometrical, and we developed an analytical model following the

theory of non–Euclidean plates, which quantitatively describes

how the Gaussian curvature is dictated by geometry. The strength

of the model is indeed its analytical tractability that results from

the assumption of a homogeneous Gaussian curvature through-

out the disk. The agreement among experiments, numerics, and

analytics is excellent even when the Gaussian curvature is not ho-

mogeneous because the analytical model provides a mean Gaus-

sian curvature as a result, which is important for the design of

actuators.

We then employed the analytical model of the mechanical ana-

log to study the morphing of geometric composites by approxi-

mating the swelling as a distortion. By using the conservation

of mass, we analytically determined how the mass uptake should

vary with the radii ratio, and assumed a linear proportionality

between the mass uptake and the volume variation. The agree-

ment among experiments, numerics and analytics is quite good

and each approach identified three regimes for the Gaussian cur-

vature as a function of the radii ratio: it is remarkable that the

model catches these regimes and their linear features. Then, by

assuming small stretches (α ≃ 1), we simplified the cumbersome

analytical solution and provided the first 2D extension of the Tim-

oshenko’s formula for beams. Finally, we studied the swelling

dynamics and identified two different characteristic lengths de-

pending on geometry.

We think that the proposed model improved the understand-

ing of the complex interplay among geometry, mechanics, and

swelling. Additionally, the experiments demonstrate a robust and

scalable means for the growth–actuated manufacturing of elas-

tic shells – a material that is traditionally difficult to prepare

via additive and reductive manufacturing techniques. It is im-

portant to note that while residual fluid within the crosslinked

elastomer drives the diffusion and swelling of the structure, the

material behaves like an elastic solid, rather than a swollen gel.

We expect this experimental procedure to translate to any com-

bination of material–compatible elastomers where a gradient of

small molecules can be programmatically prescribed. This may

provide the foundation for an inkjet–like approach to 3D print-

ing whereby small molecule fluids can be locally applied to a flat

elastic sheet, allowing controlled diffusion to dictate the result-

ing growth pattern. Careful selection of the initial geometry will

allow this technique to be used for generating regions of high cur-

vature – or folds – which may form the basic building blocks for

the growth of origami structures.
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A Derivation of the stretching energy of the

mechanical analog

Equation (3) is derived from (1) by computing the traces of the

tensors a− ā and (a− ā)2 using their polar coordinates. By defini-

tion, the trace of a tensor is the result of the contraction between

the tensor and the metric tensor. As an example, the trace of a− ā

may be computed in polar coordinates as

tr (a− ā) = āαβ (aαβ − āαβ ) ,

where āαβ denotes the contravariant components of the target

metric tensor that may be thought as the entries of the inverse of

the matrix [āαβ ]. So, ārr = f−2(r), ārθ = 0 and āθθ = f−2(r)r−2.

Simple algebra yields:

tr (a− ā) = āαβ aαβ −2 = f−2(r)arr + f−2(r)r−2aθθ −2 .

Then, if arr = ārr, we get

tr 2(a− ā) = ( f−2(r)r−2aθθ −1)2 =

(

aθθ

āθθ
−1

)2

.

In our case, the trace of (a− ā)2 turns out to be equal to tr 2(a− ā)

so that

tr 2(a− ā)+ tr (a− ā)2 = 2

(

aθθ

āθθ
−1

)2

.

Finally, to compute the stretching energy, we have to evalu-

ate
√

|ā|, that is
√

|ā|= f 2(r)r .

By using the last two formulas, equation (3) is recovered after

some rearrangements, discarding a factor 2 since we are just in-

terested in the minimization of the energy.

A.1 Gaussian normal coordinates

As arr ≃ ārr, the Gaussian normal coordinate ρ is computed as

ρ(r)≃
∫ r

0

√

ārr(r′)dr′ =

{

r, r ≤ R

R+α(r−R), r > R
.

A.2 Gauss’s Theorem

Since the polar coordinates are orthogonal, the Gauss’s Theorem

may be written as

K =− 1
√

aρρ aθθ

[(

(
√

aθθ ),ρ√
aρρ

)

,ρ

+

(

(
√

aρρ ),θ√
aθθ

)

,θ

]

.

Notice that, since we are using Gaussian normal coordinates,

aρρ = arr(∂ r/∂ρ)2 ≃ ārr f−2(r) = 1 and aθθ is the only metric co-

efficient contributing to the Gaussian curvature.

B Timoshenko–like formula

Timoshenko wrote his formula for the bending of bi–metal ther-

mostats as25

κh =
6∆ε(1+m)2

3(1+m)2 +(1+mn)(m2 + 1
mn )

,

where κ is the curvature of the beam, h is its thickness, ∆ε is the

difference between the thermal strain in the two layers, m is the

ratio between the thicknesses of the two layers and n is the Young

moduli’s ratio. Equation (7) resembles Timoshenko’s formula in

that it expresses a dimensionless curvature, albeit a Gaussian cur-

vature, as a function of geometric and material ratios. Notice that

the characteristic length is the one along which the composite is

non homogeneous: the total thickness in the beam and the total

radius in the disk, which may be thought of being obtained by

rolling the bilayer beam.
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