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3584 CC Utrecht, The Netherlands

(Dated: 27 February 2015)

We study the self-assembly of a system of self-propelled, Lennard-Jones particles using Brownian Dynamics
simulations. We examine the state diagrams of the system for different rotational diffusion coefficients of
the self-propelled motion of the particles. For fast rotational diffusion, the state diagram exhibits a strong
similarity to that of the equilibrium Lennard-Jones fluid. As we decrease the rotational diffusion coefficient,
the state diagram is slowly transformed. Specifically, the liquid-gas coexistence region is gradually replaced
by a highly dynamic percolating network state. We find significant local alignment of the particles in the
percolating network state despite the absence of aligning interactions, and propose a simple mechanism to
justify the formation of this novel state.

I. INTRODUCTION

In recent years a significant amount of research has fo-
cused on active matter systems, whose individual units
are able to convert internal energy or energy from the
local environment into their own motion (see Refs. 1–4
for recent reviews). This focus was boosted by important
experimental advances on the synthesis of artificial swim-
mers and walkers on the colloidal and granular scale,5–14

and the possible link between the behaviour of these man-
made systems and the collective motion of living organ-
isms (for example swimming cells or bacteria).15,16 Ac-
tive systems show a plethora of exotic phenomena such
as giant density fluctuations,9,17 vortex formation,11,18

and swarming.11 Moreover, they may play an important
role in useful future applications such as targeted cargo
delivery and novel types of materials.19–21

However, even though experimentalists gain increas-
ingly better control over realizations of active systems,
the physics community lacks a fundamental understand-
ing of the laws that govern their collective behavior.
Thus, it comes as no surprise that a substantial amount of
research is devoted on seemingly simple theoretical mod-
els of active particles, with the Viscek model being possi-
bly the most studied one.22,23 Another much studied ex-
ample, more related to the colloidal world, are systems of
self-propelled, hard or purely repulsive disks.24 Computer
simulations and continuum models have established that
this active fluid phase-separates into a dense and a di-
lute region for sufficiently fast swimming velocities.24–28

Even though the phase-separation of self-propelled disks
can partially be linked with the clustering of particles
reported in many experiments,13,29,30 there has not yet
been a satisfying explanation of the latter phenomenon,
as the interactions between the colloids are more complex
than simple steric interactions.31

A simple step towards complexity is the addition of
attractive interactions between the particles, which was
shown to also lead to clustering of particles. Specifically,

a)Electronic mail: v.prymidis@uu.nl

Palacci et al. showed in a numerical study that phoretic
attraction between self-propelled hard disks gives qual-
itative agreement between the clustering properties of
their model and their experiments.13 A more elaborate
numerical study on the interplay between attraction and
self-propulsion was done by Redmer et al.32 The authors
studied a two-dimensional ensemble of self-propelled par-
ticles that interact via Lennard-Jones interactions. By
varying the strength of the attraction and the swim-
ming velocity of the particles, they showed that the self-
propulsion can have two opposing effects for a given
strength of attraction: for slow swimmers it can break
aggregations caused by the attractive force, while it can
induce aggregation for fast enough swimmers. For in-
termediate swimming velocities, the steady state of the
system was identified as a homogeneous fluid phase. A
first study of a similar model in three dimensions has
been done by Mognetti et al.33 The focus of this work
was mainly on the clustering properties of the system: as
the strength of attraction is increased, the system passes
from a homogeneous to a clustered state caused by the
attractive interactions. A state of rotating clusters has
also been reported in Ref. 34 for attractive and active
dumbbells.

However, the transition from homogeneity to cluster-
ing in active and attractive systems has not yet been
clearly linked with the known phase behaviour of the
corresponding equilibrium systems. Moreover, structural
properties of the clustered state have not been examined
and compared to the well-studied gas-liquid phase sepa-
ration.

In the present work we study a three-dimensional
model of self-propelled Brownian particles that inter-
act via a Lennard-Jones potential. The choice of the
potential qualitatively accounts for the steric repulsion
and the short range attraction that is present in many
colloidal systems. By tuning the rotational diffusion
rate of the particles, we are able to continuously move
the system from the regime of fast rotational diffusion,
where strong similarities with the equilibrium behavior
are expected,35 to small values of the diffusion rate where
non-equilibrium features arise. Thus, we are able to con-
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struct a series of state diagrams that evolve from a dia-
gram similar to the well-established Lennard-Jones phase
diagram to diagrams with novel properties.

Moreover, we find that the interplay between attrac-
tion and self-propulsive motion in three dimensions gives
rise to a highly dynamic, percolating network. As we will
show in this paper, this percolating network has many
similarities to living clusters, observed in Ref. 33. It is,
however, a system spanning structure. This new state
is accompanied by an unexpected result: the emergence
of local alignment of the axes of self-propulsion of the
particles despite the absence of an aligning mechanism.

In section II we describe the model, the dynamics im-
plemented for our simulations and the analysis methods
used in the subsequent parts of the article. In subsection
IIIA we present the state diagrams of the system, and in
III B we focus on properties of the percolating network
state. Lastly, we connect our work with the results of
Ref. 33 in III C and give a short discussion of our results
in section IV.

II. METHODS

A. Model

In this paper we examine the behaviour of self-
propelled, attractive particles immersed in a solvent. We
consider a three-dimensional system, consisting of spher-
ical particles (colloids) in a periodic cubic box of length
L. The position of the center of mass of the ith particle
at time t is given by the vector r⃗i(t). To each particle
i, we associate a three-dimensional unit vector p̂i(t) that
identifies the direction in which the self-propelling force
propels the particle at a given time. The particles inter-
act with each other via a Lennard-Jones potential

βU(rij) = 4βϵ

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (1)

truncated and shifted at 2.5σ where σ is the particle
length scale, rij = |r⃗j − r⃗i|, ϵ is the strength of the
interaction and β = 1

kBT is the inverse temperature of
the system, with kB the Boltzmann constant and T the
temperature.

B. Dynamics

We do not model the solvent explicitly, but rather
only include it implicitly. We use two distinct expres-
sions to describe the translational motion of the indi-
vidual colloidal particles inside the solvent, namely the
underdamped and overdamped Langevin equations. The

underdamped Langevin equation is given by

m
d2r⃗i
dt2

= −
∑
j≠i

∂U(rij)

∂r⃗i
−mγ

dr⃗i
dt

+ Fpp̂i +

√
2mγ

β
Λ⃗tr
i ,

(2)
where m is the particle’s mass, γ is the damping coeffi-
cient and Fp denotes the magnitude of the self-propelling

force. Note that Λ⃗tr
i is a unit-variance random vector,

with mean value and variation

⟨Λ⃗tr
i (t)⟩ = 0 (3)

⟨Λ⃗tr
i (t)Λ⃗tr

j (t′)⟩ = I3 δij δ(t− t′), (4)

where I3 is the unit matrix in three dimensions. The
forces that appear on the right-hand side of Eq. 2 are,
from left to right: the force due to particle interactions,
the drag force, the self-propelling force and a stochastic
force. The drag and stochastic forces account for the
constant collisions between the colloidal particles and the
molecules of the solvent.

In the regime of low Reynolds numbers (typical of a
colloidal system) one can neglect the inertial term, and
thus the translational motion of each particle follows from
the overdamped Langevin equation

dr⃗i
dt

= βDtr

−∑
j ̸=i

∂U(rij)

∂r⃗i
+ Fpp̂i

+
√
2DtrΛ⃗

tr
i , (5)

where the translational diffusion coefficient is given by
the Einstein-Smoluchowski relation Dtr = 1/(βmγ). We
define the unit of time τ = σ2D−1

tr .
The axis of self-propulsion is subject to rotational dif-

fusion and in our simulations its motion always obeys the
overdamped rotational Langevin equation

dp̂i
dt

=
√
2Dr(p̂i × Λ⃗r

i ), (6)

where Dr denotes the rotational diffusion coefficient and
the random vector Λ⃗r

i satisfies relations analogous to Eqs.
3 and 4. For spherical particles in the low-Reynolds
number regime, the translational and rotational diffu-
sion coefficients are linked via the Stokes-Einstein rela-
tion Dr = 3Dtr/σ

2. Nevertheless, the rotational diffusion
coefficient is considered as an independent parameter in
our study, similar to previous theoretical work.35–37 The
reason for this extra degree of freedom is that individual
particles in experimental active systems, such as bacte-
rial colonies,15 are often subject to athermal rotational
diffusion.

In order to implement the aforementioned equations
of motion Eqs. 5 and 6 we used the Euler-Maruyama
integration scheme.38 To implement the underdamped
Langevin Eq. 2, we employed the integration scheme
proposed by Grønbech-Jensen and Farago.39 We have
verified that simulations in the overdamped regime give
indistinguishable results with ones in the highly viscous
underdamped regime. A time step of dt = 3 × 10−5τ
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was used for the numeric integration of the equations of
motion and the simulations ran for at least 106τ , so that
we get sufficient statistics for the system.
The behavior of the system was probed as the following

dimensionless parameters were systematically varied: the
strength of the Lennard-Jones potential ϵ̃ = βϵ, the mag-
nitude of the propulsion force F̃ = βFpσ, the rotational
diffusion coefficient Drτ and the density of the system

ρσ3 = Nσ3

L3 . In the case of the underdamped system,
we also varied the (dimensionless) damping coefficient
γ̃ = βmγσ2/τ . Following Ref. 33, we quantified the ra-
tio between the strength of attraction and the magnitude
of self-propulsion by the aggregation propensity

Pagg =
ϵ̃

F̃
=

ϵ

Fσ
. (7)

The number of particles for all simulations in the under-
damped regime was 1728, in order to compare directly
our results with Ref. 33, while for the overdamped regime
was 4917, unless stated otherwise. The effects of the fi-
nite size of the system on our results are discussed, when
considered relevant, in the next section.

C. Steady State and Initial Configurations

Due to the self-propelling force there is constant energy
input in the system. Nevertheless, by following the evolu-
tion of the total potential energy of the system with time,
we observed that after a short transient period there was
no energy drift. After this period the potential energy of
the system fluctuated around a mean value. We identi-
fied this regime of quasi-constant energy with the steady
state of the system. For our measurements we considered
configurations from the steady state only. Furthermore,
for each point in the parameter space, a minimum of two
simulations were performed, starting from two different
initial configurations: one where the particles were on
a cubic lattice that spanned the entire system, and one
where all the particles were part of a dense liquid slab.
These two initial conditions were chosen in order to study
any possible effect the starting configuration could have
on the steady state of the system. We found that after
the transient period, the average potential energy in both
simulations converged to the same value, which indicates
that the system indeed relaxed at the same state and we
can safely identify the regime of quasi-constant poten-
tial energy with the steady state. For a limited number
of simulations we also looked at the time evolution of
the degree of clustering and the local density histograms,
both of which are described in detail later in this paper,
and we found that in the regime of quasi-constant energy
these structural functions were also only subject to fluc-
tuations and there were no major changes. Once again
results for different initial configurations coincided. All
the above ensure that potential energy is a reasonable
indicator of when the system reaches the steady state.

For sets of parameters where the system is close to
crystalization, the system was additionally initialized
from a gaseous state that contains a large (face-centered-
cubic) crystalline cluster. The cluster contained approx-
imately 25% of the system’s particles. We observed high
crystallization and melting barriers in many cases, which
caused difficulties in identifying the true state of the sys-
tem, as the simulations would have to run for a very long
time. We found that these difficulties were enhanced by
finite size effects. Nevertheless, the results for the pa-
rameter space points presented in this article have been
thoroughly verified.

D. Analysis Methods

We used a Voronoi construction to construct the local
density histogram of the system.40 By calculating the
volume of the Voronoi cells we were able to estimate the
local density of particles. Furthermore, the identification
of surface particles was performed by means of the cone
algorithm.41

In order to distinguish the percolating network state
from bulk gas-liquid coexistence we used the following
criterion. First, we considered two particles as clustered
when their center of mass distance was less than 1.2σ.
Note that in our system, the first minimum in the radial
distribution function is typically between 1.3σ and 1.6σ.
We chose 1.2σ as the cutoff distance in order to both be
consistent with that used in Ref. 33, and to ensure that
we did not overestimate the amount of connectedness in
our system.

Second, we calculated the probability of having a clus-
ter percolating simultaneously in all three dimensions in
the system. To determine whether a cluster percolates
in a given direction we duplicated the system in that di-
rection, doubling the number of particles. If the number
of particles in the cluster doubled as well, then the clus-
ter percolated. When the probability of percolation was
found higher than a certain threshold that was density-
dependent, we identified the system as being in the per-
colating cluster state. This threshold was used for the
necessary distinction between strong fluctuations of the
liquid phase that can temporarily percolate in three di-
mensions and the percolating network structure. The
probability threshold was set at 35%, 90% and 95% for
total densities ρσ3 = 0.191, 0.382 and 0.445 accordingly.
However, for a total density higher than ρσ3 = 0.5 this
criterion failed as the liquid cluster always percolated.

III. RESULTS

A. State diagrams

Passive Lennard-Jones particles have been extensively
studied and their phase behaviour is well-characterized
(see e.g. Ref. 42). At high temperatures, Lennard-Jones
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HaL HbL
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FIG. 1. Snapshots of different states of the system. In (a) the
system is in a homogeneous fluid state, in (b) there is liquid-
gas coexistence, in (c) a percolating network state is found,
and in (d) a crystal coexists with a gas. Particles that belong
to different clusters have different colour. The values of the
parameters are ρσ3 = 0.191, F̃ = 50, ϵ̃ = 5 for (a) and 12.5
for (b)-(d) and Drτ = 30, 4.2, 0.01, 30 for (a)-(d) respectively.

systems exhibit a single first-order phase transition from
a fluid to a face-centered-cubic crystal as the density of
the system is increased. Upon lowering the temperature,
a critical temperature is reached where a second phase
transition appears separating the fluid phase into gas and
liquid phases. At even lower temperatures a triple point
appears below which the liquid phase disappears and only
the gas and crystal remain.

When the passive particles are replaced by active par-
ticles by introducing self-propulsion, deviations from the
equilibrium behaviour are expected. To explore these
deviations, we study the behaviour as a function of the
rotational diffusion coefficient Drτ while keeping the self-
propulsion force and temperature fixed. Note that in the
limit of fast rotational diffusion, Drτ → ∞, the persis-
tence length of the particles goes to zero and the active
force acts effectively as translational diffusion.35 As a re-
sult, we expect the behaviour in this limit to coincide
with the behaviour in the equilibrium (passive) system,
but with a modified interaction strength. However, as
Drτ is decreased, the non-equilibrium effects should be-
come more evident.

In this section we use overdamped Brownian dynamics
simulations to explore the behaviour of systems with Drτ
between 0.3 and 30 and densities ρσ3 between 0.191 and
0.764. In all cases, the magnitude of the self-propelling
force is fixed at F̃ = 50.

For all values of Drτ we consider, we find that the sys-
tem forms a homogeneous fluid for a sufficiently low value
of ϵ̃ (see Figure 1(a)). As the strength of the attraction is
increased, the particles tend to aggregate. The structure
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FIG. 2. Local density histograms for a total system density
ρσ3 = 0.381 and magnitude of self-propulsion F̃ = 50. P (ρσ3)
denotes the probability to find a particle with local density
ρσ3. The subfigures (a)-(d) correspond to different rotational
diffusion coefficients as indicated.

of the aggregate depends strongly on the rotational diffu-
sion coefficient. For high rotational diffusion coefficient,
the aggregated phase appears as the liquid in a classical
liquid-gas phase separation, namely, the liquid phase is
organized such that the surface of the cluster is minimal
(Fig 1(b)). However, for slower rotational diffusion, the
aggregated phase is much less compact as shown in Fig-
ure 1(c), and frequently spans the entire system or forms
“living” clusters as described in Ref. 33.

In order to better quantify the aggregation of particles,
we obtained density histograms for the systems we exam-
ined. We found that in most cases the density histograms
transitioned from a unimodal to a bimodal curve as the
strength of attraction is increased, a transition that indi-
cates passing from a homogeneous state into coexistence.
Examples of such histograms are presented in Figure 2.
We subsequently used the local maxima of the density
histograms, which we identified as the local densities of
the coexisting phases ρl, to construct the state diagram
of the system for different rotational diffusion coefficients,
see Figure 3. Note that in Figure 2 some of the peaks
in the gas phase are very low compared to the peaks of
the liquid phase, indicating that only a small fraction
of our system consisted of gas particles. We identified
as fluid the states where only a single peak is visible in
the local density histogram. States which exhibited two
peaks but showed no signs of global phase separation
were identified as percolating network states, and states
which exhibited a clear phase separation were marked are
either gas-liquid or gas-crystal, depending on whether the
high density phase is crystalline. Note that we have not
probed the exact positions of the critical or triple points
in any of the diagrams presented in Figure 3. Addition-
ally, the boundaries presented in black dashed lines are
simply approximate state boundaries.

As shown in Figure 3(a), for a rotational diffusion co-
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FIG. 3. (a)-(d) State diagrams of the active Lennard-Jones system with rotational diffusion coefficients Drτ = 30, 9, 3, and

0.3 respectively. On the y-axes 1/ϵ̃ = kBT/ϵ denotes the inverse attraction strength of the system and Pagg = ϵ̃/F̃ is the
aggregation propensity. Data points correspond to local maxima of density histograms, which we identify as the local densities
ρl of the coexisting phases. Different symbols correspond to different overall densities of the system. The black dashed lines
indicate approximate state boundaries. Labels are as follows: F indicates the fluid, G-L gas-liquid coexistence, G-X gas-crystal
coexistence and PN the percolating network state.

efficient Drτ = 30 (ten times larger than the value dic-
tated by the Stokes-Einstein relation), the behaviour of
the system is very similar to the phase diagram seen for
passive systems. The system transitions with increasing
attractive strength ϵ̃ from a homogeneous fluid state to
gas-liquid coexistence and eventually gas-crystal coexis-
tence. Moreover, the binodal envelope is similar to that
of the equilibrium system, in the sense that the value of
attraction alone dictates the densities of the two coex-
isting phases. The low-density curves do not fall exactly
on top of each other for high values of attraction due
to surface effects that are discussed at the end of this
section.

Decreasing the rotational diffusion to Drτ = 9 (Figure
3(b)) results in the emergence of a new state, which we re-
fer to as a percolating network. This new state consists
of a dynamic network of clustered particles coexisting
with a gas and in static images resembles an equilibrium
system which has undergone spinodal decomposition (see
ESI movie S1). However, in contrast to such a state, the
percolating network we observe is clearly not kinetically
trapped (see ESI movie S2). From Figure 3(b) we see
that the system now transitions with increasing strength
of attraction from a homogeneous fluid state to a perco-
lating network and then to gas-liquid coexistence.

Setting the rotational diffusion coefficient to the value
dictated by the Stokes-Einstein relation, namely Drτ =
3, results in the state diagram shown in Fig. 3(c). Here,

we find that the region where the percolating network
state occurs, is increased at the expense of the gas-liquid
coexistence region. Additionally, in the percolating net-
work region, attraction does not solely dictate the den-
sities of the coexisting states anymore. On the contrary,
the peaks in the local density histograms also depend
on the total density of the system. We note that this
non-collapse was validated for various system sizes as de-
scribed below.

For very low rotational diffusion (Drτ = 0.3) the state
diagram continues to evolve (Fig. 3(d)). The percolating
network has now completely replaced the gas-liquid re-
gion: according to our simulations, the system transitions
directly from the percolating network state to gas-crystal
coexistence.

Interestingly, the stability domain of the percolating
network increases monotonously with decreasing rota-
tional diffusion coefficient. In all investigated cases, it
appears first at 1/ϵ̃ ≈ 0.15, with the value increasing
slightly with decreasing Drτ .

We conclude this section by commenting on finite size
effects. In order to ensure that the behaviour we observed
in Figure 3 was robust with respect to system size, we
simulated a few state points for larger and smaller sys-
tems, consisting of N = 21952 and 2197 particles respec-
tively. First of all, we found that the identification of the
states does not change, e.g. we observe fluid, liquid-gas,
crystal and the percolating network independent of sys-
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tem size. Additionally, the density of the dense phase
(percolating network of liquid clusters, liquid or crystal)
was only slightly affected by the system size. Substan-
tial deviations occurred only for the low-density phase.
These deviations are expected, since the first peak of the
local density histogram is complicated by the presence of
surface particles in addition to the gas particles. Never-
theless, this effect does not affect the conclusions drawn
above.

B. Percolating Cluster State

One of the most striking differences between a gas-
liquid coexistence and the novel percolating network
state is the compactness of the dense clusters. In a gas-
liquid coexistence, the system evolves in order to mini-
mize the surface area of the cluster, resulting in compact
spherical or cylindrical geometries. In the percolating
network, the active system appears to almost attempt to
maximize the surface area, resulting in a highly branched
network. One way to characterize this difference is by
looking at the ratio of surface to volume of these large
aggregates. In Figure 4 we plot the average ratio NS/NV

of surface particles over the total number of particles for
the largest cluster, as a function of the rotational diffu-
sion coefficient. In all cases, the density ρσ3 = 0.191, self-
propelling force F̃ = 50 and interaction strength ϵ̃ = 12.5
are chosen such that nearly all particles are part of one
large cluster (> 90%). We have found that for the pa-
rameters used in Figure 4 the fluctuations of the number
of particles in the biggest cluster NV as well as of the ra-
tio NS/NV are small. Thus, the size of the largest cluster
does not fluctuate significantly, and the dynamic changes
in the shape of the percolating network do not seem to
affect the presented results.
In the fast rotational diffusion regime, the liquid clus-

ter is indeed compact, resulting in a small surface-to-
volume ratio, which decreases further with increasing sys-
tem size, as expected. On the other hand, for low rota-
tional diffusion, i.e. in the percolating network state, we
observe a much larger fraction of surface particles, which
is independent of the system size. For the system param-
eters studied in Fig. 4 we find that the transition between
the network state and the gas-liquid separation occurs at
a rotational diffusion of around Drτ ∼ 2. Note that this
transition becomes sharper with increasing system size,
characteristic of a phase transition.
To gain further insight into the properties of the perco-

lating network state, we study the pairwise correlations
between particles. In Figure 5(a), we plot the radial dis-
tribution function g(r) for four different values of Drτ ,
at the same density and interaction strength as was used
for Figure 4. For the highest value of Drτ , the system
exhibits a gas-crystal phase separation, and the radial
distribution function shows sharp peaks characteristic of
the crystalline order. For Drτ = 9 and 3, the system
forms a gas-liquid separation, resulting in much weaker
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FIG. 4. Average ratio of the number of surface particles NS

over the number of particles NV in the biggest cluster of the
system, as a function of the rotational diffusion coefficient
Drτ . For all points, F̃ = 50, ϵ̃ = 12.5, and ρσ3 = 0.191. The
insets show snapshots of the system for the corresponding
values of Drτ . Particles that belong to different clusters have
different colours.

peaks in g(r). Finally, for Drτ = 0.3, we observe the
percolating network state, for which the radial distribu-
tion function looks essentially the same as that of the
gas-liquid separation.

Additionally, we calculate the normalized orientation
correlation function C1(r), defined as

C1(r) =

⟨∑N

i=1

∑′N

j=1
δ (r − rij) p̂i · p̂j

⟩
⟨∑N

i=1

∑′N

j=1
δ (r − rij)

⟩ , (8)

where the prime on the summation sign indicates that
terms for which i = j are not included. The angular
brackets indicate a configurational average. This func-
tion is equal to unity if all the axes of self-propulsion of
particles are aligned and zero if all particle orientations
are uncorrelated. We plot C1(r) in Figure 5(b). In all
cases, we see that for r < σ, there is a negative corre-
lation between the orientations of the particles. This is
expected, as the only way for particles to be significantly
closer than r = σ is for them to be pushing towards each
other. Additionally, as expected, the crystalline state
shows significant statistical noise, due to small values of
the denominator in Eq. 8. The most important result in
Figure 5 is the strong local alignment of particles in the
percolating state in comparison to the the other states.
As there is no explicit aligning torque in the model, this is
surprising, and indicates that particles with similar orien-
tations tend to stay in closer proximity in the percolating
network.

In light of the above conclusions, we propose here a
possible mechanism that accounts for the formation of
the percolating network state. Consider a dilute system
of self-propelled particles with an attraction strength at
least strong enough to cause gas-liquid phase separation
in the absence of self-propulsion. Now assume that the
magnitude of self-propulsion is stronger than the attrac-
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FIG. 5. Radial distribution function g(r) (a), and normalized
orientation correlation function C1(r) (b) for different values
of the rotational diffusion coefficient. All curves correspond
to values of the parameters ρσ3 = 0.191, F̃ = 50 and ϵ̃ =
12.5. For Drτ = 30 crystal and gas coexist, for Drτ = 9, 3
liquid and gas coexist and for Drτ = 0.3 the system is in the
percolating network state. Note that in figure (a) the radial
distribution functions are offset for clarity.

tions F̃ > ϵ̃, and that the axis of self-propulsion asso-
ciated with each particle is pointing in a fixed, random
direction (Drτ = 0). When two particles collide there
are two possible scenarios: if their axes of self-propulsion
are pointing in a similar direction, then the attraction
will cause them to aggregate and travel together. In con-
trast, if the axes of self-propulsion are pointing in suf-
ficiently different directions, the particles will overcome
the attraction and move away from each other. After
a large number of collisions, this process will ultimately
create a collection of clusters, with each cluster contain-
ing particles with similar orientations. By performing a
small number of simulations (not shown in the present
article) in very low densities ρσ3 = 0.001 − 0.01 and for

F̃ > ϵ̃ > 1, we have indeed verified that the above pro-
cess creates a collection of small clusters in which particle
orientations are highly correlated.
Now, if we increase the system density and instead of

a fixed direction of self-propulsion we allow the particles
to slowly rotate (corresponding to a low rotational diffu-

sion coefficient), then this argument should continue to
hold, e.g. particles that are in similar orientations aggre-
gate more easily than particles pointing in opposite di-
rections. This results in highly dynamic aggregates with
groups of particles frequently attaching and detaching,
and neighbouring particles displaying high degrees of ori-
entational correlation as seen in Figure 5. For sufficiently
high density (such as those studied in this paper), these
aggregates become completely system spanning, and the
majority of particles are connected to a single network,
as seen in our simulations. This picture agrees well with
movies from our simulations (see ESI movies S1, S2) and
accounts for both the local alignment of particles (Fig. 5)
and the lack of system size dependence of the structural
properties of the percolating network (Fig. 4).

As Drτ increases, the persistence length of the self-
propelled motion of the particles decreases. In this case,
the attractive force is able to aggregate particles with
larger differences in the orientation of the axes of self-
propulsion. This process ultimately leads to a transition
to (bulk) gas-liquid phase coexistence (Fig. 4). A simi-
lar transition from the percolating network state to gas-
liquid coexistence can take place by fixing the persistence
length of the particles and increasing the attraction (Fig.
3(b) and (c)).

C. Clustering properties

In a recent publication, Mognetti et al.33 showed that
the aggregation, i.e. clustering, in a system of self-
propelled attractive particles depended only on the ratio
Pagg = ϵ̃/F̃ . To examine whether this collapse also oc-
curs in our system, we calculated the degree of clustering
Θ, introduced in Ref. 33, as

Θ = 1− ⟨Nclusters⟩
N

, (9)

where ⟨Nclusters⟩ is the average number of clusters in
the system. We considered particles clustered when
their center of mass distance is less than 1.2σ.33 Thus,
Θ → 0 when the system is in the dilute gas phase where
⟨Nclusters⟩ ≃ N , while Θ = 1− 1

N ≃ 1 when all particles
belong to the same cluster. The results are plotted in
Figure 6.

In Figure 6(a) we plot the degree of clustering Θ as
a function of the rotational diffusion coefficient Drτ at
constant Pagg near the percolating network to gas-liquid
transition. We do not see a collapse in the degree of
clustering here. Similarly, in Figure 6(b) we do not see
a collapse when plotting Θ as a function of Pagg at fixed
rotational diffusion Drτ for a wider range of state points.
Finally, we checked to see if the collapse would occur if
we use underdamped dynamics in place of overdamped
dynamics for the translational degrees of freedom. As
shown in Figure 6(c), we also do not find a value of the
damping parameter γ̃ for which a collapse occurred. We
conclude that the data collapse found by Mognetti et
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FIG. 6. Degree of clustering Θ as a function (a) of the rotational diffusion coefficient Drτ for different values of F̃ and ϵ̃,

but constant ratio Pagg=0.25, (b) of Pagg for different values of F̃ and fixed Drτ = 3 and (c) of the dimensionless damping

parameter γ̃ for different values of F̃ and ϵ̃, but constant ratio Pagg=0.20 and constant Drτ = 3. The density of the system is
ρσ3 = 0.191, same as in Ref. 33.

al.33 does not occur in our system. We attribute this
discrepancy to the difference in the applied dynamics,
and more specifically to the different mechanisms that
rotate the particles in the two different systems.

IV. CONCLUSIONS AND OUTLOOK

In the present work, we employed computer simu-
lations to study the self-assembly of a system of self-
propelled, Brownian particles, that interact via the trun-
cated and shifted Lennard-Jones potential.
We determined state diagrams of the overdamped sys-

tem for various rates of rotational diffusion of the self-
propelled motion of the particles. We found that for
fast rotational diffusion, the properties of the state di-
agram bore strong similarities to the phase diagram of
the equilibrium Lennard-Jones system. However, as the
rotational diffusion was decreased, new features arose
due to the interplay between self-propulsion and attrac-
tion. That is, a new state was observed between the fluid
phase and gas-liquid coexistence, which we identified as
a highly dynamic, percolating network state. That state
consisted of interconnected but motile clusters that cre-
ated a system-spanning network. Finally, for slow rota-
tional diffusion the (bulk) gas-liquid coexistence disap-
peared and the system transitioned from the percolating
network state directly to gas-crystal coexistence.
We subsequently discussed the unique properties of the

percolating state, and presented evidence of a transition
from gas-liquid to percolating network with decreasing
rotational diffusion. By examining the correlations be-
tween the orientations of the axes of self-propulsion of
the particles, we found significant local alignment in the
percolating state. A possible mechanism was proposed
in order to explain the formation of the percolating net-
work.
Finally, we noted that the ratio of the strength of the

attraction over the magnitude of self-propulsion does not
solely characterize our system. This is in contrast to what
was found in Ref. 33, and may be due to differences in
the applied dynamics.

We would like to comment here on the significance of
the percolating network state. First, we note once more
that this state is caused by the synergy between attrac-
tion and self-propulsion, so we expect it to be present in
three dimensional systems for a wide variety of attrac-
tive potentials and propulsion mechanisms. Moreover,
our simulations suggest that this novel state is present
for low density systems and experimentally relevant rota-
tional diffusion, so a search for this state in real colloidal
systems is feasible. As earlier work has shown, hydro-
dynamic interactions may also cause local alignment of
particles, an effect that may enhance the formation of the
percolating network state in experimental systems.43

Last but not least, as demonstrated in section III C, the
exact dynamics of a theoretical model are of importance
not only for the quantitative but also for the qualitative
results it generates. Detailed comparisons between dif-
ferent theoretical models, as well as actual experimental
systems, such as Ref. 31, are thus extremely valuable and
needed, in order to deepen our understanding of active
matter systems.
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