# Chemical Science

# Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/chemicalscience

# **Journal Name**

# ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/



# Practical and Economic Lithiations of Functionalized Arenes and Heteroarenes Using Cy<sub>2</sub>NLi in the Presence of Mg, Zn or La Halides in a Continuous Flow<sup>b</sup>

Matthias R. Becker, Maximilian A. Ganiek and Paul Knochel<sup>a</sup>

The economic amide base lithium dicyclohexylamide (Cy<sub>2</sub>NLi) allows fast and convenient (40 s, 0 °C) in situ trapping flow metalations of a broad range of functionalized arenes, heteroarenes and acrylate derivatives in the presence of various metal salts (ZnCl<sub>2</sub>·2LiCl, MgCl<sub>2</sub>, LaCl<sub>3</sub>·2LiCl). The resulting Zn-, Mg- or La- organometallic intermediates are trapped with various electrophiles in high yields. These flow metalations are easily scaled-up without further optimization

## Introduction

The lithiation of arenes and heteroarenes is a common method for the functionalization of unsaturated molecules.<sup>1</sup> Pioneering work of Snieckus<sup>2</sup> and others<sup>3</sup> have demonstrated the utility of aromatic lithiations for the preparation of pharmaceutical and agrochemical targets. Nevertheless, the use of powerful lithium bases has some drawbacks such as low metalation temperatures and a moderate functional group tolerance. Also, it requires a careful choice of the lithium base used for the metalation step.



Recently, we have shown that an in situ trapping metalation

E-mail: paul.knochel@cup.uni-muenchen.de

DOI: 10.1039/x0xx00000x

<sup>b.</sup> We thank the SFB 749 (DFG) for support and financial contributions to this project. We also thank Rockwood Lithium GmbH (Frankfurt) and BASF AG (Ludwigshafen) for the generous gift of chemicals. Electronic Supplementary Information (ESI) available: See

This journal is C The Royal Society of Chemistry 20xx

sequence using TMPLi (TMP = 2,2,6,6-tetramethylpiperidyl) allows the performance of selective lithiations of various arenes and heteroarenes at 0 °C within 40 s if conducted in a continuous flow system (Scheme 1).4,5 Under conventional batch conditions, these in situ trapping metalations require cryogenic temperatures (-78 °C) in order to avoid unwanted side reactions or decomposition of the organometallic intermediate. Furthermore, the scale-up of these batch metalations proved to be difficult, requiring much optimization. Despite the convenient reaction conditions in flow mode, the use of stoichiometric amounts of TMPLi makes this lithiation still expensive (TMPH = ca. 630 %mol).<sup>6</sup> The steric hindrance of the TMP-moiety was required in order to avoid side-reactions. Due to the fast mixing of the reaction components and the prevention of hot spot formation, ' such highly sterically hindered bases may no more be mandatory when using the flow methodology.<sup>8</sup> Preliminary experiments attempting to perform metalations of various aromatics using cheaper readily available lithium or other metallic amides  $R_2NMet$  (R = *i*Pr (isopropyl), Cy (cyclohexyl), TMS (trimethylsilyl); Met = Li, MgHal, ZnHal) were disappointing either due to insufficient reactivity or unwanted side reactions. The in situ trapping methodology developed in our laboratory, in which we mix the aromatic substrate with a metallic salt and add TMPLi proves to be compatible with the replacement of TMPLi with much cheaper bases since this Barbier-type lithiation minimizes the contact time of the lithium base with the aromatic substrate. The replacement of TMPLi by Cy<sub>2</sub>NLi is of special importance since the price of the corresponding amine Cy<sub>2</sub>NH (ca. 6.40 \$/mol) is only ca. 1% of TMPH.<sup>6,9</sup>

Herein we wish to report the use of the economic amide base lithium dicyclohexylamide ( $Cy_2NLi$ ) instead of TMPLi for in situ trapping metalations under continuous flow conditions.  $Cy_2NLi$ has – to the best of our knowledge – not yet been used for extensive lithiations of functionalized arenes and heteroarenes.<sup>10</sup>

<sup>&</sup>lt;sup>a.</sup> M. R. Becker, M. A. Ganiek, Prof. Dr. P. Knochel Ludwig-Maximilians-Universität München, Department Chemie Butenandtstrasse 5-13 (Haus F), 81377 München (Germany)

ce acced

## **Results and discussion**



In a first experiment, we have metalated 1-bromo-4fluorobenzene (1a) under flow conditions (Scheme 2). Thus, 1a (1.0 equiv) was mixed with ZnCl<sub>2</sub>·2LiCl (0.5 equiv) and submitted to flow metalation<sup>11</sup> (0 °C, 40 s) using respectively TMPLi and  $Cy_2NLi$ . The corresponding arylzinc intermediate (2) was quenched via a Pd-catalyzed Negishi cross-coupling<sup>12</sup> in a batch reactor containing ethyl 4-iodobenzoate (0.8 equiv) and a standard Pd-catalytic system (2 mol% Pd(dba)<sub>2</sub>; dba = dibenzylideneacetone and 4 mol%  $P(2-furyl)_3)^{13}$  providing the expected biphenyl (3a) in 93% (using TMPLi) and 97% (using Cy<sub>2</sub>NLi) yield. Like for reactions with TMPLi, in situ trapping metalations with Cy2NLi can be simply scaled up without further optimization just by running the reaction for a longer time. Therefore, the reaction of 2 with 3-iodoanisole (0.8 equiv) affords after a Negishi cross-coupling the expected product 3b in 97% yield on a 1.7 mmol scale and in 95% yield on a 11 mmol scale (Table 1, entry 1). Using Cy<sub>2</sub>NLi for the ortho-lithiation of 1,3-dihaloarenes (1b,c) abstracts under our standard reaction conditions (0 °C, 40 s) the most acidic hydrogen at position 2. In situ transmetalations with ZnCl<sub>2</sub>·2LiCl or MgCl<sub>2</sub> (0.5 equiv, respectively) generate the corresponding aryl-zinc and -magnesium species, which are quenched in subsequent batch reactions with aryl iodides (0.8 equiv), S-phenyl benzenethiosulfonate (0.8 equiv) and ethyl cyanoformate (0.8 equiv) leading to the trisubstituted arenes (3c-f) in 67-98% yield (entries 2-5). The in situ metalations with Cy<sub>2</sub>NLi are not limited to haloarenes and sensitive functionalities like esters and nitriles are tolerated as well. Thus, diethyl 4-bromoisophthalate (1d) is smoothly flowzincated in position 6 and a Negishi cross-coupling with ethyl 4-iodobenzoate (0.8 equiv) produces the expected triester (3g) in 72% yield (entry 6). Similarly, substituted nitriles such as 1e and  $\mathbf{1f}$  are in situ metalated in the presence of  $\mbox{ ZnCl}_2\mbox{\cdot}\mbox{2LiCl}$ (0.5 equiv) within 40 s at 0 °C and subsequent quenching reactions with aryl iodides (0.8 equiv) having either electrondonating or electron-withdrawing substituents lead to the cyano-substituted biphenyls (**3h-j**) in 70-97% yield (entries 7-9).



### Journal Name

| Entry | Substrate | Electrophile     | Product <sup>[a]</sup>           |
|-------|-----------|------------------|----------------------------------|
| 9     | 1f        | R = <i>p</i> -CN | <b>3j</b> : 73% <sup>[b,d]</sup> |

[a] Yield of isolated product. [b] ZnCl<sub>2</sub>·2LiCl (0.5 equiv) was used. [c] MgCl<sub>2</sub> (0.5 equiv) was used. [d] Obtained using 2% [Pd(dba)<sub>2</sub>] and 4% P(2-furyl)<sub>3</sub>. [e] Yield obtained on a 11 mmol scale.

This in situ trapping methodology with Cy<sub>2</sub>NLi in a flow reactor is not limited to functionalized arenes. In fact, it can be readily extended to a broad range of sensitive, electron-deficient heteroarenes (Table 2). Thus, 2-fluoropyridine (4a), which is notoriously difficult to metalate,<sup>14</sup> undergoes a smooth zincation or magnesiation in position 3 in the presence of ZnCl<sub>2</sub>·2LiCl or MgCl<sub>2</sub> and quenching with ethyl 4-iodobenzoate (0.8 equiv) or S-methyl methanethiosulfonate (0.8 equiv) produces the disubstituted pyridines (5a,b) in 75-94% yield (entries 1 and 2). However, using our standard conditions 2,6dibromopyridine (4b) is in situ metalated in position 4 and a subsequent Negishi cross-coupling with ethyl 4-iodobenzoate (0.8 equiv) affords the desired pyridine (5c) in 67% yield (entry 3). Similarly, ethyl 2-chloronicotinate (4c) is flow-zincated within 40 s at 0 °C in position 4 affording the trisubstituted pyridine (5d) in 88% yield after a Cu-mediated allylation with 3-bromocyclohexene (0.8 equiv; entry 4). The sensitive 2,3dichloropyrazine (4d) is smoothly flow-metalated (0 °C, 40 s) in the presence of ZnCl<sub>2</sub>·2LiCl (0.5 equiv) and quenching with 3iodoanisole (0.8 equiv) leads to the pyrazine (5e) in 77% yield (entry 5). The in situ trapping metalations with Cy<sub>2</sub>NLi can also be used for the functionalization of a broad range of substituted 5-membered ring heterocycles. Thus, the lanthanation of 1-methylpyrazole (4e) in the presence of LaCl<sub>3</sub>·2LiCl (0.5 equiv) under standard conditions (0 °C, 40 s) produces the desired alcohol (5f) in 62% yield after addition to p-chlorobenzaldehyde (0.8 equiv; entry 6). Ethyl 5-bromo-2furoate (4f) is regioselectively flow metalated in position 3 and a subsequent Cu-catalyzed reaction with 3-bromocyclohexene (0.8 equiv) leads to the trisubstituted furan (5g) in 76% yield (entry 7). The in situ trapping zincation of 2-bromothiophene (4g) within 40 s at 0 °C abstracts the most acidic hydrogen at position 5 affording the 2,5-disubstituted thiophenes (5h,i) in 89-91% yield after Negishi cross-couplings with 4iodobenzotrifluoride (0.8 equiv) and 1-iodo-3-nitrobenzene (0.8 equiv; entries 8 and 9).

 $\label{eq:table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_table_$ 

| Entry | Substrate | Electrophile         | Product <sup>[a]</sup>           |
|-------|-----------|----------------------|----------------------------------|
|       | N F       | L CO <sub>2</sub> Et | CO <sub>2</sub> Et               |
| 1     | 4a        |                      | <b>5a</b> : 94% <sup>[b,e]</sup> |



[a] Yield of isolated product. [b]  $ZnCl_2 \cdot 2LiCl$  (0.5 equiv) was used. [c]  $MgCl_2$  (0.5 equiv) was used. [d]  $LaCl_3 \cdot 2LiCl$  (0.5 equiv) was used. [e] Obtained using 2% [Pd(dba)<sub>2</sub>] and 4% P(2-furyl)<sub>3</sub>. [f] Obtained by a Cu-catalyzed allylation.

To demonstrate the broad practicability of the in situ trapping metalations with  $Cy_2NLi$ , we investigated the functionalization of acyclic acrylate derivatives, which are prone to polymerize.

### ARTICLE

mixture However. submitting а of (E)-methyl 3methoxyacrylate (6) with  $MgCl_2$  (0.5 equiv) to the flow metalation with Cy<sub>2</sub>NLi (1.5 equiv) for 40 s at 0 °C leads to the formation of the magnesium intermediate 7 in high conversion (Scheme 3). Subsequent reaction of 7 with 2.6dichlorobenzaldehyde (0.8 equiv) produces the lactone 8 in 65% yield. Similarly, (E)-ethyl 3-(dimethylamino)acrylate (9) is in situ metalated (0 °C, 40 s) in the presence of MgCl<sub>2</sub> or  $ZnCl_2 \cdot 2LiCl$  (Scheme 4). The corresponding magnesium (10) and zinc (12) organometallic intermediates undergo various quenching reactions such as an addition to 4-(trifluoromethyl)benzaldehyde (0.8 equiv) and a Negishi crosscoupling with 4-iodobenzotrifluoride (0.8 equiv) providing the corresponding lactone (11) and the ester 13 in 62-70% yield.



Scheme 3 In situ trapping magnesiation of (*E*)-methyl 3-methoxyacrylate (6) using  $Cy_2NLi$  in a flow reactor.



**Scheme 4** In situ trapping magnesiation and zincation of (*E*)-ethyl 3-(dimethylamino)acrylate (9) using  $Cy_2NLi$  in a flow reactor.

## Conclusions

In summary, the economic amide base lithium dicyclohexylamide (Cy<sub>2</sub>NLi) undergoes fast and convenient (40 s, 0 °C) in situ trapping flow metalations of a broad range of functionalized arenes, heteroarenes and acrylate derivatives in the presence of various metal salts (ZnCl<sub>2</sub>·2LiCl, MgCl<sub>2</sub>, LaCl<sub>3</sub>·2LiCl). The resulting Zn-, Mg- or La- organometallic intermediates are trapped with numerous electrophiles in high yields. These flow-metalations are easily scaled-up without further optimization simply by running the reaction for a

longer time. Further applications and extensions of this method are currently underway.

## Notes and references

- (a) J. Clayden, Organolithiums: Selectivity for Synthesis Elsevier, Oxford, 2002; (b) J. Clayden, F. E. Knowles, I. R. Baldwin, J. Am. Chem. Soc., 2005, 127, 2412; (c) J. Clayden, J. Dufour, D. M. Grainger, M. Helliwell, J. Am. Chem. Soc., 2007, 129, 7488; (d) Z. Rappoport, I. Marek, The Chemistry of Organolithium Compounds, Wiley-VCH, Chichester, 2004; (e) P. García-Álvarez, R. E. Mulvey, J. A. Parkinson, Angew. Chem. Int. Ed., 2011, 50, 9668; (f) R. E. Mulvey, S. D. Robertson, Angew. Chem. Int. Ed., 2013, 52, 11470; (g) D. R. Armstrong, E. Crosbie, E. Hevia, R. E. Mulvey, D. L. Ramsay, S. D. Robertson, Chem. Sci., 2014, 5, 3031; (h) C. Unkelbach, D. F. O'Shea, C. Strohmann, Angew. Chem. Int. Ed., 2014, 53, 553; (i) A. Salomone, F. M. Perna, A. Falcicchio, S. O. N. Lill, A Moliterni, R. Michel, S. Florio, D. Stalke, V. Capriati, Chem. Sci., 2014, 5, 528; (j) V. Capriati, F. M. Perna, A. Salomone, Dalton Trans., 2014, 43, 14204; (k) D. R. Armstrong, J. A. Garden, A. R. Kennedy, S. M. Leenhouts, R. E. Mulvey, P. O'Keefe, C. T. O'Hara, A. Steven, Chem. Eur. J., 2013, 19, 13492.
- (a) P. Beak, V. Snieckus, Acc. Chem. Res., 1982, 15, 306; (b) V. Snieckus, Chem. Rev., 1990, 90, 879; (c) M. C. Whisler, S. MacNeil, V. Snieckus, P. Beak, Angew. Chem. Int. Ed., 2004, 43, 2206.
- 3 (a) M. Schlosser, Angew. Chem. Int. Ed., 2005, 44, 376; (b) R. Chinchilla, C. Nájera, M. Yus, Chem. Rev., 2004, 104, 2667; (c) F. Foubelo, M. Yus, Chem. Soc. Rev., 2008, 37, 2620; (d) R. E. Mulvey, F. Mongin, M. Uchiyama, Y. Kondo, Angew. Chem. Int. Ed., 2007, 46, 3802.
- 4 In situ trapping metalations in batch: A. Frischmuth, M. Fernández, N. M. Barl, F. Achrainer, H. Zipse, G. Berionni, H. Mayr, K. Karaghiosoff, P. Knochel, *Angew. Chem. Int. Ed.*, 2014, **53**, 7928; In situ trapping metalations in a continuous flow system: M. R. Becker, P. Knochel, *Angew. Chem. Int. Ed.*, 2015 DOI: 10.1002/anie.201502393.
- For lithiations in flow mode, see: (a) A. Nagaki, Y. Takahashi, J.-i. Yoshida, *Chem. Eur. J.*, 2014, **20**, 7931; (b) A. Nagaki, D. Ichinari, J.-i. Yoshida, *J. Am. Chem. Soc.*, 2014, **136**, 12245; (c) A. Nagaki, K. Imai, S. Ishiuchi, J.-i. Yoshida, *Angew. Chem. Int. Ed.*, 2015, **54**, 1914; (d) L. Kupracz, A. Kirschning, *Adv. Synth. Catal.*, 2013, **355**, 3375; (e) J. Wu, X. Yang, Z. He, X. Mao, T. A. Hatton, T. F. Jamison, *Angew. Chem. Int. Ed.*, 2014, **53**, 8416; (f) T. Fukuyama, T. Totoki, I. Ryu, *Org. Lett.*, 2014, **16**, 5632; (g) H. Kim, H.-J. Lee, D.-P. Kim, *Angew. Chem. Int. Ed.*, 2015, **54**, 1877.
- 6 The price of the corresponding amine TMPH from Sigma-Aldrich is ca. 630 \$/mol for the largest package.
- 7 J.-i. Yoshida, Flash Chemistry: Fast Organic Synthesis in Microsystems, John Wiley & Sons Ltd, West Sussex, 2008.
- For recent advances in flow chemistry, see: (a) T. Noël, S. L. Buchwald, *Chem. Soc. Rev.*, 2011, 40, 5010; (b) M. Chen, S. L. Buchwald, *Angew. Chem. Int. Ed.*, 2013, 52, 4247; (c) M. Chen, S. Ichikawa, S. L. Buchwald, *Angew. Chem. Int. Ed.*, 2015, 54, 263; (d) Y. Zhang, S. C. Born, K. F. Jensen, *Org. Process Res. Dev.*, 2014, 18, 1476; (e) T. P. Petersen, M. R. Becker, P. Knochel, *Angew. Chem. Int. Ed.*, 2014, 53, 7933; (f) R. J. Ingham, C. Battilocchio, D. E. Fitzpatrick, E. Sliwinski, J. M. Hawkins, S. V. Ley, *Angew. Chem. Int. Ed.*, 2015, 54, 144; (g) D. N. Tran, C. Battilocchio, S.-B. Lou, J. M. Hawkins, S. V. Ley, *Chem. Sci.*, 2015, 6, 1120; (h) S. V. Ley, D. E. Fitzpatrick, R. J. Ingham, R. M. Myers, *Angew. Chem. Int. Ed.*, 2015, 54, 3449; (i) J. M. Sauks, D. Mallik, Y. Lawryshyn, T. Bender, M. G. Organ, *Org. Process Res. Dev.*, 2014, 18, 1310; (j) K. S.

#### Journal Name

Nalivela, M. Tilley, M. A. McGuire, M. G. Organ, *Chem. Eur. J.*, 2014, **20**, 6603; (k) K. Somerville, M. Tilley, G. Li, D. Mallik, M. G. Organ, *Org. Process Res. Dev.*, 2014, **18**, 1315; (l) K. Gilmore, D. Kopetzki, J. W. Lee, Z. Horváth, D. T. McQuade, A. Seidel-Morgenstern, P. H. Seeberger, *Chem. Commun.*, 2014, **50**, 12652; (m) D. B. Ushakov, K. Gilmore, D. Kopetzki, D. T. McQuade, P. H. Seeberger, *Angew. Chem. Int. Ed.*, 2014, **53**, 557; (n) D. Ghislieri, K. Gilmore, P. H. Seeberger, *Angew. Chem. Int. Ed.*, 2015, **54**, 678.

- 9 The price of the corresponding amine  $Cy_2NH$  from Sigma-Aldrich is ca. 6.40  $\mbox{mol}$  for the largest package.
- 10 For the use of Cy<sub>2</sub>N-bases for metalations, see: (a) R. N. McDonald, H. E. Petty, N. L. Wolfe, J. V. Paukstelis, J. Org. Chem., 1974, **39**, 1877; (b) M. Jørgensen, S. Lee, X. Liu, J. P. Wolkowski, J. F. Hartwig, J. Am. Chem. Soc., 2002, **124**, 12557; (c) A. Renaudat, L. Jean-Gérard, R. Jazzar, C. E. Kefalidis, E. Clot, O. Baudoin, Angew. Chem. Int. Ed., 2010, **49**, 7261; (d) T. Truong, J. Alvarado, L. D. Tran, O. Daugulis, Org. Lett., 2010, **12**, 1200.
- 11 Flow reactions were performed with commercially available equipment from Uniqsis Ltd. (FlowSyn; http://www.uniqsis.com).
- 12 (a) E. Negishi, L. F. Valente, M. Kobayashi, J. Am. Chem. Soc., 1980, 102, 3298; (b) E. Negishi, Acc. Chem. Res., 1982, 15, 340.
- 13 V. Farina, B. Krishnan, J. Am. Chem. Soc., 1991, 113, 9585.
- 14 The metalation of 2-fluoropyridine using LDA (-78 °C, 4 h) and iodolysis afforded 2-fluoro-3-iodopyridine in 85% yield:
  L. Estel, F. Marsais, G. Quéguiner, J. Org. Chem., 1988, 53, 2740.