Chemical Science

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/chemicalscience

Cite this: DOI: 10.1039/coxx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Fe(IV) alkylidenes via protonation of Fe(II) vinyl chelates and a comparative Mössbauer spectroscopic study

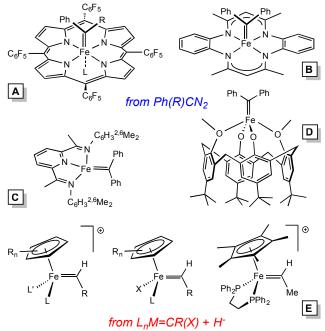
Brian M. Lindley,^a Ala'aeddeen Swidan,^a Emil B. Lobkovsky,^a Peter T. Wolczanski,^a* Mario Adelhardt, Jörg Sutter,^b and Karsten Meyer^b

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Treatment of *cis*-Me₂Fe(PMe₃)₄ with di-1,2-(*E*-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H₂), a tetradentate ligand precursor, afforded (bdvp)Fe(PMe₃)₂ (1-PMe₃) and 2 equiv CH₄, via C-H bond activation. Similar treatments with tridentate ligand precursors PhCH=NCH₂(*E*-CH=CHPh) ((pipp)H₂) and PhCH=N(2-

¹⁰ CCMe-Ph) ((pipa)H) under dinitrogen provided *trans*-(pipp)Fe(PMe₃)₂N₂ (**2**) and *trans*-(pipvd)Fe(PMe₃)₂N₂ (**3**), respectively, the latter via one C-H bond activation, and a subsequent insertion of the alkyne into the remaining Fe-Me bond. All three Fe(II) vinyl species were protonated with H[BAr^F₄] to form the corresponding Fe(IV) alkylidene cations, [(bavp)Fe(PMe₃)₂][BAr^F₄] (**4**-PMe₃), [(piap)Fe(PMe₃)₃][BAr^F₄] (**5**), and [(pipad)Fe(PMe₃)₃][BAr^F₄] (**6**). Mössbauer spectroscopic ¹⁵ measurements on the formally Fe(II) and Fe(IV) derivatives revealed isomer shifts within 0.1 mm/s,

reflecting the similarity in their bond distances.

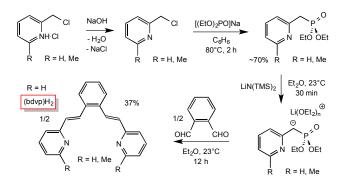

Introduction

Homogeneous alkylidene compounds that catalyze olefin ²⁰ metathesis¹⁻⁵ typically contain 2nd row transition metals that have modest limitations regarding functionality tolerance (e.g., Mo),^{1,2} and relative abundance (e.g., Ru).^{3,4} Applications to commodity chemicals production have been hampered by these factors, and inexpensive first row transition metal alternatives hold great

25 promise in solving some of the problems. Thus far, the synthesis of 1st row transition metal alkylidene complexes has presented a significant challenge to the organometallic community, especially in the case of iron.

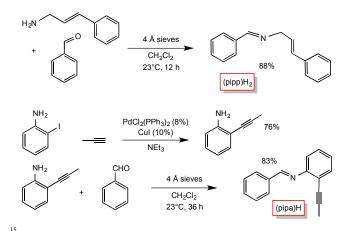
Electronic structure analysis by Hoffmann *et al.*⁶ suggests that ³⁰ metathesis catalysts need to be dⁿ (n \leq 4), hence Fe(IV) alkylidenes are the target of interest, especially in analogy to their 2nd row congeners. Several Fe(IV) alkylidenes have been synthesized, with two routes utilized in the cases of those structurally charcterized (Fig. 1): 1) conversion of

- ³⁵ [CpLL'Fe=C(OR)R']⁺ via hydride or alkyl anion reagents,⁷⁻⁹ and 2) the addition of diazoalkanes, typically Ph₂CN₂, to coordinatively unsaturated complexes or labile precursors.¹⁰⁻¹³ The subsequent chemistry has been limited to carbene transfers, and some transformations that hint at radical reactions.
- ⁴⁰ In an effort to expand the scope of Fe(IV) alkylidenes, and to develop new synthetic paths, Fe(II) vinyl chelates have been explored as potential precursors to cationic Fe(IV) alkylidenes via protonation.¹⁴⁻¹⁸ Entry into ferrous vinyl derivatives was implemented via precedented C-H bond activations by Karsch's
- ⁴⁵ *cis*-Me₂Fe(PMe₃)¹⁹ complex.²⁰⁻²³ While viable olefin metathesis catalysts containing Fe have not yet been realized, the generality of this approach suggests that incremental advances may yet prove successful.



50 Fig. 1 Some iron alkylidenes and methods of synthesis.

Results and Discussion

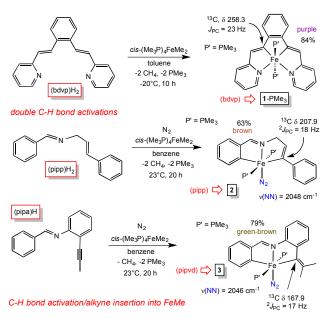

Di-1,2-(E-2-(pyridin-2-yl)vinyl)benzene: Tetradentate Ligand Precursor

As Scheme 1 illustrates, incorporation of two vinyl groups into a tetradentate chelate precursor was predicated on successful

Scheme 1 Preparation of divinyl ligand precursor, 1,2-(*E*-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H₂).

- implementation of a Horner-Wadsworth-Emmons reaction to achieve the requisite *E*-stereochemistry. The modified 2-pyridiylmethyl reagent was prepared according to a literature procedure²⁴ from Na[OP(OEt)₂] and 2-pyridyl-methylchloride in 70% yield.
- ¹⁰ Its addition to 1,2-benzene-dialdehyde afforded di-1,2-(*E*-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H₂, E/Z > 19:1) in 37% yield upon crystallization from ether/hexane.

Scheme 2 Preparation of tridentate precursors, PhCH=NCH₂(*E*-CH=CHPh) ((pipp)H₂) and PhCH=N(2-CCMe-Ph) ((pipa)H).


Tridentate Ligand Precursors: PhCH=NCH₂(*E*-CH=CHPh) and ²⁰ PhCH=N(2-CCMe-Ph)

Condensation routes afforded the two additional tridentate ligands used in this study, as shown in Scheme 2. Cinnamyl amine²⁵ and benzaldehyde were used to synthesize ²⁵ PhCH=NCH₂(*E*-CH=CHPh) ((pipp)H₂),²⁶ while 2-propynyl-aniline, prepared from Pd-catalyzed cross-coupling²⁷ of propyne and 2-iodo-aniline, and benzaldehyde were used to generate PhCH=N(2-CCMe-Ph) ((pipa)H). A number of other potential imine and pyridine-containing tridentate ligand precursors were ³⁰ similarly made, but the subsequent C-H bond activations proved to be too slow or ineffective, allowing for competitive *cis*-

Metalation via C-H Bond Activation and Insertion

Treatment of *cis*-Me₂Fe(PMe₃)₄¹⁹ with tetradentate precursor 1,2-(*E*-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H₂) was undertaken at -20°C in toluene. After 10 h, the solution was warmed to 23°C and concentrated to afford (bdvp)Fe(PMe₃)₂ (1-PMe₃) in 84% ⁴⁰ yield as purple microcrystals (Scheme 3). The reaction is quite sensitive to steric bulk, as use of a precursor possessing *o*-Me groups on the pyridines (Scheme 1) failed to metalate, and decomposition of *cis*-Me₂Fe(PMe₃)₄ was instead observed.

- A similar exposure of *cis*-Me₂Fe(PMe₃)4¹⁹ to PhCH=NCH₂(*E*-45 CH=CHPh) ((pipp)H₂) in benzene at 23°C after 20 h afforded a purple solid upon subsequent concentration (Scheme 3). Dissolution in THF under a dinitrogen atmosphere provided brown *trans*-(pipp)Fe(PMe₃)₂N₂ (**2**) in 63% yield after removal of solvent. It is likely that the *tris*-PMe₃ derivative is formed ⁵⁰ initially, but N₂ replaces PMe₃ in a probable dissociative process. Previous examples have shown that steric factors -- in this case the phenyl substituent -- labilize the phosphine opposite the imine.²³ The dinitrogen ligand is readily discerned via its IR spectrum, which reveals a v(NN) at 2048 cm^{-1.28,29}
- A third, different metalation was conducted with PhCH=N(2-CCMe-Ph) ((pipa)H) and *cis*-Me₂Fe(PMe₃)₄. The precedented imine-directed Ar-H activation occurred, followed by insertion of

- 60 Scheme 3 Methods employed in sythesizing vinyl precursors derived from CH-bond activation/metalation of *cis*-Me₂Fe(PMe₃)₄ and acetylene insertion.
- the pendant acetylene into the Fe-Me bond. The resulting complex, *trans*-(pipvd)Fe(PMe₃)₂N₂ (**3**), contains a dimethyl-⁶⁵ vinyl group as the precursor to a potential alkylidene. Greenbrown **3** was prepared in 79% yield after metalation for 20 h at 23 °C, and as in the previous case, it is likely an initially formed *tris*-PMe₃ complex lost a phosphine in the presence of N₂ to afford the dinitrogen complex,²³ whose v(NN) is at 2046 cm⁻¹.
- ⁷⁰ All three precursors feature downfield ¹³C chemical shifts for the vinyl carbons bound to iron. A triplet $(J_{PC} = 23 \text{ Hz})$ corresponding to the Fe-C(Ar)= unit in (bdvp)Fe(PMe_3)_2 (1-PMe_3) was located at δ 258.3, an unusual shift that may be intrinsic to the metrics of its tetradentate chelation, i.e., reflecting
- ⁷⁵ a very short d(Fe-C). The Fe-vinyl carbon of the trident chelate in *trans*-(pipp)Fe(PMe₃)₂N₂ (**2**) also manifests a significant downfield shift at δ 207.9 (t, $J_{PC} = 18$ Hz), while the Fe-C(Ar)= carbon of *trans*-(pipvd)Fe(PMe₃)₂N₂ (**3**), the most sterically hindered vinyl, resonates at δ 167.9 (t, $J_{PC} = 17$ Hz).

Me₂Fe(PMe₃)₄ degradation.

35

⁸⁰

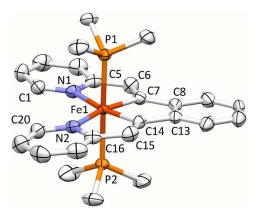


Fig. 2 Molecular view of (bdvp)Fe(PMe₃)₂ (1-PMe₃). Interatomic distances (Å) and angles (°): Fe-N1, 2.057(3); Fe-N2, 2.062 (3); Fe-C7, 5 1.877(3); Fe-C14, 1.888(3); Fe-P1, 2.2285(8); Fe-P2, 2.2280(8); N1-Fe-C7, 81.10(13); N1-Fe-C14, 166.62(13); N1-Fe-N2, 112.43(11); N1-Fe-P1, 89.45(8); N1-Fe-P2, 91.17(8); C7-Fe-C14, 85.61(14); C7-Fe-N2, 166.35(13); C7-Fe-P1, 90.06(10); C7-Fe-C14, 85.61(10); C14-Fe-N2, 80.91(13); C14-Fe-P1, 89.03(9); C14-Fe-P2, 90.26(9); N2-Fe-P1, 10 91.84(8); N2-Fe-P2, 88.32(8); P1-Fe-P2, 179.24(3).

Structure of (bdvp)Fe(PMe₃)₂ (1-PMe₃)

Shown in Fig. 2 is the molecular structure of $(bdvp)Fe(PMe_3)_2$ (1-15 PMe₃), as determined by single crystal X-ray crystallography. The tetradentate ligand essentially resides in a plane of the pseudo-octahedral structure (<u>/</u>C/N-Fe-P = 90.0(11)° (ave); <u>/</u>P1-Fe-P2 = 179.24(3)°), accompanied by *trans*-PMe₃ groups at d(Fe-P) = 2.2283(8) Å (ave). The d(Fe-N) of 2.060 (4) (ave) are 20 normal, but there is a splay in the N1-Fe-N2 angle (112.43(11)°) indicative of a strain in the chelate. The bite angles of the vinylpyridine are 81.01(13)° (ave), and the phenyl-divinyl bite angle is 85.61 (14)°, hence the chelate angles sum to 360.1°

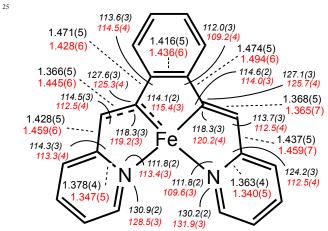
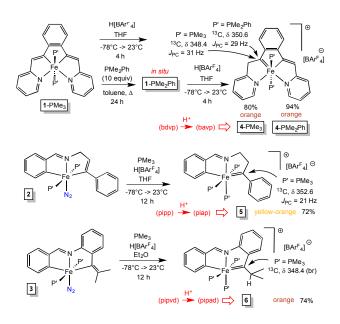



Fig. 3 Comparative ligand metric parameters (distances (Å), dashed black lines; angles (°, *italics*), curved black lines) for Fe(II) (bdvp)Fe(PMe₃)₂ (1-PMe₃, black) vs. Fe(IV) [(bavp]Fe(PMe₃)₂][BAr^F₄] 30 (4-PMe₃, red).

Considerable distortion in the chelate is evident, as the ironcarbon bonds are quite short at 1.883(8) Å (ave), while the C6-C7-C8 and C13-C14-C15 angles of 127.4(4) (ave) deviate ³⁵ significantly from 120°. Fig 3 illustrates the chelate distances and angles in comparison to those of the related alkylidene complex (*vide infra*). All the angles about the Fe-C bonds are distorted in response to the proximity of the vinyl carbons to the iron. Note that the pyridines are not perfectly aligned as donors, as the Fe-N-40 C angles open to an average of 130.6(5)°.

45 **Scheme 4** Protonations with H[BAr^F₄] afford cationic Fe(IV) alkylidenes.

Vinyl Protonations Lead to Fe(IV) Alkylidenes

- ⁵⁰ The vinyl precursors synthesized via the C-H bond activation and insertion processes were protonated¹⁴⁻¹⁸ to yield cationic Fe(IV) alkylidenes, as illustrated in Scheme 4. Tetradentate chelate complex (bdvp)Fe(PMe₃)₂ (1-PMe₃) was treated with H[BAr^F₄]³⁰ in THF to afford orange [(bavp)Fe(PMe₃)₂][BAr^F₄] (4-PMe₃) in
- ⁵⁵ 80% yield. The lability of 1-PMe₃ was tested with excess PMe₂Ph (10 equiv), and repeated thermolyses in refluxing toluene, including periodic removal of PMe₃, were required to generate (bdvp)Fe(PMe₂Ph)₂ (1-PMe₂Ph). Dimethylphenylphosphine derivative 1-PMe₂Ph was not isolated, and characterization by
 ⁶⁰ NMR spectroscopy proved elusive due to broadened and overlapping resonances. As a consequence, it was generated *in situ* and treated with H[BAr^F₄] in THF to yield analytically pure [(bavp)Fe(PMe₂Ph)₂][BAr^F₄] (4-PMe₂Ph, 94%).
- A related protonation of tridentate chelate species *trans*-⁶⁵ (pipp)Fe(PMe₃)₂N₂ (**2**) in THF initially gave a complex mixture that exhibited a ³¹P{¹H} NMR spectral signature consistent with starting material, a tri-phosphine product, and degradation. The addition of PMe₃ to the reaction resulted in one major product, [(piap)Fe(PMe₃)₃][BAr^F₄] (**5**) that was isolated as yellow-orange ⁷⁰ microcrystals in 72% yield. It is likely that an initial dinitrogencontaining Fe(IV) product, [(piap)Fe(PMe₃)₂N₂][BAr^F₄], readily loses N₂, and through redistribution generates **5** along with decomposition products.
- Protonation of $(pipvd)Fe(PMe_{3})_2N_2$ (3) was conducted with ⁷⁵ H[BAr^F₄] in diethyl ether, and a mixture spectrally related to that of the initial protonation of 2 was discerned. Again, the addition of PMe₃ to the reaction mixture permitted the isolation of [(pipvd)Fe(PMe_3)_3][BAr^F₄] (6) in 74% yield as orange microcrystals.
- ⁸⁰ Definitive spectral characterization of the isolated Fe(IV) alkylidene complexes was predicated on observation of diagnostic downfield ¹³C resonances^{31,32} attributed to M=CRR' functionality (Scheme 4). The spectral signatures were difficult to

55

detect, requiring indirect methods, but the alkylidene values for **4**-PMe₃, **4**-PMe₂Ph, **5**, and **6** were eventually observed at δ 348.4 (J_{PC} = 31 Hz), δ 350.6 (J_{PC} = 31 Hz), δ 352.6 (J_{PC} = 21 Hz), and δ 348.4 (br), respectively.

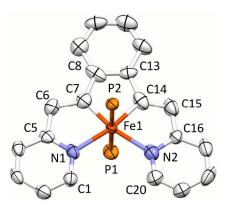
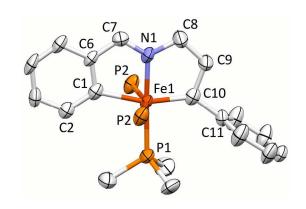


Fig. 4. Molecular view of the cation pertaining $[(bavp]Fe(PMe_3)_2][BAr_4^F]$ (4-PMe₃); the PMe₃ methyl groups have been 10 removed for clarity. Interatomic distances (Å) and angles (°): Fe-N1, 2.083(3); Fe-N2, 2.129 (4); Fe-C7, 1.809(4); Fe-C14, 1.858(4); Fe-P1, 2.2671(11); Fe-P2, 2.2725(11); N1-Fe-C7, 81.47(17); N1-Fe-C14, 168.31(19); N1-Fe-N2, 110.98(14); N1-Fe-P1, 88.53(9); N1-Fe-P2, 91.32(9); C7-Fe-C14, 86.9(2); N2-Fe-C7, 167.48(17); C7-Fe-P1, 15 91.87(13); C7-Fe-P2, 87.81(13); N2-Fe-C14, 80.71(18); C14-Fe-P1, 91.49(13); C14-Fe-P2, 88.60(13); N2-Fe-P1, 89.89(10); N2-Fe-P2, 90.44(10); P1-Fe-P2, 179.66(5).

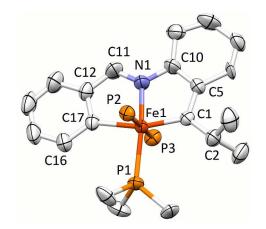
Structure of [(bavp)Fe(PMe₃)₂][BAr^F₄] (4-PMe₃)

²⁰ A molecular view of the cation pertaining to $[(bavp)Fe(PMe_3)_2]$ $[BArF_4]$ (4-PMe₃) is illustrated in Fig 4, and it shows its distorted octahedral structure, with the tetradentate chelate occupying a single plane. The P-Fe-C/N angles average 90.0(15)°, and there is


²⁵ a splay in the bavp ligand indicated by the N1-Fe-N2 angle of 110.98(14), and the *trans*-N-Fe-C angles of 168.31(19) and 167.48(17)°.

The critical d(Fe=C7) is 1.809(4) Å, which is ~0.05 Å shorter than the adjacent iron-vinyl carbon distance of 1.858(4) Å. Both ³⁰ are shorter than the iron-carbon bond lengths in 1-PMe₃, in

- ³⁰ are shorter than the hon-carbon bond rengins in 14 Me₃, in contrast to the d(Fe-N), which are longer at 2.083(3) and 2.129(4) Å. As these changes and the comparison between 1-PMe₃ and 4-PMe₃ in Fig. 3 reveal, the chelate has pinched in to a slightly greater extent in the cation. Angles C6-C7-C8 and C13-C14-C15 ³⁵ are 2.3 and 1.4° less than the corresponding angles in 1-PMe₃,
- and the remaining chelate distances and angles change in concert.


Structure of [(piap)Fe(PMe₃)₃][BAr^F₄] (5)

- ⁴⁰ Fig 5 displays a molecular view of the cation corresponding to $[(piap)Fe(PMe_3)_3][BAr^F_4]$ (5), and reveals its pseudo-octahedral geometry with the piap ligand occupying a *mer*-configuration about iron. The critical alkylidene distance, d(Fe-C10), is 1.867(7) Å, which is significantly shorter than d(Fe-C1) =
- ⁴⁵ 2.106(6) Å, but on par with the iron-vinyl carbon distances in 1-PMe₃ (1.883(8) Å (ave)) and 4-PMe₃ (1.858(4) Å). The tridentate chelate is strained, as the C1-Fe-C10 angle is 161.6(3)°, and the Fe-C10-C9 and Fe-C10-C11 angles of 115.7(5)° and 136.4(5)°, respectively, indicate that the alkylidene is not perfectly oriented.
- ⁵⁰ Note that the C10-Fe-P2 angles are 100.20(4)°; as a consequence, the d-orbital that comprises the iron portion of the Fe=C π -bond has some Fe-P σ^* character that aids in producing better overlap with the carbon p-orbital.

cation Fig. 5. Molecular of pertaining view the to $[(piap)Fe(PMe_3)_3][BAr^{F_4}]$ (5); the methyl groups of the *trans*-PMe_3 ligands have been removed for clarity. Interatomic distances (Å) and 60 angles (°): Fe-C1, 2.106(6); Fe-N1, 1.949(6); Fe-C10, 1.867(7); Fe-P1, 2.281(2); Fe-P2, 2.2733(16); C7-N1, 1.307(9); C1-Fe-N1, 78.4(3); C1-Fe-C10, 161.6(3); C1-Fe-P1, 103.7(2); N1-Fe-C10, 83.2(3); N1-Fe-P1, 177.94(17); C10-Fe-P1, 94.8(2); C1-Fe-P2, 79.47(4); N1-Fe-P2, 88.54(5); C10-Fe-P2, 100.20(4); P1-Fe-P2, 91.83(5); P2-Fe-P2, 158.89(8); Fe-C1-65 C2, 133.8(5); Fe-C1-C6, 110.4(5); Fe-C10-C9, 115.7(5); Fe-C10-C11,

65 C2, 133.8(5); Fe-C1-C6, 110.4(5); Fe-C10-C9, 115.7(5); Fe-C10-C11, 136.4(5).

- ⁷⁰ Fig. 6. Molecular view of the cation pertaining to [(pipad)Fe(PMe₃)₃][BAr^F₄] (6); the methyl groups of the *trans*-PMe₃ ligands have been removed for clarity. Interatomic distances (Å) and angles (°): Fe-C1, 1.899(3); Fe-N1, 1.933(3); Fe-C17, 2.059(3); Fe-P1, 2.317(2); Fe-P2, 2.226(3); Fe-P3, 2.367(3); N1-C11, 1.307(5); C1-C2, 75 1.525(5); N1-Fe-C17, 80.04(14); C1-Fe-C17, 163.36(15); C17-Fe-P1,
- 75 1.525(5); N1-Fe-C17, 80.04(14); C1-Fe-C17, 163.36(15); C17-Fe-P1, 92.03(12); C17-Fe-P2, 88.28(13); C17-Fe-P3, 87.16(12); N1-Fe-C1, 83.34(14); N1-Fe-P1, 167.04(14); N1-Fe-P2, 96.52(16); N1-Fe-P3, 79.34(14); C1-Fe-P1, 104.46(12); C1-Fe-P2, 92.87(12); C1-Fe-P3, 90.53(13); P1-Fe-P2, 93.45(14); P1-Fe-P3, 90.11(13); P2-Fe-P3, 91.742(14); P1-Fe-P3, 91.742(14); P1-Fe-P3, 90.11(13); P2-Fe-P3, 91.742(14); P1-Fe-P3, 91.742(14); P1-Fe-P3, 90.11(14); P1-Fe-P3, 91.742(14); P1-FE
- 80 174.32(13); Fe-C17-C16, 136.0(3); Fe-C17-C12, 110.8(3); Fe-C1-C5, 112.8(2); Fe-C1-C2, 131.0(3).

Structure of [(pipad)Fe(PMe₃)₃][BAr^F₄] (6)

- ⁸⁵ A molecular view of the cation of [(pipad)Fe(PMe₃)₃][BAr^F₄] (6) is provided in Fig. 6, which indicates the *mer*-octahedral structure of the iron alkylidene. The tridentate pipad chelate is essentially planar, and the isopropyl-aryl alkylidene possesses a d(Fe=C) of 1.899(3) Å, a value longer than the iron-vinyl carbon distances in ⁹⁰ 1-PMe₃ and 4-PMe₃. Again, the chelate exhibits strain about the
- core, as the C1-Fe-C17 angle is 163.36(15)°, and its isopropyl group exerts a steric influence on the unique PMe₃, as the C1-Fe-P1 angle is 104.46(12)°. The Fe-C1-C5 and Fe-C1-C2 angles are 112.8(2)° and 131.0(3)°, respectively, showing that the alkylidene

is at an imperfect orientation with respect to the iron.

Structural Comparisons

 ⁵ In Table 1., a comparison of known Fe(IV) alkylidenes is given in reference to d(Fe=C) and ¹³C NMR chemical shift (δ).^{29,30} Paramagnetic derivatives are on the long side of the bond distance values, and the electronic structure analysis by Chirik *et al.*¹³ of the PDI derivatives suggests that these species are best
 ¹⁰ considered carbene radicals.³³ The π-interaction is construed as a carbene radical antiferromagnetically (AF) coupled to a metal dπelectron of appropriate symmetry. Modern calculations have not been employed on Floriani's calix[4]arane diphenycarbene complexes,¹¹ but they are high spin, and therefore likely to
 ¹⁵ conform to an AF coupling model.

Of the remaining diamagnetic complexes, some relative distances appear to be a clear consequence of the *trans*-influence. When no ligand is opposite the diphenylcarbene, the distance is short, as in the cases of (tmtaa)Fe=CPh₂ (**B**)¹⁰ and ²⁰ (TPFPP)Fe=CPh₂ (**A**).¹² As the methylimidazole adduct of the

- ²⁰ (TPFPP)Fe=CPh₂ (A).¹² As the methylimidazole adduct of the latter (i.e., (TPFPP)Fe(=CPh₂)(Melm) (A))¹² indicates, the distance is increased by 0.55 Å. It is not surprising that the complexes herein have d(Fe=C) that range from 1.809-1.899 Å, given the presence of a strong *trans*-influence ligand, an aryl.
- ²⁵ There is no straightforward correlation of d(Fe=C) to its respective ¹³C NMR spectroscopic shift.

Table 1. Comparison of Iron-alkylidene d(Fe=C) and 13 C NMR shift (δ).

30 Cmpd ^a	d(Fe=C) (Å)	δ (¹³ C=Fe)
L. L.		
$(tmtaa)Fe=CPh_2 (\mathbf{B})^b$	1.794(3)	313.2
$(TPFPP)Fe=CPh_2(A)^c$	1.767(3)	359.0
$[Cp*(dppe)Fe=CH(Me)]PF_6(E)^d$	1.787(8)	336.6
$_{35}$ [(bavp]Fe(PMe_3)_2][BAr ^F _4] (4-PMe_3)	1.809(4)	350.6
$(TPFPP)Fe(=CPh_2)(MeIm)(A)^c$	1.827(5)	385.4
$[(piap)Fe(PMe_3)_3][BAr_4^F]$ (5)	1.867(7)	352.6
$[(pipad)Fe(PMe_3)_3][BAr^{F_4}]$ (6)	1.899(3)	348.4
$(^{\text{Et}}\text{PDI})\text{Fe}=\text{CPh}_2(\mathbf{C})^e$	1.9205(19)	para
40 ($^{Me}EtPDI$)Fe=CPh ₂ (C) ^e	1.9234(18)	para
	1.9357(18)	para
$[p^{-t}Bu-calix[4](O)_2(OMe)_2]Fe=CPh_2(D)^{f}$	1.943(8)	para
$[p^{-t}Bu-calix[4](O)_2(OSiMe_3)_2]Fe=CPh_2(\mathbf{D})^f$	1.958(5)	para
	1.973(5)	para
45		

^{*a*}See Fig. 1 for ligand structural types corresponding to **A-D**. ^{*b*}Ref. 10. ^{*c*}Ref. 12. ^{*d*}Ref. 9. ^{*c*}Ref. 13. ^{*f*}Ref. 11.

Mössbauer Analysis of Fe(II) and Fe(IV) Chelates

50

- Shown in Fig. 7 are Mössbauer spectra of the related Fe(II) and Fe(IV) complexes *trans*-(pipvd)Fe(PMe₃)₂N₂ (**3**) and $[(pipad)Fe(PMe_3)_3][BAr^F_4]$ (**6**), respectively. In Table 2, all Mössbauer parameters for corresponding Fe(II) and Fe(IV)
- s5 compounds are listed. The data in Table 2 reveal isomer shifts for the diamagnetic species all within $\Delta\delta$ of 0.1 mm/s, and provide a textbook example of why they should not be simply correlated with formal oxidation state, but are strong indicators of covalency.^{34,35} "Iron-ligand bond lengths play a decisive role for
- ⁶⁰ the isomer shift of a compound",³⁵ and the data in Table 2, and Figs. 2-4 bear this out. Minimal bond distance changes occur in the protonation of (bdvp)Fe(PMe₃)₂ (1-PMe₃) to afford [(bavp]Fe(PMe₃)₂][BAr^F₄] (4-PMe₃), and similarly small d(Fe-L/X) changes are likely in the related protonations, leading to small isomer ⁶⁵ shift differences.
- One counter argument regarding interpretation of isomer shifts pertains to the somewhat arbitrary formalism of treating a

Schrock alkylidene as a (2-) ligand, whereas a Fischer carbene, in which conjugated lone pairs can donate to the carbon (i.e., 70 M=CX(R) <-> M⁽⁻⁾-C=X⁽⁺⁾(R)), is neutral. While one can argue some conjugation for **3** and **6**, the other cases are less readily interpreted in this fashion, especially given the orientation of the

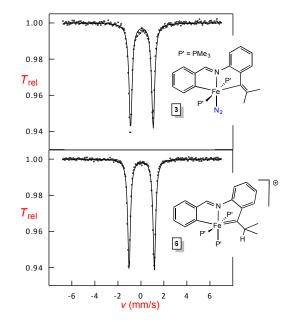


Fig. 7. Mössbauer spectra of Fe(II) *trans*-(pipvd)Fe(PMe₃)₂N₂ (**3**, $\delta = 75 \ 0.07(1) \text{ mm/s}$; $\Delta E_Q = 1.97(1) \text{ mm/s}$), and the corresponding Fe(IV) cation [(pipad)Fe(PMe₃)₃][BAr^F₄] (**6**, $\delta = 0.07(1) \text{ mm/s}$; $\Delta E_Q = 2.20(1) \text{ mm/s}$).

phenyl group of **5** as roughly orthogonal to the Fe=C interaction. There can be little question that two pairs of electrons -- one so sigma and one pi -- exist between iron and carbon in these compounds, and that the parameters of the Mössbauer spectra correlate with a strong degree of covalency. Previously characterized alkylidene species are limited to Chirik *et al.*, ¹³ whose S = 1 systems are sufficiently different to be essentially so incomparable.

 Table 2. Comparison of Fe(II) and Fe(IV) alkylidene Mössbauer parameters.

90 Cmpd	δ (mm/s)	ΔE_Q (mm/s)	Γ _{FWHM} (mm/s)
(bdvp)Fe(PMe ₃) ₂ (1-PMe ₃)	0.09(1)	1.96(1)	0.45(1)
trans-(pipp)Fe(PMe ₃) ₂ N ₂ (2) ^{a}	0.08(1)	2.14(1)	0.31(1)
trans-(pipvd)Fe(PMe ₃) ₂ N ₂ (3)	0.07(1)	1.97(1)	0.33(1)
$ \begin{array}{l} \label{eq:2.1} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.01(1)	2.67(1)	0.28(1)
	0.06(1)	2.02(1)	0.29(1)
	0.07(1)	2.20(1)	0.28(1)

¹⁰⁰ ^aSample contained 20% of a high spin Fe(II) species: $\delta = 1.23(1)$ mm/s, $\Delta E_Q = 2.40(1)$ mm/s, $\Gamma_{FWHM} = 0.73(1)$ mm/s. ^bSample contained 18% of a high spin Fe(II) species: $\delta = 1.28(1)$ mm/s, $\Delta E_Q = 2.70(1)$ mm/s, $\Gamma_{FWHM} = 0.54(1)$ mm/s. ^cSample contained 35% of a high spin Fe(II) species: $\delta = 1.25(1)$ mm/s, $\Delta E_Q = 2.42(1)$ mm/s, $\Gamma_{FWHM} = 0.51(1)$ mm/s.

105

Interpretation of the quadrupole splitting (ΔE_Q), a measure of the electric field gradient at the nucleus,³⁵ is less transparent. The changes in ligand coordination, principally PMe₃ for N₂ in the conversion of **2** and **3** to **5** and **6**, respectively, are apparently ¹¹⁰ significant enough to offset changes to the Ar-Fe(-Vy/=C) axes. For **1**-PMe₃ and **4**-PMe₃, there is a consequential change from

 $\Delta E_Q = 1.96(1)$ mm/s to 2.67(1) mm/s, as the rhombicity of the complex is notably altered due to the change from a symmetric divinyl coordination to that of the alkylidene and vinyl arrangement.

Conclusions

Protonation of Fe(II) chelate complexes in which iron-vinyl bonds are present led to the formation of four cationic Fe(IV) ¹⁰ alkylidene complexes, three of which are structurally characterized. Prior to this study, $[Cp*(dppe)Fe=CH(Me)]PF_6$ was the only non-aryl Fe(IV) alkylidene that had undergone X-

- ray structural analysis, although numerous related [CpLL'Fe=CHR]⁺ have been synthesized.^{7-9,14-16} ¹⁵ This study confers confidence in iron-vinyl protonation as a
- viable, general route to Fe(IV) alkylidenes in non-Cp systems. The compounds herein (i.e., **4**-PMe₃, **5**, **6**) were not active towards metathesis (e.g., *cis*-2-pentene, RCCR, R = Me, Ph) or cyclopronation, primarily because PMe₃ is not sufficiently labile,
- ²⁰ as expected. In order to implement this route toward viable olefin metathesis catalysts, future syntheses must address three factors: 1) complexes must be coordinatively unsaturated, with 14e species the obvious targets based on ruthenium analogues; 2) complexes must be neutral or anionic, where the d-orbitals are ²⁵ less contracted; and 3) Fe=CHR moieties must be targeted.

Experimental Section

Experimental details, full spectral characterizations, and a description of the Mössbauer spectroscopic analysis are given in the Supplemental Information. For general descriptions, consult ³⁰ the Schemes. Some crystallographic information is given below.

Crystal data for 1-PMe₃: C₂₆H₃₂N₂P₂Fe, M = 490.33, triclinic, P-1, a = 10.2138(8), b = 10.6014(8), c = 12.4208(10) Å, $\alpha = 88.674(4)^{\circ}$ $\beta = 67.062(3)^{\circ}$, $\gamma = 89.687(4)^{\circ}$, V = 1238.24(17) Å³, T = 203(2), $\lambda = 0.71073$ Å, Z = 2, $R_{int} = 0.0311$, 22420 reflections, 35 6098 independent, $R_1(\text{all data}) = 0.0663$, $wR_2 = 0.1766$, GOF =

1.077, CCDC-1057831.

Crystal data for 4-PMe₃: $C_{58}H_{45}N_2F_{24}BP_2Fe$, M = 1354.56, monoclinic, $P2_1/c$, a = 19.6517(7), b = 12.5655(4), c = 25.3645(7) Å, $\beta = 109.7450(10)^\circ$, V = 5895.1(3) Å³, T = 203(2),

 $_{40} \lambda = 0.71073$ Å, Z = 4, $R_{int} = 0.0365$, 49817 reflections, 12059 independent, R_1 (all data) = 0.0958, w $R_2 = 0.1782$, GOF = 1.012, CCDC-1057830.

Crystal data for **5**(THF): C₆₁H₆₀NOF₂₄BP₃Fe, M = 1438.67, monoclinic, C2/m, a = 19.963(5), b = 17.492(6), c = 19.586(6) Å,

⁴⁵ β = 93.869(14)°, V = 6824(4) Å³, T = 203(2), $\lambda = 0.71073$ Å, Z = 4, $R_{int} = 0.0579$, 21278 reflections, 5076 independent, R_1 (all data) = 0.0899, w $R_2 = 0.1923$, GOF = 1.155, CCDC-1057829.

Crystal data for 6: $C_{58}H_{55}NF_{24}BP_3Fe$, M = 1381.60, monoclinic, $P2_1/c$, a = 18.4232(6), b = 13.0618(4), c =

⁵⁰ 25.9802(8) Å, β = 99.5300(10)°, V = 6165.6(3) Å³, T = 233(2), λ = 0.71073 Å, Z = 4, $R_{int} = 0.0393$, 35706 reflections, 9178 independent, R_1 (all data) = 0.0780, w $R_2 = 0.1273$, GOF = 1.050, CCDC-1057828.

55 Acknowledgements

Support from the National Science Foundation (1402149), Cornell University, and Friedrich Alexander University, is gratefully acknowledged.

Notes and references

^aDepartment of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, 14850, USA. Fax: 607 255 4137; Tel: 607 65 255 7220; E-mail: ptw2@cornell.edu

^bDepartment of Chemistry & Pharmacy, Friedrich Alexander University Erlangen-Nürnberg (FAU), Egerlandstr. 1. D-91058 Erlangen, Germany † Electronic Supplementary Information (ESI) available: CCDC-1057828-31. See DOI:

- H. Jeong, J. M. John, R. R. Schrock, A. H. Hoveyda, J. Am. Chem. Soc., 2015, 137, 2239-2242.
- 2 (a) R. R. Schrock, Angew. Chem. Int. Ed., 2006, 45, 3748-3759. (b)
 R. R. Schrock, A. H. Hoveyda, Angew. Chem. Int. Ed., 2003, 42, 4592-4633.
- 3 V. M. Marx, A. H. Sullivan, M. Melaimi, S. C. Virgil, B. K. Keitz, D. S. Weinberger, G. Bertrand, R. H. Grubbs, *Angew. Chem. Int. Ed.*, 2015, 54, 1919-1923.
- 4 Grubbs, R. H., Angew. Chem. Int. Ed., 2006, 45, 3760-3765.
- 80 5 Y. Chauvin, Angew. Chem. Int. Ed., 2006, 45, 3740-3747.
- 6 O. Eisenstein, R. Hoffmann, A. R. Rossi, J. Am. Chem. Soc., 1981, 103, 5582-5584.
- 7 (a) M. Brookhart, J. R. Tucker, G. R. Husk, J. Am. Chem. Soc., 1983, 105, 258-264. (b) M. Brookhart, J. R. Tucker, J. Am. Chem. Soc., 1981, 103, 979-981. (c) M. Brookhart, D. Timmers, J. R. Tucker, G. D. Williams, G. R. Husk, H. Brunner, B. Hammer, J. Am. Chem. Soc., 1983, 105, 6721-6723.
- 8 G. Poignant, S. Nlate, V. Guerchais, A. J. Edwards, P. R. Raithby, Organometallics, 1997, 16, 124-132.
- ⁹⁰ 9 V. Mahias, S. Cron, L. Toupet, C. Lapinte, *Organometallics*, 1996, 15, 5399-5408.
- 10 A. Klose, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa, C. Rizzoli, *Chem. Commun.*, 1997, 2297-2298.
- 11 V. Esposito, E. Solari, C. Floriani, N. Re, C. Rizzoli, A. Chiesi-Villa, *Inorg. Chem.*, 2000, **39**, 2604-2613.
- 12 Y. Li, J.-S. Huang, Z.-Y. Zhou, C.-M. Che, X.-Z. You, J. Am. Chem. Soc., 2002, 124, 13185-13193.
- S. K. Russell, J. M. Hoyt, S. C. Bart, C. Milsmann, S. C. E. Stieber, S. P. Semproni, S. DeBeer, P. J. Chirik, *Chem Sci.*, 2014, 5, 1168-100 1174.
 - 14 (a) K. A. M. Kremer, G.-H. Kuo, E. J. O'Connor, P. Helquist, R. C. Kerber, *J. Am. Chem. Soc.*, 1982, **104**, 6119-6121. (b) G.-H. Kuo, P. Helquist, R. C. Kerber, *Organometallics*, 1984, **3**, 806-808.
- 15 T. Bodnar, A. R. Cutler, J. Organomet. Chem., 1981, 213, C31-C36.
- 105 16 (a) A. Davison, J. P. Selegue, J. Am. Chem. Soc., 1978, 100, 7763-7765. (b) R. D. Adams, A. Davison, J. P. Selegue, J. Am. Chem. Soc., 1979, 101, 7232-7238.
 - 17 M. I. Bruce, A. G. Swincer, Aust. J. Chem., 1980, 33, 1471-1483.
- 18 C. P. Casey, W. H. Miles, H. Tukada, J. M. O'Connor, *J. Am. Chem. Soc.*, 1982, **104**, 3761-3762.
 - 19 H. H. Karsch, Chem. Ber., 1977, 110, 2699-2711.
 - (a) G. Xu, H. Sun, X. Li, Organometallics, 2009, 28, 6090-6095. (b)
 X. Xu, J. Jia, H. Sun, Y. Liu, W. Xu, Y. Shi, D. Zhang, X. Li, Dalton Trans., 2013, 42, 3417-3428.
- 115 21 (a) R. Beck, T. Zheng, H. Sun, X. Li, U. Flörke, H.-F. Klein, J. Organomet. Chem., 2008, 693, 3471-3478. (b) S. Camadanli, R. Beck, U. Flörke, H.-F. Klein, Organometallics, 2009, 28, 2300-2310. (c) H.-F. Klein, S. Camadanli, R. Beck, D. Leukel, U. Flörke, Angew. Chem. Int. Ed., 2005, 44, 975-977. (d) H.-F. Klein, S. Camadanli, R.
 120 Beck, U. Flörke, Chem. Commun., 2005, 381-382.
 - 22 E. C. Volpe, P. T. Wolczanski, E. B. Lobkovsky, *Organometallics*, 2010, **29**, 364-377.
 - 23 E. R. Bartholomew, E. C. Volpe, P. T. Wolczanski, E. B. Lobkovsky, T. R. Cundari, J. Am. Chem. Soc., 2013, 135, 3511-3527.
- 125 24 T. Yamamori, K. Nagata, N. Ishizuka, K. Hayashi, "Utilities of Olefin Derivatives", US Patent Appl. No. 10/489,365, 2004.
 - 25 Rodrigues, N.; Bennis, K.; Vivier, D.; Pereira, V.; C. Chatelain, F.; Chapuy, E.; Deokar, H.; Busserolles, J.; Lesage, F.; Eschalier, A.; Ducki, S. *Eur. J. Med. Chem.* **2014**, *75*, 391-402.
- 130 26 G. Wolf, E.-U. Würthwein, Chemische Berichte, 1991, 124, 655-663.

- (a) C. Shi, Q. Zhang, K. K. Wang, J. Org. Chem., 1999, 64, 925-932.
 (b) H. Kusama, J. Takaya, N. Iwasawa, J. Am. Chem. Soc., 2002, 124, 11592-11593.
- 28 J. L. Crossland, D. R. Tyler, *Coord. Chem. Rev.*, 2010, **254**, 1883-5 1894.
- 29 N. Hazari, Chem. Soc. Rev., 2010, 39, 4044-4056.
- 30 M. Brookhart, B. Grant, A. F. Volpe, Jr., Organometallics, 1992, 11, 3920-3922.
- 31 J. Louie, R. H. Grubbs, Organometallics, 2002, 21, 2153-2164.
- 10 32 J. Feldman, R. R. Schrock, in *Prog. Inorg. Chem.*, Vol 39, S. J. Lippard, Ed.; Wiley and Sons: New York, 1991, pp 1-74.
 - 33 W. I. Dzik, X. P. Zhang, B. de Bruin, *Inorg. Chem.*, 2011, **50**, 9896-9903.
- 34 F. Neese, Inorg. Chim Acta, 2002, 337, 181-192.
- 15 35 P. Gütlich, E. Bill, A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications; Springer-Verlag: Berlin, 2011.

20