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Conspectus

Simulation of quantum systems promises to deliver physical and chemical predic-

tions for the frontiers of technology. In this work, we introduce a general and efficient

black box method for many-body quantum systems using technology from compressed

sensing to find compact wavefunctions without detailed knowledge of the system. No

knowledge is assumed in the structure of the problem other than correct particle statis-

tics. As an application, we use this technique to compute ground state electronic wave-

functions of hydrogen fluoride and recover 98% of the basis set correlation energy or

equivalently 99.996% of the total energy with 50 configurations out of a possible 107.

Introduction - The prediction of chemical, physical, and material properties from first

principles has long been the goal of computational scientists. The Schrödinger equation

contains the required information for this task, however its exact solution remains intractable

for all but the smallest systems, due to the exponentially growing space in which the solutions

exist. To make progress in prediction, many approximate schemes have been developed over
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the years that treat the problem in some small part of this exponential space. Some of the

more popular methods in both chemistry and physics include Hartree-Fock, approximate

density functional theory, valence bond theory, perturbation theory, coupled cluster methods,

multi-configurational methods, and more recently density matrix renormalization group.1–10

These methods have been successful in a wide array of problems due largely to the intri-

cate physics they compactly encode. For example, methods which are essentially exact and

scale only polynomially with the size of the system have been developed for one-dimensional

gapped quantum systems.11 However such structure is not always easy to identify or even

present as the size and complexity of the systems grow. For example, some biologically

important transition metal compounds as well as metal clusters lack obvious structure, and

remain intractable with current methods.12–14

The field of compressed sensing exploits a general type of structure, namely simplicity

or sparsity, which has been empirically observed and is adaptive to the problem at hand.

Recent developments in compressed sensing have revived the notion that Occam’s razor is

at work in physical systems. That is, the simplest feasible solution is often the correct

one. Compressed sensing techniques have had success in quantum simulation in the context

of localized wavefunctions15 and vibrational dynamics of quantum systems,16,17 but little

has been done to exploit the possibilities for many-body eigenstates, which are critically

important in the analysis and study of physical systems. Much work has been done on finding

sparse representations of orthogonal CI wavefuntions, with early work utilizing perturbative

selection by Harrison18 and stochastic selection by Greer and Zhang.19,20 Moreover, we note

that while this work was under review, a paper by Knowles appeared applying a penalty

function compressive sampling approach to orthogonal CI wavefunctions21 and work by

Olsen appeared highlighting the power of non-orthogonal CI wavefunctions in hard problems

such as the Chromium dimer.22 While our approach differs from these two works, they

highlight the importance of two foundational aspects, namely sparsity and flexibility in the

wavefunction ansatz.
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In this letter, we concisely describe a new methodology for finding compact ground state

eigenfunctions for quantum systems. It is a Multicomponent Adaptive Greedy Iterative

Compression (MAGIC) scheme. This method is general in that it is not restricted to a

specific ansatz or type of quantum system. It operates by expanding the wavefunction with

imaginary time evolution, while greedily compressing it with orthogonal matching pursuit.23

Matching pursuit and its variants are greedy algorithms in the standard sense, that is, at each

step they select a new optimal component without regard to the consequences this may have

on future steps. As an example application, we choose the simplest possible ansatze for quan-

tum chemistry, sums of non-orthogonal determinants, and demonstrate that extremely accu-

rate solutions are possible with very compact wavefunctions. This non-orthogonal MAGIC

scheme we refer to as NOMAGIC, and apply it to electronic wavefunctions in quantum

chemistry.

Compressed imaginary time evolution - Beginning with general quantum systems, an

N -particle eigenfunction of a quantum Hamiltonian H, |Ψ〉, may be approximated by a trial

function |Ψ̃〉 that is the sum of many-particle component functions |Φi〉, such that

|Ψ̃〉 =
Nc
∑

i

ci |Φ
i〉 (1)

where Nc is the total number of configurations in the sum and no relation need be assumed

between |Φi〉 and |Φj〉 for i 6= j. A simple example of such a component function for a

general quantum system is the tensor product of N single particle functions |φi
j〉

|Φi〉 = |φi
0〉 |φ

i
1〉 ... |φ

i
N−1〉 (2)

and we will consider its anti-symmetric counterpart in applications to electronic systems. In

this work, we define a state to be simple, sparse, or compact if the number of configurations,

Nc, required to represent a state is much smaller than the total dimension of the Hilbert

space. Note that in order for this definition to be meaningful, one must restrict the possible

3

Page 3 of 20 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Page 4 of 20RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



we mean only that no expert user input is used in the method once a physical system has

been selected. The wavefunction is built automatically through a combination of imaginary-

time evolution and compressed sensing. Imaginary-time evolution can be concisely described

as follows. Given a quantum system with a time-independent Hamiltonian H and associ-

ated eigenvectors {|χi〉}, any state of the system |Ω〉 may be expressed in terms of those

eigenvectors as

|Ω〉 =
∑

i

ci |χ
i〉 (3)

and the the evolution of the system for imaginary-time τ is given as

G |Ω〉 = e−Hτ |Ω〉 =
∑

i

cie
−Eiτ |χi〉 (4)

where E0 < E1 ≤ E2... ≤ EN−1 are the eigenenergies associated with |χi〉. By evolving

and normalizing the wavefunction, eventually one is left with only the eigenvector associated

with the lowest eigenvalue, or ground state. Excited states may be obtained with a number

of approaches including spectral transformations (e.g. H ′ = (H − λ)2 29), matrix deflation,

or other techniques. However we will concern ourselves only with ground states in this work.

Imaginary time evolution approaches may be broadly grouped into two classes. The

first class involves the explicit application of the imaginary-time propagator G to the wave-

function. This approach typically generates many configurations at every step, causing a

rapid expansion in the size of the wavefunction. As a result, these methods have almost

exclusively been restricted to Monte Carlo sampling procedures which attempt to assuage

this explosion by stochastically sampling or selecting the most important configurations,30,31

however the recently developed imaginary time-evolving block decimation also belongs to

this class, performing truncations after expansion along a virtual bond dimension.32–35 The

Path-Integral renormalization group method also uses this approach to stochastically add

non-orthogonal CI determinants, and has been applied to chemical systems such as H2.
36,37
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Our method differs from this approach in the manner in which new determinants are fit, and

the performance benefits of our method can be inferred from the data on H2 in the appendix

of this work.

The second class of imaginary-time approaches follow the evolution dictated by the ac-

tion of G projected onto the manifold spanned by linear variations in the function at the

previous time step, sometimes referred to as Galerkin or time-dependent variational methods

including imaginary time MCTDH38,39 and DMRG in some limits.35 While computationally

convenient, it is often unclear how projection onto the original linear subspace at every time

can affect evolution as compared to the exact evolution. In this work, we show that the

first class of explicit evolution can be used on any ansatz without configuration explosions

or stochastic sampling by utilizing a technique from the field of compressed sensing, namely

orthogonal matching pursuit.23,40

The algorithm we use is diagrammed in Fig 1, and proceeds iteratively as follows. The

wavefunction at time τ = 0, |Ψ(τ)〉, may be any trial wavefunction that is not orthogonal to

the desired eigenstate. We determine the wavefunction at time τ + dτ = τ ′ greedily, fitting

one configuration |Φi(τ ′)〉 at a time by maximizing the functional

∣

∣

∣
〈Φi(τ ′)|G |Ψ(τ)〉 −

∑

j<i cj(τ
′)〈Φi(τ ′)|Φj(τ ′)〉

∣

∣

∣

√

〈Φi(τ ′)|Φi(τ ′)〉
(5)

with respect to the parameters that determine |Φi(τ ′)〉. Such that after k iterations, the

wavefunction is given by

|Ψ̃(τ)〉 =
k

∑

i

ci(τ) |Φ
i(τ)〉 (6)

The coefficients in this expansion, ci(τ
′) are solved for simultaneously after each iteration by

orthogonal projection, which after simplification reduces to the following linear system for

6

Page 6 of 20RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



the coefficient vector c

Sc = v (7)

where Sij = 〈Φi(τ ′)|Φj(τ ′)〉 and vi = 〈Φi(τ ′)|G |Ψ(τ)〉. Together, the fit and orthogonal pro-

jection step is equivalent to orthogonal matching pursuit23,40 applied to the signal generated

by the imaginary time evolution of the state at each time step G |Ψ(τ)〉. The expansion-

compression procedure is advanced to the next imaginary time step either when some ac-

curacy convergence criteria is met, or when some pre-set maximum number of components

Nc is reached, and the total simulation is terminated when the wavefunction converges be-

tween imaginary-time steps. We provide additional details of the numerical procedure in the

supporting information for interested readers.

Note that one is free to choose a convenient form for the propagator G. In this work

we use the linearized propagator G ≈ (I − dτ(H − λ)), which is both easy to implement

and provably free of bias in the final result for finite single particle basis sets given some

restrictions on dτ .41 The constant shift λ can be adjusted and is taken to be the expectation

value of the energy of the previous imaginary time step in our implementation.

Orthogonal matching pursuit attempts to find the sparsest solution to the problem of

state reconstruction,23,42 and thus is ideal for keeping the number of configurations minimal

throughout the imaginary time evolution. However, while the solution is sparsest in the

limit of total reconstruction and naturally regularized against configuration collinearity, for

very severe truncations of the wavefunction, the sparsifying conditions generate a solution

which is not variationally optimal for the given number of configurations. For this reason,

we finish the computation with a total variational relaxation of the expectation value of the

energy with respect to both coefficients and states that preserves the sparsity in configuration

space. This retains both the benefits of imaginary time evolution in avoiding local energetic

minima and of variational optimality in the final solution. Note that for finite truncations
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of imaginary time evolution procedures, some local minima may still be expected, but in

practice, the authors have observed that it is far less prevalent than in purely variational

methods.

Application to electronic systems - The method we have outlined may be readily ap-

plied to any quantum system, such as spins or oscillators, however as a first application

we consider ground-state electronic wavefunctions of molecules. We will take the approach

that is conventional to the field of quantum chemistry, and solve the problem in a basis

of Gaussian-type functions.8 After a basis has been selected, there is a standard procedure

of expanding the linear state space by excitation known as configuration interaction (CI),

which can eventually yield the numerically exact solution within a basis when the full state

space has been covered. This is referred to as full configuration interaction (FCI) and is the

standard to which we compare. Moreover, we compare to truncated orthogonal CI methods

that represent a high level of accuracy while yielding an explicit wavefunctions and requir-

ing no additional machinery to evaluate the energy efficiently.8,43 Comparison to methods

considering explicit correlation beyond that covered by a specific traditional Gaussian basis,

such as explicitly correlated f12 type wavefunctions, are not yet within the scope of this

work.

In the context of our approach, the indistinguishability of electrons necessitates handling

of anti-symmetry. The simplest way to include anti-symmetry into the wavefunction is by

utilizing anti-symmetric component tensors |Φi〉. The simplest anti-symmetric component

function is the Slater determinant, such that we express the wavefunction as

|Ψ〉 =
Nc
∑

i

ci A
(

|φi
0〉 |φ

i
1〉 ... |φ

i
N−1〉

)

≡
Nc
∑

i

ci |Φ
i〉 (8)

where A is the anti-symmetrization operator and |Φi〉 are now Slater determinants with no

fixed relations between |Φi〉 and |Φj〉 for i 6= j. While this simple form lacks extensivity,44

it is attractive for other reasons. Namely the quality of description and rate of convergence
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of more determinants represents a monotonically increasing degree of accuracy, with rapid

convergence to a quantitative approximation by 32 determinants.

In Fig. 4 we select two points on the HF dissociation curve, and study the convergence

of the energy as a function of the number of determinants in the NOMAGIC method and a

traditional CI expansion with the canonical Hartree-Fock orbitals. In particular, we study

both a point near the equilibrium bond length (R = 0.93 Å) where traditional CI expansions

perform relatively well and a more stretched geometry (R = 1.73 Å) where traditional

CI expansions perform more poorly. We see that in both cases, if one considers a fixed

level of accuracy in the energy, the NOMAGIC method is considerably more compact. For

example, to achieve a level of accuracy superior to the CISDT expansion that uses 36021

determinants, NOMAGIC requires only 24 determinants at both geometries. That is, for

equivalent accuracy, the NOMAGIC wavefunction is roughly 1500 times more compact in

the space of Slater determinants. By 50 determinants out of a possible 107 in the NOMAGIC

wavefunction, we recover 98% of the basis set correlation energy or equivalently 99.996% of

the total energy. To further quantify the advantage of computationally for manipulating and

evaluating expectations values on compact NOMAGIC states, consider the cost of evaluating

the energy of a stored CISDT state and a NOMAGIC state with Nc determinants. A

NOMAGIC state with Nc determinants requires O(N2
c max(M2, N3

e )) operations to evaluate

the energy. In contrast, a CISDT state requires O(M8) operations in the standard case that

the number of basis functions M is on the same order as the number of electrons Ne. Thus

assuming Ne ∼ M there is a clear computational advantage in any case where Nc < O(M5/2)

provides a sufficiently accurate representation, as has been observed in all examples thus far.

Conclusions - In this work, we introduced a general method to find compact represen-

tations of quantum eigenfunctions by using imaginary-time evolution and compression. The

method assumes no specific structure in the problem, and thus there are minimal restrictions

on the quantum system or ansatze with which it can be attempted. The compact wavefunc-

tions that result from this methodology not only offer potential practical advantages in terms

12
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of storage and subsequent evaluation of physical observables, but can also provide a numeri-

cal upper-bound on the minimal information necessary to identify a physical quantum state,

or Kolmogorov complexity of the state. A low Kolmogorov complexity of physical quantum

states would have important ramifications for the growing belief that physical states occupy

a small physical “corner of Hilbert space”.53–55 We demonstrated the method’s practical

success in some quantum chemical systems with a small number of non-orthogonal Slater

determinants. One practical application of this method is the creation of extremely compact

trial wavefunctions for quantum Monte Carlo, which suffer little additional overhead with

the use of non-orthogonal determinants and are often limited by the size of the trial wave-

function.56,57 Finally, we believe that extensions to this method using ansatze that contain

system specific physics have the potential to be even more compact and this is subject of

current research.
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