This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
1. Introduction

Hydrogen is a promising candidate as a future clean energy carrier if it can be produced using the abundant sunlight. Photoelectrochemical (PEC) water splitting is considered a potential strategy for solar-to-hydrogen (STH) conversion, and has attracted intense attention. \(^\text{1-7}\) An ideal STH conversion device should be low-cost, environmentally safe, and efficient enough for applications on medium and large scales. \(^\text{8-11}\) Although only about 1.6–1.8 V of photopotential is prerequisite to surmount the thermodynamic and kinetic barriers of water splitting, an individual photoelectrode with high STH conversion efficiency has not been realized because large external bias is required for overall water splitting. \(^\text{12, 13}\)

Therefore, novel approaches to achieve efficient PEC water splitting without external bias are strongly desired.

One feasible approach is the combination of photoelectrodes and photovoltaic (PV) cells, which is called as PEC-PV tandem cell. \(^\text{14-23}\) This type of tandem cell can achieve relatively high efficiency but usually require complicated setups and solar cells with a high open-circuit voltage. Classic examples of such tandem cells include a crystalline p-GaInP\(_2\) photoanode and Si nanoarray photocathode. An unassisted photocurrent density of 0.6 mA cm\(^{-2}\) is theoretically possible only if the conduction band minimum of the semiconductor in a single photoelectrode may be transmitted and absorbed by the bottom electrode. In this setup, two semiconductors with smaller band gaps than that of the semiconductor in a single photoelectrode may be adopted, because each only needs to provide part of the water splitting potential. The smaller band gaps increase absorption in the visible region of the solar spectrum, which possesses the majority of the photon flux from the sun. Such a tandem cell is theoretically possible only if the conduction band minimum of the photoanode lies at lower electrochemical potential than the valence band maximum of the photocathode. Therefore, the proper selection of both semiconductor electrodes should ensure that the energy necessary for water splitting is gathered entirely from the light source, eliminating the need to apply electrical energy from an external source. In this system, water splitting potential is generated directly at the semiconductor–liquid interfaces to oxidize and reduce water. This minimizes the number of junctions used, making the device simpler and potentially cheaper.

Si is currently the leading material in the PV industry because of its vast knowledge base and manufacturing infrastructure arising from its abundance and relatively low cost. \(^\text{28-30}\) The promising photocathode performance of p-type Si (p-Si) nanoarrays with a preferred geometry may be used to produce inexpensive photoanode/photocathode tandem cells. \(^\text{31-36}\) BiVO\(_4\) is a suitable tandem partner for p-Si, because of its photoresponse up to 510 nm, high stability in neutral pH solution and relatively suitable onset of anodic photocurrent compared with other oxide photoanode materials like TiO\(_2\), performance and minimizing system complexity (i.e., device cost) must be made in any PEC system for STH conversion on a certain scale.

An alternative PEC-based approach for water splitting is to use a photocathode and a photoanode connected in series to form a p-n PEC tandem cell. \(^\text{24-27}\) In this configuration, solar photons that are not absorbed by the top electrode are transmitted and absorbed by the bottom electrode. In this setup, two semiconductors with smaller band gaps than that of the semiconductor in a single photoelectrode may be adopted, because each only needs to provide part of the water splitting potential. The smaller band gaps increase absorption in the visible region of the solar spectrum, which possesses the majority of the photon flux from the sun. Such a tandem cell is theoretically possible only if the conduction band minimum of the photoanode lies at lower electrochemical potential than the valence band maximum of the photocathode. Therefore, the proper selection of both semiconductor electrodes should ensure that the energy necessary for water splitting is gathered entirely from the light source, eliminating the need to apply electrical energy from an external source. In this system, water splitting potential is generated directly at the semiconductor–liquid interfaces to oxidize and reduce water. This minimizes the number of junctions used, making the device simpler and potentially cheaper.

Si is currently the leading material in the PV industry because of its vast knowledge base and manufacturing infrastructure arising from its abundance and relatively low cost. \(^\text{28-30}\) The promising photocathode performance of p-type Si (p-Si) nanoarrays with a preferred geometry may be used to produce inexpensive photoanode/photocathode tandem cells. \(^\text{31-36}\) BiVO\(_4\) is a suitable tandem partner for p-Si, because of its photoresponse up to 510 nm, high stability in neutral pH solution and relatively suitable onset of anodic photocurrent compared with other oxide photoanode materials like TiO\(_2\),...
Results and discussion

In a p/n PEC tandem cell, the BiVO$_4$ photoanode and Si nanoarray photocathode should be energetically matched to allow Z-scheme water splitting. Fig. 1 shows the expected electron energetics of a BiVO$_4$/Si nanoarray-based tandem cell device without external bias. The conduction band of the photocathode and the valence band of the photoanode must lie across the water reduction and oxidation potentials to overcome the required 1.23 eV. In addition, the tandem cell is theoretically possible only if the conduction band of the photoanode lies at lower electrochemical potential than the valence band of the photocathode. Next, the absorption
spectra of the two photoelectrodes should be suitably matched with solar photocurrent density. When two photoelectrodes are wired together, the operating current density is decided by the smaller photocurrent. BiVO₄ has a band gap of ~2.4 eV, which is larger than that of the Si nanoarray (~1.1 eV). Therefore, when BiVO₄ is directly exposed to AM 1.5G illumination, it can potentially absorb all solar photons with wavelength λ up to ca. 510 nm, which corresponds to a maximum possible solar photocurrent density of 7.08 mA cm⁻² (supposing that the incident photon-to-current efficiency (IPCE) is unity). If each of the photons not absorbed by BiVO₄ is incident on the photocathode surface, the p-Si nanoarray would absorb every photon with λ between 510 and 1107 nm. This corresponds to a maximum solar photocurrent density of 28.65 mA cm⁻² assuming that the IPCE is unity. Thus, when the two electrodes with the same active areas are wired together, the water splitting photocurrent of the system should correspond to the ideal case of the BiVO₄ photoanode, with a maximum value of 7.08 mA cm⁻² (STH conversion efficiency of ca. 8.7%). Although this is only an analysis of the ideal situation, the combination of BiVO₄ with Si nanoarrays is a reasonable possibility for an effective p-n tandem cell.

SEM images of a highly oriented p-Si nanoarray fabricated directly on a Si wafer by metal-catalyzed electroless etching are depicted in Fig. 2. The Si nanoarray contains congregated bundles of Si nanowires (SiNWs). The diameter of the SiNWs is in the range of 100–250 nm, and their length is about 15–20 μm. Fig. 2b shows the cross-section of a Si nanoarray in which all SiNWs are distinguishable, and most are oriented vertical to the wafer surface. The large-scale cross-section image in Fig. 2d confirms that the SiNWs are uniform over the entire wafer surface. The reason for the congregated bundles of SiNWs is that forces such as electrostatic charge and dangling bonds on the freshly formed surfaces induce mutual attraction of the SiNWs. Some scattered SiNWs are also present from cutting and loading the sample. The vertical orientation of the SiNWs is an advantage because the orthogonal directions of light absorption and minority-carrier collection mean that minority carriers only need to travel a short distance across the diameter of the SiNW before being collected at the electrode/electrolyte junction, compared with in a planar structure. This preferred geometry decreases reflection and scattering losses and allows the electrolyte to easily diffuse within the Si nanoarray, which increases the contact area between electrolyte and electrode, as well as the catalyst loading per unit area. An Mo-doped BiVO₄ photoanode was synthesized by a modified metal–organic decomposition method based on our previous work. The X-ray diffraction pattern of this BiVO₄ photoanode is presented in Fig. S1, ESI†.

Next we examine the individual (three-electrode) current density−voltage (J−V) curves of the respective photoelectrodes in the tandem cell to better estimate the expected tandem cell operating point. Cobalt-based catalyst Co-Pi was deposited on the photoanode surface to minimize the overpotential using photoassisted galvanostatic electrodeposition with a fixed current of 10 μA. The J−V curves of the BiVO₄ photoanode under simulated AM 1.5G irradiation in pH 5.5 potassium phosphate-buffered electrolyte are depicted in Fig. 3a. The Co-Pi/BiVO₄ photoanode showed a photocurrent onset at +0.3 V_RHE, and the photocurrent density was about 1.5 mA cm⁻² at +0.5 V_RHE, which is about the position of the conduction band of Si (~0.5 V_RHE). Fig. 3b shows the J−V curves of a Pt-decorated Si nanoarray photocathode exposed to light filtered through the BiVO₄ photoanode in the same electrolyte. The presence of Pt electrocatalyst in the Pt/Si nanoarray electrode shifted...
the onset potential for H₂ evolution by approximately 400 mV to ca. 0.35 V_RHE.

Comparing the J–V curves of the photoanode and photocathode provides further insight into the operation of the tandem cell. When the photoelectric properties of each electrode were measured under the same conditions (e.g., illumination, electrolyte), the operating point is where the absolute values of the (three-electrode) J–V curves for the photoanode and photocathode intersect. To find this point, we overlaid the absolute values of the J–V curve for the Si nanoarray photocathode exposed to light filtered through the BiVO₄ photoanode, as shown in Fig. 3c. The intersection point gave an operating point with a photocurrent density of 0.6 mA cm⁻² (representing an STH conversion efficiency of 0.74%) and operating voltage of +0.38 V_RHE, which is close to the equilibrium Fermi energy of +0.4 V_RHE predicted from the flat-band potentials and band-edge energies shown in Fig. 1. The similar operating voltage and onset potential of the Si nanoarray reflect the fact that the predicted tandem cell current density is determined more strongly by the photocurrent density of the BiVO₄ photoanode close to its onset potential than by that of the Si nanoarray.

This nonzero operating point indicates the possibility of unassisted solar water splitting in a two-electrode tandem cell, despite the transmission loss of photons and unfavourable onset of both photoelectrodes. And then, we assembled the photoanode and photocathode in the two-electrode system without a reference electrode (Fig. S2, ESI†). Fig. 4a reveals that the short-circuit current density J_SC is 0.46 mA cm⁻² (STH conversion efficiency of 0.57%), which is a little bit lower than the intersection point photocurrent and may originate from series resistance. The stability of the tandem cell was tested without external bias for 3.5 h, as shown in Fig. 4b. The tandem cell exhibited a transient current spike upon turning on the simulated illumination because of capacitive charging effects. After 100 s of operation, a photocurrent density of ca. 0.16 mA cm⁻² (STH conversion efficiency of 0.2%) was observed for the BiVO₄/Si nanoarray tandem cell. The cell reached a stable photocurrent density of ca. 0.12 mA cm⁻² (STH conversion efficiency of 0.15%) after 3.5 h, which was lower than the value predicted by the operating point. This suggests that a considerable loss occurs or instability exists in the tandem cell.

One of the potential losses of the cell arose from the pH gradient that developed near the electrodes, which was not considered by the intersecting point analysis. Even though the bulk electrolyte was buffered at near-neutral pH (5.5), the consumption of protons at the cathode and liberation of protons at the anode during operation of the system would drive the local pH near the electrodes to more alkaline or acidic values, which caused an additional voltage loss, E_pH. Upon rerunning the J–V analysis of the BiVO₄ photoanode and Si nanoarray photocathode after use in the tandem cell, the two electrodes showed opposite J–V behaviours (Fig. S3, ESI†). In contrast to performance degradation originating from oxidation of Si, which is often taken for granted, the photocurrent density of Si nanoarray photocathode was enhanced after the stability testing. In addition, the onset potential, which is crucial to the performance of the tandem cell, was identical to that of the electrode before the stability testing (Fig. S3b, ESI†).

To eliminate the influences of electrocatalyst and surface morphology on the PEC performance, we measured the stability and J–V properties of a bare planar p-Si electrode and bare p-Si nanoarray electrode in a three-electrode cell (Fig. S4 and S5, ESI†). After 1 h of stability testing, both of the electrodes showed improvements in the photocurrent density and the onset potential. XPS was then used to study the chemical nature of Si on the surface of electrodes (Figs. S6 and S7, ESI†). The binding energy of Si 2pₓᵧ on the surface of the electrodes before and after the stability testing showed a slight shift caused by a change of chemical environment. Group states of Si and H will shift binding energies to higher energy. Generally, each additional H atom shifts the energy of
Si 2p by $\Delta E_{en}=(0.34 \pm 0.1)$ eV. Therefore, the observed shift may indicate the presence of groups like SiH and SiH$_2$ on the surface of the Si photocathode. Surface states often act as recombination centers for photogenerated electron–hole pairs. After the stability testing, most of the surface recombination centers are eliminated. This may explain why the photocurrent of the Si electrode increases following stability testing. Additionally, in the reducing environment near the photocathode, the SiO$_2$ oxide layer might gradually corrode, which would improve the conductivity of the electrode. Regardless of the mechanism, the stability of the p-Si nanoarray does not limit the performance of the tandem cell.

In contrast, both the photocurrent and onset potential of the BiVO$_4$ electrode decreased after the stability testing. Considering the buildup of local pH gradients discussed above, we speculate that some corrosion and dissolution may occur on the electrode surface. ICP-AES was used to measure the possible dissolution of metal ions after the stability testing; the results are summarized in Tab. S1, ESI†. The amount of Bi$^{3+}$ and V$^{5+}$ in the electrolyte before and after the stability testing barely changed, but the amount of Co$^{2+}$ increased from 0.009 mg/L to 0.27 mg/L, which indicates that the catalyst corroded during the stability testing. It is well known that at low operating voltages on dark electrodes, the catalyst “repair” mechanism of Co$^{2+}$ does not occur at a sufficient rate (in our case, the operating voltage of the tandem cell was less than 0.4 V RHE), which leads to poor stability of the Co-Pi layer. The low current density and pH gradient could also accelerate catalyst dissolution. Increasing the pH of the electrolyte could somewhat ameliorate the dissolution of the Co-Pi catalyst. However, the Si nanoarray photocathode gives a better onset potential under lower pH (Fig. S8, ESI†). The trade-off between high pH to improve Co-Pi catalyst stability and low pH to minimize the photocathode onset potential presents a major challenge to realize a stable Co-Pi-catalyzed BiVO$_4$/Si nanoarray tandem cell.

4. Conclusions

In this study, we designed and fabricated a BiVO$_4$/Si nanoarray photoanode/photocathode tandem device for unassisted overall solar water splitting. Theoretically, a maximum STH conversion efficiency of 8.7% may be obtained with this promising combination in ideal case. Although the catalysts for water oxidation and reduction have been used, the low fill factor and nonideal onset-potentials of both photoelectrodes decreased the actual conversion efficiency of the device. Despite these losses, the two-electrode p-n tandem cell reached a solar photocurrent density of 0.46 mA cm$^{-2}$ with no applied bias, representing an STH conversion efficiency of 0.57%. The decay of transient photocurrents in minutes is caused by the dissolution of Co-Pi electrocatalyst as the pH of the electrolyte must give consideration to both electrodes. To increase the STH conversion efficiency, further optimization should focus on appropriate material selection to make sure that the conduction band of that photoanode lies at sufficiently lower electrochemical potential than the valence band of the photocathode to accommodate the onset-potentials of both photoelectrodes.

Acknowledgements

This work was supported by the National Basic Research Program of China (2013CB632404), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, New Century Excellent Talents in University (NCET-12-0268), and the National Natural Science Foundation of China (Nos. 21473090 and 51272102).

References