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Abstract 

The recently predicted ZrB4 with Amm2 orthorhombic structure has great 

scientific and technical significance owing to its novel B-Zr-B “sandwiches” layers 

bonding and evaluated high hardness. To better understand the performance of 

Amm2-ZrB4, its elastic and thermodynamic properties under pressure and temperature 

are studied here by taking advantage of the first principles calculations in combination 

with the quasi-harmonic Debye model. It is found that ZrB4 keeps brittleness and 

mechanical stability up to 100 GPa, possessing pronounced elastic anisotropy 

demonstrated by the elastic anisotropy factors, the direction-dependent Young’s 

modulus, shear modulus and Poisson’s ratio. The pressure and temperature 

dependences of the thermodynamics parameters including normalized volume V/V0, 

bulk modulus, specific heat, Debye temperature, thermal expansion coefficient and 

Grüneisen parameter in wide temperature (0 ~ 1000 K) and pressures (0 ~ 50 GPa) 

ranges are obtained and discussed detailedly. 

* Corresponding author: e-mail: xyzhang@ysu.edu.cn and jiaqianqin@gmail.com 
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ⅠⅠⅠⅠ....INTRODUCTION 

In recent decades, transition metal borides (TMBs) have drawn considerable 

attention as candidate (super)hard materials, and a number of them have been widely 

used in high-temperature environments, cutting tools, and hard coating owing to their 

superior properties such as high strength, high hardness, ultra-incompressibility and 

good thermal stability.1-4 Recently, novel transition metal (e.g., Fe,5-7 W8-10, and Cr,3) 

borides have been successfully synthesized under ambient or high pressure (65 GPa 

for Pnnm-FeB4, 46.2 GPa for P63/mmc-WB4 and 48 GPa for Pnnm-CrB4) and 

extensive experimental and theoretical investigations have been carried out on these 

borides, which identifies their superhardness and leads to the low-cost synthesis of 

superhard materials. For the Zr-B system, there are three identified phases (ZrB, ZrB2, 

and ZrB12) according to the phase diagram.11 The relatively high hardness of ZrB2 and 

ZrB12 naturally leads us to wonder if there are any (super)hard zirconium tetraborides. 

Inspired by such a hypothesis, our group successfully predicted two new 

orthorhombic phases of ZrB4 and estimated their hardness as 42.8 GPa and 42.6 GPa 

for Cmcm and Amm2 structure, respectively.12 Both phases exhibit an interesting 

B–Zr–B sandwiches stacking order along the c and a-axis, and the sandwiches are 

connected by strong covalent bond (B-B bond). The three-dimensional networks of 

high atomic density consequently explained the occurrence of superhardness in ZrB4. 

The two structures are similar, but we find that Amm2-ZrB4 might be more easily 

obtained due to its lower formation enthalpy. These facts stimulate us to conduct a 

detailed investigation on its fundamental properties, such as elastic constants, elastic 
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anisotropy and thermodynamic properties which are crucial to its practical 

applications and synthesis. For example, the elastic constants of a solid give important 

information concerning the nature of the forces operating in the solid13, 14 and help us 

to understand its mechanical behaviors in practical application, such as anisotropy, 

phase transformation, elastic instability, plastic deformation and fracture, precipitation, 

dislocation dynamics, crack and so on15. On the other hand, the understanding of 

thermodynamic properties of solids (such as heat capacity, thermal expansion 

coefficient, Grüneisen parameters, and Debye temperature) will be beneficial to their 

synthesis and practical applications16. Therefore, in this paper, elastic properties of 

ZrB4 coupled with thermodynamic properties at various temperatures and pressures 

are investigated systematically through the first principles calculations and 

quasi-harmonic Debye model17.  

This paper proceeds as follows: the details of the calculation methods and 

theoretical model are described in Sec. II, followed by the calculated results and 

analysis in Sec. III. Conclusions are summarized in Sec. IV. 

ⅡⅡⅡⅡ. METHODS OF CALCULATION 

The ab initio calculations were performed using density functional theory within 

the generalized gradient approximation (GGA),18 as implemented in the Vienna ab 

initio simulation package  (VASP)19. The exchange and correlation potential was 

treated by the generalized gradient approximation in the scheme of 

Perdew-Burke-Ernzerhof (PBE).20 The all-electron projector augmented wave (PAW) 

method21 was employed with a plane-wave cutoff energy of 600 eV. The k-point grid 
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in the Brillouin zone were generated using the Monkhorst-Pack scheme with the 

separation of 0.03 Å-1. The total energy convergence tests showed that convergence to 

within 1 meV/atom was achieved with the above calculation parameters. Single 

crystal elastic constants were calculated via a strain-stress approach. i.e., by applying 

a small strain to the equilibrium lattice of orthorhombic unit cell and fitting the 

dependence of the resulting change in stress on the strain. The bulk modulus, shear 

modulus, Young's modulus, and Poisson's ratio were determined by using the 

Voigt-Reuss-Hill approximation22, in which the Voigt and Reuss expressions represent 

the upper and lower limit of the polycrystalline modulus. The formulae for 

orthorhombic structure are: 

                        9/)](2[ 231312332211 ccccccBV +++++= , 

      15/)]()(3[ 231312665544332211 cccccccccGV ++−+++++= , 

)]2()2(

)2(2)2()2(/[

231323131213

122312123313332223332211

cccccc

ccccccccccccBR

−+−+

−+−−+−+∆=
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)}/1/1/1(3/)]()(
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665544231323131213
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        )2()()( 2
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The Young’s modulus E and the Poisson’s ratio υ are then calculated from the elastic 

moduli using the following relations: 
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ⅢⅢⅢⅢ. RESULTS AND DISCUSSION 

3.1 Elastic properties 
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The lately predicted crystal structure of ZrB4 is orthorhombic with space group 

Amm2, No. 38, with 20 atoms per conventional unit cell consisting of four ZrB4 f.u. in 

a unit cell, in which one Zr and three B atoms occupy the Wyckoff position 8f (0.3461, 

0.6689, 0.2655), 4c (0.8289, 0.5, 0.7469), 4e (0.5, 0.3374, 0.9792), and 4d (0, 0.3332, 

0.2486) respectively. The equilibrium lattice constants, volume per formula unit, 

density, bulk modulus and its pressure derivative are all listed in Table 1, together 

with available experimental and theoretical results of ZrB2 and ZrB12 for comparison. 

In the elastic range, due to the symmetry of the crystal, there are nine independent 

components in the elastic tensor for ZrB4, i.e., C11, C22, C33, C44, C55, C66, C12, C13 and 

C23. Elastic constants play important roles in providing a deeper insight into 

mechanical stability and stiffness of materials23. The pressure dependences of the 

elastic constants up to 100 GPa are illustrated in Fig. 1. It can be seen that all elastic 

constants increase monotonically with pressure and all Cij satisfy the well-known 

Born stability criteria24 up to 100 GPa, which indicates that ZrB4 is still mechanically 

stable at high pressure of 100 GPa.              

011 >C , 022 >C , 033 >C , 044 >C , 055 >C , 066 >C , 

( ) 02 122211 >−+ CCC , ( ) 02 133311 >−+ CCC , ( ) 02 233322 >−+ CCC ,                                                                                                              

                0222 231312332211 >+++++ CCCCCC .              (3) 

Unfortunately, there are no experimental data available for comparison present, 

therefore, our results could be a reference for future studies and applications under 

high pressures of ZrB4.  

In general, the large value of shear modulus is an indication of more pronounced 
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directional bonding between atoms, and the Poisson’s ratio is a factor that measures 

the stability of a crystal against shear and Young’s modulus provides a measure of 

stiffness of a solid. The calculated elastic constants, elastic moduli (B, G and E), 

Poisson’s ratio υ and the B/G ratio of ZrB4 under pressure are given in Table 2, along 

with the theoretical values of other transition metal tetraborides (WB4, CrB4, FeB4). It 

is shown in Table 2 that all of the B, G, E, υ and B/G increase substantially with 

pressure and the calculated bulk and shear moduli of Amm2-ZrB4 are comparable to 

those of WB4, CrB4, FeB4, indicating their strong ability to resist volume deformation. 

According to Pugh’s criterion,25 a low (high) B/G value is associated with brittleness 

(ductility), and the ductile and brittle materials are separated by the critical value 

(1.75). The B/G of ZrB4 reaches 1.47 at 100 GPa, implying that ZrB4 is a brittle and 

mechanically stable phase within the range of pressures. 

      Debye temperature θD is a fundamental parameter of a compound, which has 

close relationships with specific heat, melting temperature, and elastic constants. The 

θD can be calculated from elastic constants ( m
A

D v
M

Nn

k

h 3

1

4

3















=
ρ

π
θ ),33 which gives 

explicit information about the lattice vibrations.34 The Debye temperature of ZrB4 

under pressure is presented in Table 3, showing an increasing trend with pressure. As 

is generally known, a crystal with a larger Debye temperature corresponds to a stiffer 

characteristic. This is because the optical phonons have a higher frequency and 

therefore require greater energy to activate. Pressure typically enhances the 

interactions between atoms of a crystal and hence stiffers it, which is manifested by 

increased elastic moduli B and G. Therefore, pressure typically increases Debye 
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temperature of ZrB4 and this implies stronger interactions between atoms in the 

system. 

3.2 Elastic anisotropy 

     Elastic anisotropy is very important in diverse applications of materials, 

such as phase transformations, precipitation, dislocation dynamics and microcrack 

formation. The fundamental information about the bonding characteristics between 

adjacent atomic planes can also be obtained via the elastic anisotropy. Therefore, this 

property will be crucial for the potential hard material ZrB4. The shear anisotropy 

factors (A1, A2, A3), the universal elastic anisotropy index AU and the directional bulk 

modulus Ba, Bb and Bc are appropriate measures to quantify the extent of anisotropy.35 

The shear anisotropy factor for the { }100  shear planes between the <011> and <010> 

directions is defined as 

133311

44
1

2

4

CCC

C
A

−+
= ,                        (4) 

for the { }010  shear planes between the <101> and <001> directions is 

233322

55
2

2

4

CCC

C
A

−+
= ,                       (5) 

for the { }001  shear planes between the <110> and <010> directions is 

122211

66
3

2

4

CCC

C
A

−+
= ,                        (6) 

for the universal elastic anisotropy index A
U, defined by Ranganathan and 

Ostoja-Starzewski from the bulk modulus B and shear modulus G denoted by Voigt 

and Reuss approaches,35 is  
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65 −+=
R

V

R

VU

B

B

G

G
A ,                       (7) 

and the directional bulk modulus along different crystallographic axis can be defined 

as36 

                       ( )didPiBi =  (i = a, b, and c)                   (8) 

     Taking advantage of the formulae mentioned above, the parameters about 

elastic anisotropy (A1, A2, A3, A
U, Ba, Bb and Bc) are calculated and presented in Table 

4. In the case of isotropic crystals, A1, A2, and A3 are all equal to 1, while any 

deviation from one means the amplitude of anisotropy of the crystal. From Table 4, 

we can see that A1, A2, and A3 are larger than 1 at 0 GPa and all increase with pressure. 

The shear anisotropy results of ZrB4 indicate that the elastic anisotropy for the { }010  

shear planes between the <101> and <001> directions is more obvious than that of the 

{ }100  shear planes between the <011> and <010> directions and the { }001  shear 

planes between the <110> and <010> directions, and the value of A3 also reveals that 

ZrB4 is nearly isotropic in { }001  shear planes. Because Amm2-ZrB4 is orthorhombic, 

the shear anisotropy factors are not adequate to sufficiently describe its elastic 

anisotropy. Therefore, the universal elastic anisotropy index A
U should also be 

considered (AU is zero for isotropic crystals). In Table 4, AU is 0.09 at 0 GPa, which 

increases with increasing pressure. Meanwhile, the directional bulk modulus (Ba, Bb, 

Bc) also increases with pressure and the bulk modulus along the c-axis is larger than 

that along a-axis and b-axis at 100 GPa.  

Although the factors calculated above have already conveyed that the elastic 

properties of ZrB4 are anisotropic, it is still necessary to characterize the mechanical 
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anisotropy in a more straightforward way. The shape of the 3D curved surface is 

sphere for isotropic materials (AU = 0), but for anisotropic materials, the sphere will 

deform. The degree of deformation reflects the extent of anisotropy, and the variation 

of elastic modulus with direction can be demonstrated. Therefore the Young’s 

modulus, Shear modulus, and Poisson’s ratio along different directions in 

three-dimensional (3D) space as well as the projections in (-110) plane and (001) 

plane at pressures 0 GPa, 50 GPa and 100 GPa have been drawn to denote the elastic 

anisotropy of ZrB4 on crystallographic directions, as is shown in Fig. 2 and Fig. 3. 

The direction dependent Young’s modulus (E), Shear modulus (G) and Poisson’s ratio 

(υ) for orthorhombic crystals36, 37 can be defined respectively as: 

Young’s modulus: 

2
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Shear modulus: 
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Poisson’s ratio: 
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s

s
−=υ                                                                   (12) 

where sij is the usual elastic compliance constants, li is the direction cosines in any 
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arbitrary direction and mi is the direction cosines in perpendicular direction. From Fig. 

2, elastic anisotropy is clearly seen in ZrB4, and the greater the pressure, the more 

obvious the anisotropy. In addition, the magnitude of Young’s modulus in a specific 

direction can also be used to indicate the strength of chemical bonds in that direction. 

In Fig. 2(a), (d) and (g), the maximum of Young’s modulus is observed in <111> 

direction, and the minimum occurs in <001> direction. Because a larger Young’s 

modulus often stands for more covalent feature of a material,38, 39 we can substantiate 

that the covalent feature of the bonding in <111> direction is more dominant than 

other directions. The G is remarkably dependent on the stress direction (Fig. 2(b), (e) 

and (h)) with the highest (lowest) value in the [001] ([111]) direction, and the 

Poisson’s ratio (Fig. 2(c), (f) and (i)) has similar characteristics. Fig. 3(a) and (b) show 

the orientation dependence of E and G changing from [001] to [110] direction in (-110) 

plane and from [100] to [010] direction in (001) plane under different pressures, and 

the shape of the projections in (001) plane at 0 GPa, 50 GPa, 100 GPa is almost round, 

which illustrates that ZrB4 is nearly isotropic in (001) plane. This result is consistent 

with the shear anisotropy factor A3. Poisson’s ratio represents the negative ratio of 

transverse and longitudinal strains which plays a significant role in mechanical 

engineering design.40 The values of υ in (-110) plane varies in a very large range as 

shown in Fig. 3(c), the features of υ under 100 GPa are 0.283 < υ < 0.381 in (-110) 

plane. It means that when the stress direction is perpendicular to the (-110) plane, the 

maximum strain is noted in the [001] direction and the minimum strain in the [111] 

direction. 
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3.3 Thermodynamic properties 

The thermodynamic properties of ZrB4 at various temperatures (0 ~ 1000 K) and 

pressures (0 ~ 50 GPa) are systematically calculated. In Fig. 4, we present the 

normalized volume-pressure and bulk modulus-pressure diagram of ZrB4 at 

temperatures 0, 200, 400, 600, 800, and 1000 K, where V0 is the zero-pressure 

equilibrium volume. It is easily seen from Fig. 4 that, as pressure increases, the 

relative volume V/V0 decreases at a given temperature and the V/V0 curve becomes 

steeper with temperature increasing, which implies that ZrB4 is more easily 

compressed when temperature increases. Furthermore, it is found that the bulk 

modulus increases with pressure at a constant temperature and decreases with 

temperature at a given pressure. 

The calculated heat capacity of ZrB4 as a function of temperature (pressure) at 

given pressure (temperature) is demonstrated in Fig. 5. It is shown in Fig. 5(a) that the 

heat capacity CV fits T
3 term in their sufficiently low-temperature regions and 

approximates to absolute zero when the temperature vanishes at the given 0, 10, 20, 

30, 40, 50 GPa. This is due to the harmonic approximations of the Debye model used 

here. At intermediate temperatures, the temperature dependence of CV is dominated by 

the details of vibrations of atoms.41 At high temperatures, the calculated CV is 

expected to get close to the Dulong-Petit limit, 3nNAkB (n is the number of atoms in a 

molecule, NA is the Avogadro constant and kB is the Boltzmann constant), which is 

common to all solids at high temperatures. For ZrB4, the Dulong-Petit limit is about 

120 J/mol*K. The pressure dependence of the heat capacity for ZrB4 at 100, 200, 400, 
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600, 800 and 1000 K is presented in Fig. 5(b). It is noted that the calculated CV 

decreases with pressure at a constant temperature and increases with temperature at a 

given pressure. From Fig. 5(a) and (b), we can get that the effect of temperature on CV 

is greater than that of pressure. 

The volume thermal expansion coefficient α as a function of temperature 

(pressure) at different pressures (temperatures) is shown in Fig. 6(a) and (b). Because 

of the weak dependence of the bulk modulus on temperature and that α is proportional 

to CV (
K

CV

3

γ
α = , γ is the Gruneisen parameter, and K is the bulk modulus), the trend 

of the volume thermal expansion coefficient is similar to the heat capacity. As shown 

in Fig. 6(a), at given pressures, α increases rapidly with temperature at sufficiently 

low temperatures (α(T) ~ T
3) and gradually turns to a slow increase at high 

temperatures (T > 400 K). Additionally, it is noted in Fig. 6(b) that α decreases with 

increasing pressure at a constant temperature, and the trend slows down at high 

pressures.   

      Figure 7 shows the pressure dependence of the Debye temperature θD and 

Grüneisen parameter γ of ZrB4 at different temperatures (0, 100, 200, 400, 600, 800, 

and 1000 K). It is easily seen in Fig. 7(a) that when temperature keeps constant, 

Debye temperature increases almost linearly with increasing pressure and compared 

with pressure, the variation of θD caused by temperature is very small. Therefore, we 

can draw a conclusion that the effect of the temperature on θD is not as significant as 

that of pressure. In quasi-harmonic Debye model, Grüneisen parameter γ describes the 

anharmonic effects of the crystal lattice thermal vibration. From Fig. 7(b), we can see 
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that at fixed temperature, γ decreases sharply with pressure, and as temperature goes 

higher, γ decreases more rapidly with the increase of pressure. 

). CONCLUSION 

 In conclusion, we have focused our attention on prediction and detailed analysis 

of elastic constants, anisotropic properties, and thermodynamic properties under high 

pressures of Amm2-ZrB4 by first principles calculations in combination with the 

quasi-harmonic Debye model in this work. In the light of the Born stability criteria 

and the Pugh criterion, ZrB4 (Amm2) is mechanically stable and exhibits brittle nature 

within the scope of the studied pressure (0 ~ 100 GPa). The Debye temperature of 

ZrB4 was calculated by taking advantage of the relationship that Θ is proportional to 

the averaged sound velocity vm, and it increases with pressure. Young’s modulus, 

shear modulus and Poisson’s ratio as a function of crystal orientation have been 

systematically investigated and analyzed. ZrB4 exhibits pronounced elastic anisotropy 

and the extent increases with pressure. Furthermore, the pressure and temperature 

dependences of calculated normalized volume V/V0, bulk modulus, volume thermal 

expansion coefficient, specific heat, Debye temperature, and Grüneisen parameter 

have also been evaluated in the ranges of 0 ~ 50 GPa and 0 ~ 1000 K through 

quasi-harmonic Debye model. The results point out that pressure and temperature 

have manifest effects on these thermodynamic properties. The present study provides 

detailed and systematic information for Amm2-ZrB4, which is of fundamental 

importance for its industrial application. 
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Table 1. The calculated equilibrium lattice constants a0, b0, c0 (Å) and equilibrium 

volume per formula unit V0 (Å
3), density ρ, EOS fitted bulk modulus B0 (GPa), and its 

pressure derivative B0' for the orthorhombic ZrB4 at 0 K and 0 GPa.  

  a0 b0 c0 V0 ρ B0 B0' 

ZrB4 This work 10.3120 5.41307 3.17999 300 5.03 239a, 238b, 235c 3.84a, 3.86b, 3.90c 
ZrB2 Theo. 3.1768d -- 3.559d 31.1d -- 355d 4.2d 

 Exp. 3.170d -- 3.532d 30.74d -- 317f, 245g -- 

ZrB12 Theo. 7.415e -- -- 407.69e -- -- -- 

 Exp. 7.4077e -- -- 406.49e -- -- -- 
aVinet universal EOS26.  
bBirch-Murnaghan 3rd-order EOS27. 
cMurnaghan EOS28. 
dReference29. 
eReference30. 
fReference31. 
gReference32. 
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Table 2. The elastic constants Cij (GPa), bulk modulus B (GPa), shear modulus G 

(GPa), Young’s modulus E (GPa), Poisson’s ratio υ, the B/G ratio and the Hv of ZrB4 

under pressure. 

 P C11 C22 C33 C44 C55 C66 C12 C13 C23 B G E ν B/G 

ZrB4 0 559 578 458 233 243 262 53 118 113 239 232 528 0.134  1.03 

 10 618 625 517 256 270 283 75 146 139 275 253 581 0.149  1.09 

 20 674 681 572 278 295 301 97 173 166 311 271 631 0.162  1.15 

 30 740 750 638 297 318 324 108 194 190 346 294 687 0.169  1.18 

 40 790 801 689 314 340 339 128 221 217 379 310 731 0.179  1.22 

 50 838 849 736 330 361 353 148 249 245 412 324 770 0.188  1.27 

 60 885 896 780 345 381 366 168 275 272 443 338 808 0.196  1.31 

 70 929 940 829 359 401 378 188 302 300 475 351 845 0.204  1.35 

 80 972 984 875 372 419 389. 207 329 327 506 363 879 0.211  1.40 

 90 1016 1027 912 384 438 404 226 356 354 536 375 912. 0.217  1.43 

 100 1057 1069 954 394 455 414 246 382 381 566 385 943 0.223  1.47 

WB4
a 0 389.3  437.0 150.7   280.2 224.2  297.0 103.6   2.86 

CrB4
b 0 554 880 473 254 282 250 65 107 95 265 261   1.02 

FeB4
b 0 381 710 435 218 114 227 137 143 128 253 177   1.43 

aReference
10

 
bReference3 
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Table 3. The calculated density ρ (in g/cm3), the longitudinal, transverse and mean 

elastic wave velocity (υl, υt and υm in m/s), and the Debye temperature θD (in K) of 

ZrB4 under pressure. 

P ρ υl υt υm θD 

0 5.03 10457 6800 7457 1073 

10 5.23 10821 6952 7634 1113 
20 5.41 11150 7082 7788 1148 
30 5.58 11499 7260 7989 1189 
40 5.73 11757 7354 8100 1217 
50 5.88 11983 7426 8188 1241 

60 6.02 12188 7494 8270 1263 
70 6.15 12385 7555 8344 1283 
80 6.27 12565 7607 8407 1302 
90 6.39 12731 7658 8469 1320 
100 6.51 12883 7696 8517 1335 
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Table 4. The shear anisotropy factors A1, A2, A3 and elastic anisotropy index AU and 

the directional bulk modulus Ba, Bb and Bc of ZrB4 under pressure. 

P A1 A2 A3 A
U Ba Bb Bc 

0 1.194 1.173 1.001 0.090 742.4 786.1 655.8 

10 1.215 1.249 1.035 0.098 853.7 853.5 775.58 

20 1.234 1.280 1.038 0.099 958.3 956.7 885.98 

30 1.199 1.260 1.017 0.091 1049.9 1059.1 1002.6 

40 1.211 1.288 1.017 0.095 1144.3 1155.6 1112.1 

50 1.224 1.319 1.017 0.101 1236.3 1249.5 1222.1 

60 1.237 1.348 1.014 0.108 1325.7 1341.3 1322.2 

70 1.243 1.369 1.012 0.112 1409.8 1427.7 1438.3 

80 1.249 1.392 1.011 0.118 1492.0 1513.1 1553.2 

90 1.261 1.425 1.015 0.131 1581.1 1600.7 1646.3 

100 1.265 1.443 1.013 0.137 1660.3 1684.5 1755.1 
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Figure captions 

Fig. 1. Pressure dependence of the elastic constants (Cij) of ZrB4 at 0 K. 

Fig. 2. Direction dependence of Young’s modulus E (a), (d), (g), shear modulus G (b), 

(e), (h) and Poisson’s ratio υ (c), (f), (i) under different pressures for ZrB4, the units 

are in GPa for E and G. 

Fig. 3. The projections of Young’s modulus E (a), shear modulus G (b) and Poisson’s 

ratio υ (c) in (-110) plane and (001) plane at pressures 0 GPa, 50 GPa and 100 GPa 

respectively, the units are in GPa for E and G. 

Fig. 4. The calculated normalized volume V/V0 and bulk modulus of ZrB4 as a 

function of pressure at temperatures 0, 200, 400, 600, 800, and 1000 K. 

Fig. 5. (a) Temperature dependence of heat capacity at different pressures and (b) 

Pressure dependence of heat capacity at various temperatures. 

Fig. 6. (a) Temperature dependence of thermal expansion coefficient at different 

pressures. (b) Pressure dependence of the thermal expansion coefficient at various 

temperatures. 

Fig. 7. Debye temperature θD (a) and Grüneisen parameter γ (b) for ZrB4 as a function 

of pressure at different temperatures. 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 

Page 27 of 29 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

 

Fig. 6 

Page 28 of 29RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

 

Fig. 7 
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