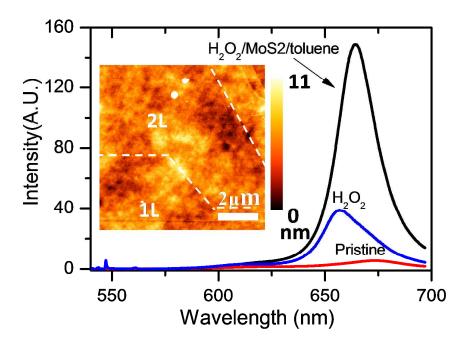


This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.


You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Enhancing photoluminescence (PL) of single layer (1L) MoS_2 is critical to its application as thinnest light-emission material. In this report, we show that the PL intensity of 1L MoS_2 can be greatly enhanced by physorbtion of H_2O_2 molecules that act as *p*-type dopants. By using toluene to form the sandwiched structure of $H_2O_2/1L-MoS_2/toluene$, the PL intensity of 1L MoS_2 can be enhanced up to 27.4 times. Our research proposes a simple but effective method to enhance the light emitting properties of 1L MoS_2 .

Tuning Photoluminescence of single-layer MoS₂ using H₂O₂

Weitao Su^{1, 2*}, Honglei Dou¹, Jinwei Li¹, Dexuan Huo^{1,*}, Ning Dai², Li Yang³ ¹Institute of Materials Physics, Hangzhou Dianzi University, 310018, Hangzhou, China ²Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 315201, Ningbo, China

³ Department of Chemistry, Xi'an Jiaotong-Liverpool University, 215123, Suzhou, China

Corresponding author: Weitao Su, <u>suweitao@hdu.edu.cn</u>; Dexuan Huo, <u>dxhuo@hdu.edu.cn</u> Telephone & Fax: +86-571-86878539

Abstract Enhancing photoluminescence (PL) of single-layer (1L) MoS_2 is critical to its application as thinnest light-emission material. In this report, we show that the PL intensity of 1L-MoS₂ can be enhanced by 8 times using physisorption of H_2O_2 molecules as *p*-type dopants. By using toluene to form the sandwiched structure of $H_2O_2/1L-MoS_2/toluene$, the PL intensity of 1L-MoS₂ can be enhanced up to 27.4 times. Our research proposes a simple but effective method to enhance the light emitting properties of 1L-MoS₂.

1. Introduction

In recent years, as the thinnest optoelectronic material, single-layer MoS₂ has drew much attention in various potential applications, such as light emitting^{1, 2}, photon-detection³⁻⁵, energy harvesting² ,etc. Bulk MoS₂ crystal is composed by periodic layers bonded together by Van der Waals force. Within each period a layer of molybdenum atoms are sandwiched between two layers of sulphur atoms⁶. When the layer number is reduced from multilayer to 1L, the band structure of MoS₂ transits from indirect (band gap~1.1eV)⁷ to direct band (band gap~2.0eV). Large band gap and high exciton binding energy (~600meV)⁸ of 1L-MoS₂ result into strong light emission in red light (620-680nm) even at room temperature⁹. However, in contrast

to other widely used rare earth compounds ^{10, 11}, the PL quantum efficiency of pristine 1L-MoS₂ is too low $(0.4\%)^6$ to meet the requirements of light emitting devices^{10, 11}. Hence various methods such as localized surface plasmon(LSP)¹² resonance and molecule doping¹³⁻¹⁵ etc., had been proposed to enhance the PL intensity and tune the band position. Doping using p-type molecules, such as H_2O^{15} , oxygen^{14, 15}, adzobenzene¹⁶, etc., allows to enhance the PL intensity of 1L-MoS₂ by up to tens of times. Theoretically, the PL enhancement using these p-type molecule is attributed to the weakened the Auger-related non-radiative recombination, which is induced by the reduced electron concentration of 1L-MoS₂ with the presence of p-type dopants¹⁵. However, although H₂O and oxygen molecules are p-type molecules^{14, 15}, adsorbtion of such molecules from ambient condition is unable to enhance the PL intensity of 1L-MoS₂¹⁴. Therefore activation process like vacuum annealing is critical to enhance PL of 1L-MoS₂ with such molecules ^{14, 15}. Using a p-type molecule with strong oxidability or good contact with MoS_2 , such as astetracyanoquino- dimethane TCNQ¹³, such activation process may be unnecessary and the preparation process of 1L-MoS₂ with high PL yield can be greatly simplified. With strong oxidability than H_2O and oxygen, H_2O_2 can be a useful p-type dopant that may effectively enhances the light emission of 1L-MoS₂ without activation process. However, to our best knowledge, few reports concerned on this topic had been published yet.

In order to obtain effective PL enhancement, the dose of H_2O_2 molecules needs to be carefully controlled due to high reactivity of H_2O_2 molecules. If the concentration of H_2O_2 is high enough to react with MoS_2 following the equation $MoS_2+7H_2O_2=MoO_3+7H_2O+2SO_2$, the lattice of 1L-MoS_2 may partially or totally react into MoO_3 and consequently the PL of 1L-MoS_2 is quenched. Therefore, low concentration of H_2O_2 molecules is desirable to maintain intact lattice of 1L-MoS_2 so that PL enhancement can be obtained. In this study, we employed two different methods, i.e. physisorption of H_2O_2 molecules on SiO_2 substrates (method I of Figure. 1) and spin-coating of H_2O_2 molecules with low concentration (method II of Figure.1). It's expected that with same concentration of H_2O_2 solutions, the dose of H_2O_2 molecules prepared by physisorption (method I) is much lower than that of spin-coating (method II). It's shown for the first time that the PL intensity of 1L-MoS_2 can be greatly enhanced by using H_2O_2 with optimized dose. Much stronger enhancement than that of $H_2O_2/1L-MoS_2/toluene$. Our research is expected to benefit 1L-MoS_2 in the application of light-emission devices with high performance.

2. Details of experiment and calculation

Two different methods, i.e. absorbtion method(method I, top panel of Figure 1) and spin-coating method (method II, bottom panel of Figure 1), were used to prepare H_2O_2 treated samples. In method I, SiO₂(300nm)/silicon substrates firstly were ultrasonically rinsed in H_2O_2 solution with different concentrations (0.3%, 3%,30%) for 10mins. Then the substrates were drained and rapidly dried at room temperature, which left a thin layer of H_2O_2 molecules adsorbed on SiO₂ surface. After mechanical exfoliation, the H_2O_2 molecules physisorbed on SiO₂ surface were

sandwiched between SiO₂ and 1L-MoS₂. In method II, MoS₂ flakes were firstly exfoliated on clean SiO₂(300nm)/Si substrates, then 10ul of H₂O₂ solutions with different concentrations of (0.3%, 3%,30%) were spin coated with spin speed of 6000-8000 rpm. Then the samples were flushed with deionized water immediately after spin-coating. In the preparation of H₂O₂/1L-MoS₂/toluene samples, H₂O₂/1L-MoS₂ samples were firstly prepared using method I, and immediately spin coated with different concentration(10⁻⁶, 10⁻⁹mol/l) of toluene/ethanol solution.

The modified 1L-MoS₂ flakes were identified using optical microscope. PL and Raman spectra were measured on a Raman spectroscopy (Senterra, Bruker) in back scattering mode. A Nd:YAG double frequency laser (532nm) was used as excitation source. An 100x objective lens with N.A.=0.9 was used for excitation and collection of PL and Raman signals. A low laser power as 0.2mW at the sample was used to avoid overheating. Gratings with 400 grooves/mm and 1200 grooves/mm were used to obtain PL and Raman spectra, respectively. Exposure time of 10s and 120s were used for PL and Raman measurements, respectively. An atomic force microscope (AFM, Agilent 5500) operated at tapping mode was used to measure topographic images of 1L-MoS₂.

The geometry optimization and electronic structure calculations of 1L-MoS₂ before and after adsorbtion of H_2O_2 molecules were performed using the self-consistent full potential linear augmented plane wave method implemented in WIEN2k code¹⁷ within the density functional theory(DFT) with a conventional exchange- correlation Perdew, Burke, and Ernzerhof (PBE) potential. In the

calculation of electronic properties, a $5 \times 5 \times 1$ super cell was used. The effect of spin-orbit coupling was considered in our calculations. The value of $K_{max} \times R_{MT} = 7.0$ was kept constant throughout our calculations, which controls the size of the basis sets in calculations. The cutoff energy was chosen as - 6.0 Ry to separate valence and core states. The convergence criteria for charge and energy were set to be 1×10^{-4} eV and 1×10^{-4} Ry during self-consistency cycles, respectively.

3. Results and discussions

AFM topography images of samples treated by method I and II are presented in Figure 2(a)-(c) and (d)-(f), respectively. Smooth surfaces (RMS(sq)<0.5nm) are found on samples treated with 0.3% of method I and 30% of method II (Figure2(a) and (f)). Nanoscale corrugates with scale and density strongly dependent on the preparation method can be found on other samples (Figure 2(b)-(e)). In phase image shown Figure 2(g), with uncertainty of 5° to -5° , the corrugates show nearly same phase as the area nearby. Therefore, most of the observed corrugates in Figure 2(c) and (d) are assigned to the ripples of MoS₂, possibly induced by biaxial compressive strain inside the H_2O_2 adsorbed 1L-MoS₂(see Raman analysis in the following section). In Figure 2(c) and (d), we also observe some tall corrugates with much higher heights than the ripples nearby. Thus, these tall corrugates in Figure 2(c) and (d) may be the adsorbates from the ambient. Note that in Figure 2(b)-(e), most of scale of ripples and adsorbates are much smaller than the size of laser focus (~800nm). Thus in the following parts of this study, the PL and Raman spectra we obtain are an average signal of corrugates within the laser focus.

Raman spectra of samples prepared using method I is shown in Figure 3(a). Two distinct Raman modes, i.e. A_{1q} at ~404 cm⁻¹(out of plane mode) and E_{2a}^{1} ~385cm⁻¹(in plane mode) can be identified for all the three samples^{18, 19}. The separation between two Raman peaks are calculated to be between 19-20cm⁻¹, which agrees with the distinct Raman feature of $1L-MoS_2^{20}$. In contrast to the Raman peaks of pristine 1L-MoS₂, blue shifts can be identified for both A_{1g} and E_{2g}^1 peaks of the 1L-MoS₂ treated with method. As proposed by Rice et al²¹, $E_{2,g}^1$ peak is much more sensitive than A_{1g} when strain is loaded on 1L-MoS₂. Blue (red) shift of E_{2g}^1 mode indicates compressive(tensile) strain²¹. Moreover, according to the AFM topographic image in Figure 2, biaxial strain rather than uniaxial strain is expected in 1L-MoS₂. The blue shift of E_{2g}^1 peak of 0.6, 1.0, 1.1cm⁻¹ for samples treated with 0.3%, 3%, 30% using method I indicates biaxial compressive strain with level of <0.2% in H_2O_2 treated 1L MOS_2^{21-24} . According to the dependence of Raman A_{1g} shift on gate-voltage measured by Chakraboty²⁵, the blue (red) shift of A_{1g} indicates p(n)-type doping. Because the blue shift of A_{1g} caused by compressive strain is negligible²⁴ with the strain level of 0.2%, the blue shift of A_{1g} peak are all attributed to p-doping behavior of H_2O_2 molecules²⁵. After compare the Raman shift to the dependence of A_{1g} shift vs gate voltage, the electron density in treated 1L-MoS₂ using method $~\rm I$ can be estimated to be $3\text{-}4\times10^{12}~\rm cm^{-2}$ using A_{1g} shift as 1.2-1.7cm^{-1 25}.

PL spectra of H_2O_2 treated 1L-MoS₂ using method I are presented in Figure 3(b). Pronounced exciton bands are assigned to *B* exciton band (~ 2 eV), A^0 exciton

(neutral exciton, ~1.89 eV) and *A*[•] exciton(trion, ~1.84 eV)²⁶. It can be found that the PL intensity of 1L-MoS₂ is greatly enhanced by optimizing the amount of adsorbed H₂O₂. By using method I with different concentrations of H₂O₂ (0.3%, 3%, 30%), the PL intensities of 1L-MoS₂ are enhanced by about 3.0, 4.69, 7.26 times, respectively. Prior to further analysis of enhancement mechanism, the influences of biaxial strain on the PL enhancement need to be discriminated as strain also affects the PL position and intensity²⁷⁻²⁹. Unlike biaxial tensile strain which enhances the PL of 1L-MoS₂²⁴, biaxial compressive strain is expected to reduce the PL intensity and induce blue shift of PL peak²⁷⁻²⁹. As indicated by Li et al, biaxial compressive strain with level of 0.2% only reduce the PL intensity by $10\%^{27, 29}$, which is much lower than the PL enhancement in our study. Therefore, the PL quenching induced by biaxial compressive strain is negligible.

The PL intensity of different excitons are also calculated and shown in Figure. 3(c). The intensity of neutral exciton is enhanced by up to 26.7 times for sample treated by 30% H₂O₂ (method I) in contrast to that of pristine 1L-MoS₂. With the enhancement of neutral excitons, the PL intensities of trions are also enhanced by up to 3.6 times. This simultaneous enhancement of neutral exciton and trion had been observed and interpreted in our previous researches^{30, 31} in which different p-type molecules are used to enhance the PL of 1L-MoS₂. In pristine 1L MoS₂, intrinsic defects such as sulphur vacancies are expected to generate mid-gap trapping states in the energy band, which further trap the carriers ^{32, 33} and induce a strong non-radiative recombination of the excitons. Like the passivation of surface defects in

quantum dots^{34, 35}, the intrinsic defects may be passivated with H₂O₂ molecules adsorbed on 1L-MoS₂³⁰. The non-radiative recombination decay may be greatly suppressed and finally result in the enhanced radiative recombination rate of different excitons and their PL intensity³⁰. Let k_{c} to be the decay rate of A^{0} to A^{-} , and k_{D} to be the decay rate of A^{0} and A^{-} to defect state(Figure 3(d)). The low PL quantum yield of pristine MoS₂ can be attributed to high k_{c} and k_{D} , both of which are ~0.5ps⁻¹³⁶. However, for H₂O₂ passivated 1L-MoS₂, k_{c} may be reduced to 0.05 ps⁻¹ - 0.1 ps⁻¹ due to p-doping of H₂O₂ molecule. The adsorbtion of H₂O₂ molecules on 1L-MoS₂ attract electrons from MoS₂ and the non-radiative recombination via Auger process, $k_{i_{-}A^{0}}$, $k_{i_{-}A^{-}}$, are also diminished¹³⁻¹⁵. Due to the passivation effect, k_{D} may also be greatly reduced below 0.02 ps⁻¹, which finally results in the simultaneous PL enhancement of neutral exciton and trion.

Beside the PL enhancement, increasing blue shifts of B, A^0 and A^- excitons are also observed with the increasing doping concentration (Figure 3(e)). For 1L-MoS₂ sample treated by 30% solution(method I), maximum blue shifts for B, A^0 and $A^$ excitons are observed as 49, 8 and 14meV. Because the thickness of the adsorbed H₂O₂ on silicon is very thin, these blue shifts of excitons can be attributed to the modification of band structure (see the following calculation of band structure for details) rather than dielectric screening³⁷.

Raman and PL spectra of samples prepared using method II are shown in Figure 3(f) and (g). For samples prepared by method II, the decrease of E_{2g}^1 shifts with different H₂O₂ concentration (Figure 3(f)) indicates compressive strain are

partially released. It's also worth to note that the PL intensity of samples prepared by method II is much lower than method I (shown in Figure 3(g)), which indicates PL quenching probably induced by over oxidation at high H_2O_2 concentration. Note that even for sample treated by 0.3% H_2O_2 using method II, the dose of adsorbed H_2O_2 is expected to be higher than the samples prepared by method I . Decreasing of PL intensity observed on samples treated with method II (3% and 30%) can be attributed to extremely high concentration of H_2O_2 , which may damage the lattice of 1-MoS₂ and finally quenches the PL intensity. Because of blue shift of A_{1g} peak is in contrary to that observed on suspended 1L MOS_2^{38} , the enhancement induced by suspending of 1L-MoS₂ is excluded. By comparing figure 3(b) to figure 3(f), we can conclude that method I is desirable to prepare samples with strong enhancement.

In order to explain the blue shift of excitons, we calculate the electronic band structure of 1L-MoS₂ before and after adsorbtion of H_2O_2 molecule. A schematic of the H_2O_2 molecules on the 1L-MoS₂ is shown in Figure 4(a). It is found that the pristine 1L-MoS₂ shows a direct band gap of 1.93 eV at K point (Figure 4(b)), which is in good agreement with reported works^{39, 40}. The structures for both valence band and conduction band of 1L-MoS₂ are not significantly altered by H_2O_2 (Figure 4(c)). Only a down shift of ~0.5eV of the whole band is observed. The band gap value is enlarged to be 1.97 eV with an increase by 40meV. This enlargement of band gap also induces blue shift of the energies of B exciton and A excitons , which agrees well with the blue shift of B excitons observed in Figure 3(e). Hence, the shift of excitons we observed in Figure 3(e) is attributed to the enlarged band structure. Two impurity

states emerge inside the band gap with the adsorbtion of H_2O_2 , namely, one occupied state 490 meV above the top of valence band, one occupied state 27meV below the bottom of conduction band. Due to the instrumental restriction, the PL of excitons trapped into these two impurity states had not been observed in this study.

After understanding the role of H_2O_2 in the enhancement of 1L MoS₂, we further investigate the PL of 1L-MoS₂ treated by H_2O_2 and toluene, i.e. a sandwiched structure of H₂O₂/1L-MoS₂/toluene. As shown by AFM topographic image of $H_2O_2/1L$ -MoS₂ treated by 10⁻⁶ mol/l toluene (Figure 5(a)), the surface of 1L-MoS₂ is fairly smooth, which agrees well with the high volatilization of toluene and also indicates low concentration of H₂O₂ molecules beneath 1L-MoS₂. Blue shift of Raman E_{2g}^{1} peak as 2.1 and 1.3 cm⁻¹ with 10⁻⁶ and 10⁻⁹ mol/l of toluene (Figure 5(b)), respectively, indicates much stronger p-doping than the samples treated only by H₂O₂. With such strong p-doping, the PL intensity of 1L-MoS₂ is massively enhanced by up to 27.4 times in contrast to that of pristine MoS_2 (Figure 5(c)). Because toluene and H_2O_2 molecules are adsorbed on separate sides of 1L-MoS₂, new p-type molecules containing –OH radicals are not likely to be formed, which excludes the PL enhancement from these new molecules. As aforementioned, H_2O_2 behaves as good molecule to passivate the defect on $1L-MoS_2$. With the presence of toluene molecule and H_2O_2 , the passivation effects may be enhanced to be even better than that obtained only with H_2O_2 molecules. From the quantum yield map (Figure 4(b)) of reference³⁰), it can be estimated that k_c and k_D are reduced to <0.005 ps⁻¹, which results in strong PL with enhancement >25 times and quantum yield >12%. Detail

calculation of band structure of $H_2O_2/1L-MoS_2/toluene$ is more complicated than $H_2O_2/1L-MoS_2$. The calculation and understanding of band perturbation is still ongoing and will be published in the future.

In summary, we show that the PL intensity of 1L-MoS₂ can be greatly enhanced up to 8 times by carefully selection the concentration and addition method of H_2O_2 molecules. The PL intensity of 1L-MoS₂ can be further enhanced by 27.4 times by using the sandwiched structure of $H_2O_2/1L-MoS_2$ /toluene. The modification of 1L-MoS₂ with H_2O_2 molecular provides much wider control of light emission than conventional electric filed gating. Our study provides a simple and effective method, which benefits the potential application of 1L-MoS₂ in new optoelectronic devices.

Acknowledgements

The authors acknowledge the financial support from Natural Sciences Foundation of China (Grant No: 61306115 and 61178039) and China Postdoctoral Science Foundation (Granted No. 2013M541807). L. Y. acknowledges the support from Jiangsu Provincial Natural Science Foundation (Grant No. BK20140405) and XJTLU research development fund Grant No. PGRS-13-01-03.

References

- R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris and M. Steiner, Nano Letters, 2013, 13, 1416-1421.
- O. Sanchez Lopez, E. A. Llado, V. Koman, A. F. Morral, A. Radenovic and K. Andras, Acs Nano, 2014, 8, 3042-3047.
- G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim and J. Hone, *Acs Nano*, 2013, 7, 7931-7936.
- 4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nature Nanotechnology,

	2011, 6 , 147-150.
5.	Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen and H. Zhang, Acs Nano, 2012, 6 , 74-80.
6.	M. Kin Fai, L. Changgu, J. Hone, S. Jie and T. F. Heinz, <i>Physical Review Letters</i> , 2010, 105 , 136805.
7.	K. K. Kam and B. A. Parkinson, Journal of Physical Chemistry, 1982, 86 , 463-467.
8.	A. Ramasubramaniam, Physical Review B, 2012, 86 , 115409.
9.	A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, CY. Chim, G. Galli and F. Wang, Nano Letters, 2010, 10 , 1271-1275.
10.	D. Chen, Z. Wan, Y. Zhou, W. Xiang, J. Zhong, M. Ding, H. Yua and Z. Ji, <i>Journal of Materials Chemistry C</i> , 2015, 3 , 3141-3149.
11.	R. Zhang, H. Lin, Y. Yu, D. Chen, J. Xu and Y. Wang, Laser & Photonics Reviews, 2014, 8 , 158-164.
12.	A. Sobhani, A. Lauchner, S. Najmaei, C. Ayala-Orozco, F. Wen, J. Lou and N. J. Halas, <i>Applied Physics Letters</i> , 2014, 104 , 031112.
13.	S. Mouri, Y. Miyauchi and K. Matsuda, Nano Letters, 2013, 13, 5944-5948.
14.	H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, p. Tan, F. Miao, X. Wang, J. Wang and Z. Ni, <i>ACS Nano</i> , 2014, 8 , 5738-5745.
15.	S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. Li, J. C. Grossman and J. Wu, Nano Letters, 2013, 13 , 2831-2836.
16.	J. Li, J. Wierzbowski, O. Ceylan, J. Klein, F. Nisic, A. Tuan Le, F. Meggendorfer, CA. Palma, C. Dragonetti, J. V. Barth, J. J. Finley and E. Margapoti, <i>Applied Physics Letters</i> , 2014, 105 , 241116.
17.	P. Blaha, ed., WIEN2k userguide, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria, 2001.
18.	C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone and S. Ryu, Acs Nano, 2010, 4, 2695-2700.
19.	A. Molina-Sanchez and L. Wirtz, Physical Review B, 2011, 84, 155413.
20.	M. Buscema, A. G. Steele, S. J. v. d. H. Zant and A. Castellanos-Gomez, Nano Research, 2014, 7, 561-571.
21.	C. Rice, R. J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil and K. S. Novoselov, <i>Physical Review B</i> , 2013, 87 , 081307.
22.	H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides and K. I. Bolotin, Nano Letters, 2013, 13 , 3626-3630.
23.	E. Scalise, M. Houssa, G. Pourtois, V. V. Afanas' ev and A. Stesmans, <i>Physica E: Low-</i> <i>dimensional Systems and Nanostructures</i> , 2014, 56 , 416-421.
24.	H. Li, A. W. Contryman, X. Qian, S. M. Ardakani, Y. Gong, X. Wang, J. M. Weisse, C. H. Lee, J. Zhao, P. M. Ajayan, J. Li, H. C. Manoharan and X. Zheng, <i>Nature Communications</i> , 2015, 6 , 7381.
25.	B. Chakraborty, A. Bera, D. V. S. Muthu, S. Bhowmick, U. V. Waghmare and A. K. Sood, <i>Physical Review B</i> , 2012, 85 , 161403.
26.	K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz and J. Shan, <i>Nature Materials</i> , 2013, 12 , 207-211.
27.	F. Li, Y. Yan, B. Han, L. Li, X. Huang, M. Yao, Y. Gong, X. Jin, B. Liu, C. Zhu, Q. Zhou and T. Cui, Nanoscale, 2015, 7 , 9075-9082.

28.	G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T.
	Heine, C. Schueller and T. Korn, 2d Materials, 2015, 2,1
29.	C. H. Li, local biaxial strain in MoS ₂ , <u>http://l17.mit.edu/</u> ~sina/2D
	/LocalBiaxialStraininMoS2_Zheng.pdf).
30.	W. Su, H. Dou, D. Huo, N. Dai and L. Yang, Chemical Physics Letters, 2015, 635, 40-44.
31.	W. Su, N. Kumar, N. Dai and D. Roy, Nano Research, 2015, paper in publishing.
32.	H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi,
	L. Sun, J. Wang and X. Wang, Nature Communications, 2013, 4, 2642.
33.	W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson and JC.
	Idrobo, Nano Letters, 2013, 13 , 2615-2622.
34.	A. Puzder, A. J. Williamson, F. Gygi and G. Galli, Physical Review Letters, 2004, 92,217401.
35.	O. Voznyy, S. M. Thon, A. H. Ip and E. H. Sargent, Journal of Physical Chemistry Letters, 2013, 4,
	987-992.
36.	H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing and L. Huang, Acs Nano,
	2013, 7 , 1072-1080.
37.	Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, YH. Lee, J. Kong, M. S. Dresselhaus and T. Palacios,
	Nano Letters, 2014, 14 , 5569-5576.
38.	N. Scheuschner, O. Ochedowski, AM. Kaulitz, R. Gillen, M. Schleberger and J. Maultzsch,
	Physical Review B, 2014, 89 , 125406.
39.	K. Dolui, I. Rungger, C. Das Pemmaraju and S. Sanvito, Physical Review B, 2013, 88, 075420.
40.	Q. Yue, Z. Shao, S. Chang and J. Li, Nanoscale Research Letters, 2013, 8, 425.

Captions of Figures

Figure 1 Schematic of H_2O_2 doping 1L-MoS₂ prepared by method I (top panel) and method II (bottom panel);

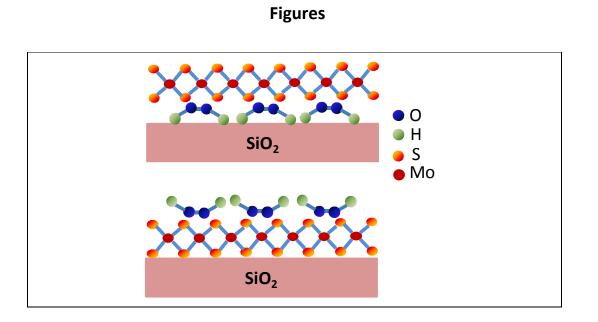

Figure 2 (a)-(c)typical AFM topographic images of sample prepared by method I using H_2O_2 with concentration of 0.3%, 3%,30%, respectively; (d)-(f) typical AFM topographic images of sample prepared by method II using H_2O_2 with concentration of 0.3%, 3%,30%, respectively; (g) Phase image obtained with topographic image of Figure 2(c), the inset shows the phase profile (most falls within $\pm 5^{\circ}$) along the dashed line, note the errors of the phase image is also $\pm 5^{\circ}$.

Figure 3 (a) Raman spectra of 1L-MoS₂ samples prepared by method I; (b) Measured and deconvoluted PL spectra of 1L-MoS₂ prepared by method I; (c) calculated intensity of neutral exciton and trion, and electron density of 1L-MoS₂ prepared by method I; (d), exciton transition in 1L-MoS₂ with defect state(D, 1.8eV) involved. In this image Γ_{A^0} Γ_{A^-} and Γ_D are radiative decay rates of neutral exciton, trion and trapped excitons, respectively. k_{A^-} and $k_{D_{A^0}}$ are decay rates of A^0 to A^- and D, respectively. $k_{D_{A^-}}$ is decay rate from A^- to $D \cdot k_{i_-A^0}$, $k_{i_-A^-}$ and k_{i_-D} are non-radiative decay rates of A^0 , A^- and trapped excitons related with carrier-phonon scattering & Auger process, respectively. (e), exciton energy of 1L-MoS₂ prepared by method I; (f) PL and (g) Raman of 1L-MoS₂ prepared by method II.

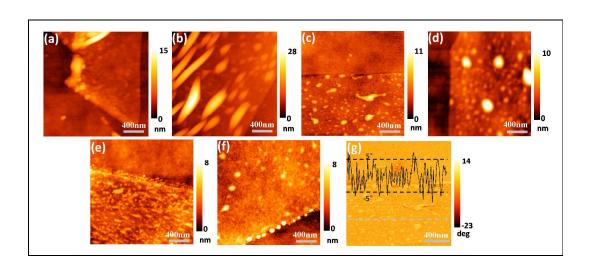

Figure 4 (a) Side view (top panel) and top view(bottom panel) supercell of MoS_2 adsorbed with a H2O2 molecule; (b) band structure diagram of a pristine 1L MoS_2 ; (c) band structure diagram of 1L-MoS2 adsorbed with a H_2O_2 molecule;

Figure 5 (a) AFM topographic image of $H_2O_2/1L$ -MoS₂/toluene with toluene of 10^{-6} mol/l; (b)

Raman and (c) PL of $H_2O_2/1L-MoS_2/toluene$ samples with different concentration of toluene.

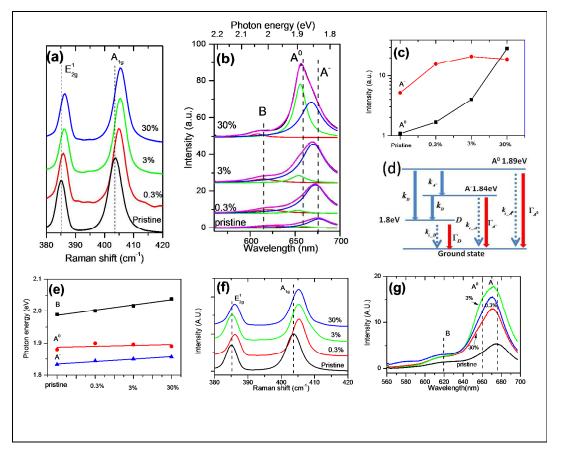


Figure 3 Su et al

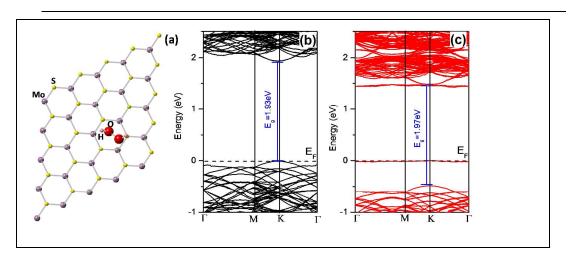


Figure 4 Su et al

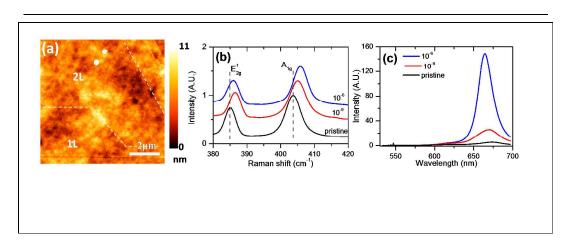


Figure 5 Su et al