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Abstract:  

In this study, we proposed a Metabolomics strategy to distinguish different 

metabolic characters of healthy controls, breast benign (BE) patients, and breast 

malignant (BC) patients by using the GC-MS and random forest method (RF). In 

current study, the serum samples from healthy controls, BE patients, and BC patients 

were characterized by using GC-MS. Then, random forest (RF) models were 

established to visually discriminate the differences among three groups’ metabolites 

profiles, and further investigate the progress of breast cancer from benign to 

malignant in patients based on these GC-MS profiles. We successfully discovered the 

differences between the healthy and breast cancer patients. And the metabolic changes 

from benign to malignant cancer were obviously visualized. The results suggested that 

combining GC-MS profiling with random forest method is a useful approach to 

analyze metabolites and to screen the potential biomarkers for exploring the serum 

metabolic profiles of breast cancer.  
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Introduction: 

Breast cancer is the most prevalent malignant disease in women worldwide and a 

major cause of female deaths
1
. In clinical research, breast cancer is a prognoses 

disease in which larger tumor size and the presence of lymph node metastasis are 

associated with worse prognoses
2
. The earlier diagnosis is one of the most important 

strategies to reduce breast cancer morbidity rate and improve the survival rate
2, 3

. In 

terms of diagnosis of breast cancer, some current methods can accurately differentiate 

malignant from normal and benign tissue by identification of malignant tissue 

characteristic
4, 5

. Routine breast cancer inspection methods including periodic 

mammography, physical examination, and blood tests
6
. Mammography always misses 

small tumor that will lead to false positives, resulting in suboptimal sensitivity and 

specificity and unnecessary biopsies. Furthermore, these conventional BC diagnostics 

techniques are always expensive and time-consuming; furthermore some patients may 

feel discomfort during diagnosis process. 

Metabolomics is an important platform for quantitative analysis of the 

metabolites in living systems and their dynamic responses to the changes of both 

endogenous and exogenous factors by using all kinds of analytical approaches, 

including Gas chromatography-mass spectrometry GC-MS
7-10

, high-resolution 

nuclear magnetic (NMR)
11-14

, ultra-performance liquid chromatography-mass 

spectrometry (UPLC-MS )
15

. Recently, the Metabolomics methods were widely used 

to monitor disease progression, and showed its advantages in various researches, such 

as diagnosis of human diseases
16

, physiological evaluations
17

, elucidation of 
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biomarkers
18, 19

, and drug toxicity
20

. The transforming process from normal to 

malignant cells is always associated with some metabolic disturbances. Therefore, 

using the metabolomics method for breast cancer research is very suitable. Some 

previous researches have demonstrated that some volatile organic metabolites could 

indicate the differences between breast cancer patients and healthy controls
6, 21

, and 

some other researchers have reported the serum concentrations of free fatty acids 

(FFAs) in patients with BC were significantly decreased compared with those in 

healthy controls
22, 23

. These researches indicated that using GC-MS metabolites 

profiles can help breast cancer diagnosis. Besides, GC-MS analysis method has some 

advantages such as, favorable stability, reproducibility, and sensitivity, and rapid 

analysis.  

Owning to the complexity of these metabolic profiles, multivariate statistical 

methods are extensively used to deal with these ‘Omics’ data. Principal component 

analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were the 

most often used method to visually represent the data information, and some other 

machine learning methods were applied in the researches more and more frequent 
24, 

25
. Random forest (RF) model, one of these machine learning methods, has its own 

characteristic advantages on dealing with complex metabolomics data. This algorithm 

has showed its advantages in dealing with these complex metabolomics data, not only 

distinguish different groups (patients and healthy), but also can help finding the 

significant changes of metabolites as a potential biomarker, as showed in our previous 

researches
26-28

. 
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Based on these reasons, we established a metabolomics strategy to distinguish 

different metabolic characters of healthy controls, breast benign patients, and breast 

malignant patients by using the GC-MS and random forest (RF). The whole 

experiment contains several steps: Firstly, the serum samples from healthy, breast 

benign patients, and breast malignant patients were profiled by using GC-MS 

analytical technique; after being pretreated, metabolites information was processed by 

using RF method; Finally, RF model can calculate the sample proximity matrix, by 

using this sample proximity matrix, not only the differences between the healthy and 

breast cancer patients were observed, but also the differences between breast benign 

patients and breast malignant patients were obviously visualized. And some 

informative metabolites or potential biomarkers have been successfully discovered by 

means of variable importance ranking in random forest program. 

2. Materials and Methods 

2.1 Samples collection 

23 breast benign patients and 30 breast malignant patients were collected from 

The Tumor Hospital of ChangDe City, Hunan Province. These patients were treated in 

this hospital, and were diagnosed by the standard methodologies 
29

. 30 healthy 

controls (who were negative for breast cancer by mammography and ultrasound 

examination) were selected from volunteers. Total of 83 samples (30 healthy, 23 

breast benign patients, and 30 breast malignant patients) were tested in current study. 

The protocol in this study was approved by the Ethics Committee at The Tumor 

Hospital of ChangDe City. 
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2.2 Serum collection and preparation 

2 mL of venous blood samples were collected in a blank tube from each 

individual at 8 o’clock in the morning after overnight fasting. After obtained the 

serum samples, the samples were kept in -80 ℃ until analysis. Serum was thawed at 

4 ℃ for 30 minutes. To the 100 µL serum samples, 350 µL methanol (including 1 

mg/mL of heptadecanoic acid/methanol as internal standard) was added and vortexed 

for 15 s, and centrifuged for 15 min (15,000 r/min, 4 ℃). Supernatant was dried by 

using N2. Then, the dried supernatant was derivatized by adding Methoxylamine/ 

pyridine (20 mg/mL) mixed for 15 s, and incubated for 1h (65 ℃), followed by 

addition of 100 µL BSTFA). All the samples were analyzed by using GC-MS at 

random order after being prepared by described procedure. 

2.3 Equipment and reagents 

Data was acquired by GC-MS using Agilent 7890A gas chromatography 

instrument coupled to a 5975C mass spectrometer (Agilent, Santa Clara, California, 

USA). Methanol (CH3OH) was purchased from Tedia Company (Fairfield, USA). 

Analytical grade heptadecanoic acid (C17:0), methoxamine, pyridine and 

Bis(trimethylsilyl)- trifluoroacetamide (BSTFA) were purchased from Sigma-Aldrich 

(St. Louis, MO, USA).  

2.4 Gas chromatography–mass spectrometry conditions 

GC separation was performed on Agilent DB-5MS equipped with a deactivated 

fused silica capillary column (0.25mm×30m×0.25µm). The oven temperature was 

maintained at 70 ℃ for 4 min, programmed to 300 ℃ (rate of 8 ℃/min), and then 
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held for 3 min. The injection volume of 1µL was used in the split ratio of 1:10. 

Helium was used as the carrier gas (flow rate of 1.0 mL/min). The mass 

spectrometery was performed using electron impact (EI) ionization source at 70 eV 

and a 0.90 kV detector voltage in 0.2 s/scan full scan. The mass spectrometer was 

operated with m/z range from 35 to 650. These analytical conditions were consistent 

to our previous researches 
26

. 

2.5 Principal component analysis (PCA) 

Principal component analysis (PCA) was used in current study to exhibit the 

cluster trend of three groups’ samples. The singular value decomposition (SVD) was 

used to transform raw variables into a set of linearly orthogonal project variables. 

These project variables contain the almost useful information in the raw signals. The 

noise signals contain in the raw signals can be eliminated during such decomposing 

process. We could obtain the scores and loading by using the SVD. The scores plot 

can be used to present the relationships among different samples. The loading values 

for each variable can be used to select the informative variables. The PCA program 

used in this study was written by MATLAB in our group.  

2.6 Random Forest 

Random forest model was established by assembling enough classification and 

regression trees
30, 31

. The mains implements of RF are based on bagging and random 

feature selection strategy. The bagging method can ensemble enough tree model in the 

training process, and two types of datasets are established, the train dataset and “out 

of bag” dataset. The “out of bag” data also called OOB samples, which can be used to 
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estimate the model precision. This OOB estimation has been proved to be unbiased. 

In each tree growing process, instead of using all the features to split at each tree node, 

RF selects only a small subset of features, which makes each tree in the forest is 

different from each other. Increasing the diversities of trees is an efficient way to 

increase the classifying and recognition ability of RF method. The detailed RF 

modeling process can be found in our previous studies 
26

.  

Here, two useful tools, the variable importance measure and proximity matrix, in 

the RF will be introduced, which have showed their advantages in the data 

interpretation and visualization. The variable importance measure can be used to 

estimate the importance of each metabolite in the model classification. This 

information can help us to find the potential biomarkers. In current study, ‘the mean 

decrease in classification’ measure was adopted. For each tree, the classification 

accuracy of the OOB samples is determined both with and without random 

permutation of the variable values one by one. The accuracy of permutation is 

subtracted from that before permutation, and then averaged over all trees in the forest 

(Calculated as Eq.1).  

Importance of j = Accuracyj normal – Accuracyj permuted    (1) 

The other attractive feature in RF algorithm is the proximity matrix calculation. 

Proximity values can indicate the similarities among all the samples. In normal 

situation, samples from the same group always fall into the same or nearby tree node. 

(This is the principle of tree method). In tree method, distance matrix was used to 

calculate the similarities of samples. In RF method, the proximity between two 
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samples was calculated as the number of times the two samples fall into the same 

terminal node of a tree, and then divided by the number of trees in the forest 
31

. After 

the proximity values are calculated, multi-dimensional scaling (MDS) plot is always 

used to visualize these analysis results. MDS is a set of related statistical techniques 

often used to visually explore similarities or dissimilarities in data
32

. We can project 

the first two or three scaling coordinates into low dimensions and obtain the clustering 

plot of all the samples.  

 

3 Results and Discussion 

3.1 Data analysis 

The typical total ion chromatograms (TICs) of serum metabolic profiles for 

healthy control (in blue line), BE (in black line), and BC (in red line) were shown in 

Fig. 1. As could be seen in Fig.1, the serum metabolites profiles of three groups were 

similar, but the concentrations of some metabolites were differences. These results 

suggested that these GC-MS profiles could represent the differences among three 

groups.  

Insert of Figure 1 

After these metabolic profiles were collected, qualitative and the quantitative 

work were carried out, mainly metabolites, including amino acid, organic acid, fatty 

acid, and carbohydrates were found in the chromatograms (Detailed results were 

listed in Table 1). Then, these metabolites data were input to some pattern recognition 

algorithms for further analysis.  
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Insert of Table 1 

Firstly, we used the principal component analysis (PCA) to present the cluster 

trends of these three groups’ samples. PCA can project the metabolites profiles into a 

lower dimensional space to visually evaluate clustering trends. The first three 

principal components, i.e., PC1, PC2 and PC3, were used to draw the scores plot 

(Fig.2) which can present the samples distribution of three groups. The total 

contribution of these three PCs accumulated to 94.59% in the total variance of the raw 

data. As visually observed, the healthy controls are significant different with the BE 

and BC groups. But the differences of BE and BC group cannot be discriminated, 

some samples from two groups are overlapped.  

Insert of Figure 2 

Therefore, in order to further classify the BE and BC patients, random forest (RF) 

method was adopted to analyze these metabolites; all the metabolites were used as 

variables for discrimination. According to the pre-set parameters, RF models were 

established. During the model training process, the samples proximities are calculated 

for each pair of cases. As similar samples always fall into the same terminal node or 

derive from the same parent node. Thus, the samples in the same group always have a 

larger similarity value than that in other group samples.  

Insert Figure 3 

To more directly and conveniently observe the patterns in the proximity matrix, 

multidimensional scaling (MDS) was employed to map the proximity into a 

lower-dimensional space. From Fig.3, a good separation between the healthy controls 
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and breast cancer patients could be observed. Furthermore, the differences between 

BC and BE patients were also emerged. These results sufficiently indicated that the 

metabolic characters among BC patients, benign patients (BE), and healthy control 

are distinction. The BE patients were located in the middle of BC patients and healthy 

controls, and they may develop and progress to malignant tissues. More detailed 

analysis for each pairs of group has been done in the following sections. 

3.2 Biomarkers screening between Healthy and BE 

In metabolomics analysis process, the general aim is to find the best combination 

of metabolites which can help explain the relevant metabolic pathway. All the 41 

compounds in healthy controls and BE patients were used as variables for 

discrimination analysis. The feature importance for each variable was showed in the 

Fig. 4. The prediction accuracy, sensitivity, and specificity for current method were 

95.65%, 100.0%, and 96.25%, respectively. 

Insert Figure 4 

Some of metabolites, such as Acetic acid, (R*,R*)-2,3-Dihydroxybutanoic acid, 

Palmitic acid, and D-(+)-lactose monohydrate, have great contributions to 

classification accuracy. (R*,R*)-2,3-Dihydroxybutanoic acid is a normal organic acid 

in human biofluids. Palmitic acid is a saturated fatty acid, may inhibit the metabolic 

actions of insulin and attenuate insulin signal transduction
33

. Moreover, there is a 

significant direct association between palmitic acid in erythrocyte and risk of breast 

cancer
34

. These metabolites could be considered as potential biomarkers for 

diagnosing the breast benign patients.  
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3.3 Biomarkers screening between Healthy and BC 

We further analyze the differences in metabolites between healthy controls and 

BC patients. The prediction accuracy, sensitivity, and specificity for healthy controls 

and BC patients were 100.0%, 96.67%, and 98.33%, respectively. And the feature 

important for each variable was showed in the Fig. 5. 

Insert Figure 5 

As could be seen from Fig.5, several metabolites were consistent with these in 

BE and healthy controls, such as, (R*,R*)-2,3-Dihydroxybutanoic acid and 

D-(+)-lactose monohydrate. Other metabolites such as D-Xylose and Galactonic acid 

were also found larger contribution for the classification. A property of many 

malignancies, including breast cancer, is constitutive upregulation of glycolysis with 

persistent glycolysis despite the present of oxygen 
35

. These metabolites represented 

with some of changes in metabolic activity of several pathways associated with breast 

cancer, including amino acid metabolism, glycolysis metabolism. Galactonic acid, is a 

sugar acid 
35

 and one of the oxidized form of D-galactose. D-Xylose is a five-carbon 

aldose that can be catabolized or metabolized into useful product by lots of organisms 

36, 37
. These means these metabolites could be considered as potential biomarkers for 

diagnosing the breast malignant patients. 

3.4 Biomarkers screening between BE and BC 

This section aims to investigate the metabolic differences between BE and BC 

patients. This could be seen from Fig.3, a good separation between BE and BC 

patients was obtained by using random forest method. In order to evaluate the 
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predictive ability of the proposed method, RF has been employed to classify BE and 

BC patients. The prediction accuracy, sensitivity, and specificity for current method 

were 93.33%, 86.96%, and 90.57%, respectively. The feature important for each 

variable was showed in the Fig. 6. 

Insert Figure 6 

As could be seen from Fig.6, three metabolites could be found as the potential 

biomarkers D-Glucose, D-(+)-lactose monohydrate, and D-Xylose. Furthermore, the 

D-Xylose is a special metabolite for BC patients, which is different with BE patients 

and healthy controls. This might be a useful potential biomarker for monitoring the 

transforming process and metabolic disturbances from benign to malignant cancer. 

These molecular biomarkers generally can provide prognostic symbols and their 

diagnostic detection is becoming increasingly important in early diagnosis of breast 

cancer.  

4. Conclusion  

The aim of our study was to comprehensively investigate the metabolic profiling 

changes of healthy control, breast benign patients, and breast malignant patients. The 

results provided that it was an efficient strategy to use GC-MS coupled with random 

forest to analyze metabolic fingerprints of the three groups. Changes between the 

healthy and breast cancer patients’ metabolic profiles were revealed. Different 

metabolites of benign and malignant cancer can be also discriminated by RF analysis. 

What is more, rapid and reliable determination of malignancy, benign cancers could 

aid the current clinical approach.  

Page 13 of 21 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



14 

 

 

Acknowledgements  

This work was supported by Scientific and Technological Research Program of Chongqing 

Municipal Education Commission (KJ1401209), and supported by program for the Changsha 

Science & Technology Bureau (K1205019-31) and Graduate Student Innovation Project of Hunan 

Province (CX2014B369).  

 

 

 

Reference: 

1. J. R. Benson, I. Jatoi, M. Keisch, F. J. Esteva, A. Makris and V. C. Jordan, The Lancet, 2009, 

373, 1463-1479. 

2. C. Oakman, L. Tenori, L. Biganzoli, L. Santarpia, S. Cappadona, C. Luchinat and A. Di Leo, 

The International Journal of Biochemistry & Cell Biology, 2011, 43, 1010-1020. 

3. V. M. Asiago, L. Z. Alvarado, N. Shanaiah, G. N. Gowda, K. Owusu-Sarfo, R. A. Ballas and D. 

Raftery, Cancer. Res., 2010, 70, 8309-8318. 

4. C. Yang, A. D. Richardson, J. W. Smith and A. Osterman, 2007. 

5. W. Lv and T. Yang, Clin. Biochem., 2012, 45, 127-133. 

6. C. Wang, B. Sun, L. Guo, X. Wang, C. Ke, S. Liu, W. Zhao, S. Luo, Z. Guo and Y. Zhang, 

Scientific reports, 2014, 4. 

7. J. H. Granger, R. Williams, E. M. Lenz, R. S. Plumb, C. L. Stumpf and I. D. Wilson, Rapid 

Communications in Mass Spectrometry, 2007, 21, 2039-2045. 

8. Q. Zhang, G. J. Wang, Y. Du, L. L. Zhu and A. Jiye, J. Chromatogr. B, 2007, 854, 20-25. 

9. K. K. Pasikanti, P. C. Ho and E. C. Y. Chan, J. Chromatogr. B, 2008, 871, 202-211. 

10. H. J. Major, R. Williams, A. J. Wilson and I. D. Wilson, Rapid Communications in Mass 

Spectrometry, 2006, 20, 3295-3302. 

11. J. C. Lindon, J. K. Nicholson and J. R. Everett, Annual Reports on Nmr Spectroscopy, Vol 38, 

1999, 38, 1-88. 

12. M. E. Bollard, E. G. Stanley, J. C. Lindon, J. K. Nicholson and E. Holmes, NMR Biomed., 

2005, 18, 143-162. 

13. S. Kochhar, D. M. Jacobs, Z. Ramadan, F. Berruex, A. Fuerhoz and L. B. Fay, Anal. Biochem., 

2006, 352, 274-281. 

Page 14 of 21RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



15 

14. E. G. Stanley, N. J. C. Bailey, M. E. Bollard, J. N. Haselden, C. J. Waterfield, E. Holmes and J. 

K. Nicholson, Anal. Biochem., 2005, 343, 195-202. 

15. R. S. Plumb, K. A. Johnson, P. Rainville, J. P. Shockcor, R. Williams, J. H. Granger and I. D. 

Wilson, Rapid Communications in Mass Spectrometry, 2006, 20, 2800-2806. 

16. C. Denkert, J. Budczies, T. Kind, W. Weichert, P. Tablack, J. Sehouli, S. Niesporek, D. 

Koensgen, M. Dietel and O. Fiehn, Cancer. Res., 2006, 66, 10795-10804. 

17. U. Lutz, R. W. Lutz and W. K. Lutz, Anal. Chem., 2006, 78, 4564-4571. 

18. S. J. Bruce, I. Tavazzi, V. Parisod, S. Rezzi, S. Kochhar and P. A. Guy, Anal. Chem., 2009, 81, 

3285-3296. 

19. M. Oldiges, S. Luetz, S. Pflug, K. Schroer, N. Stein and C. Wiendahl, Appl. Microbiol. 

Biotechnol., 2007, 76, 495-511. 

20. S. P. Sawant, A. V. Dnyanmote, M. S. Mitra, J. Chilakapati, A. Warbritton, J. R. Latendresse 

and H. M. Mehendale, J. Pharmacol. Exp. Ther., 2006, 316, 507-519. 

21. M. Phillips, J. D. Beatty, R. N. Cataneo, J. Huston, P. D. Kaplan, R. I. Lalisang, P. Lambin, M. 

B. Lobbes, M. Mundada and N. Pappas, Plos One, 2014, 9, e90226. 

22. J. Li, Y. Peng and Y. Duan, Critical reviews in oncology/hematology, 2013, 87, 28-40. 

23. Y. Zhang, L. Song, N. Liu, C. He and Z. Li, Clin. Chim. Acta, 2014, 437, 31-37. 

24. S. C. Kalhan, L. Guo, J. Edmison, S. Dasarathy, A. J. McCullough, R. W. Hanson and M. 

Milburn, Metabolism, 2011, 60, 404-413. 

25. K. Bryan, L. Brennan and P. Cunningham, BMC Bioinformatics, 2008, 9, 470. 

26. Z. Lin, C. M. Vicente Gonçalves, L. Dai, H.-m. Lu, J.-h. Huang, H. Ji, D.-s. Wang, L.-z. Yi 

and Y.-z. Liang, Anal. Chim. Acta, 2014, 827, 22-27. 

27. L. Dai, C. M. V. Gonçalves, Z. Lin, J. Huang, H. Lu, L. Yi, Y. Liang, D. Wang and D. An, 

Talanta, 2015, 135, 108-114. 

28. J.-H. Huang, R.-H. He, L.-Z. Yi, H.-L. Xie, D.-s. Cao and Y.-Z. Liang, Talanta, 2013, 110, 

1-7. 

29. S. E. Singletary, C. Allred, P. Ashley, L. W. Bassett, D. Berry, K. I. Bland, P. I. Borgen, G. 

Clark, S. B. Edge and D. F. Hayes, Journal of clinical oncology, 2002, 20, 3628-3636. 

30. L. Breiman, Mach. Learn., 2001, 45, 5-32. 

31. J.-H. Huang, J. Yan, Q.-H. Wu, M. Duarte Ferro, L.-Z. Yi, H.-M. Lu, Q.-S. Xu and Y.-Z. Liang, 

Talanta, 2013, 117, 549-555. 

32. H. Klock and J. M. Buhmann, Pattern Recognit., 2000, 33, 651-669. 

33. M. W. Ruddock, A. Stein, E. Landaker, J. Park, R. C. Cooksey, D. McClain and M.-E. Patti, J. 

Biochem., 2008, 144, 599-607. 

34. J. Shannon, I. B. King, R. Moshofsky, J. W. Lampe, D. L. Gao, R. M. Ray and D. B. Thomas, 

The American journal of clinical nutrition, 2007, 85, 1090-1097. 

35. Y. S. Chan and T. B. Ng, Plos One, 2013, 8, e54212. 

36. Y.-K. Qiu, D.-Q. Dou, L.-P. Cai, H.-P. Jiang, T.-G. Kang, B.-Y. Yang, H.-X. Kuang and M. Z. 

Li, Fitoterapia, 2009, 80, 219-222. 

37. G. Parrilli, R. V. Iaffaioli, M. Martorano, R. Cuomo, S. Tafuto, M. G. Zampino, G. Budillon 

and A. R. Bianco, Cancer. Res., 1989, 49, 3689-3691. 

 

 

 

Page 15 of 21 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



16 

Table List: 

 

Table 1 The metabolites quantitative results for healthy controls, breast benign (BE) 

patients, and breast malignant (BC) patients. 

 

Figure Captions: 

Figure 1 The typical total ion chromatograms (TICs) of healthy control (in blue line), 

BE (in black line), and BC (in red line). 

 

Figure 2 The first three principal components from PCA scores plot of serum profiles 

for healthy, BE and BC samples. 

 

Figure 3 The MDS plot for serum profiles for healthy, BE and BC samples. 

 

Figure 4 The variable importance measures of healthy controls and BE samples 

obtained by RF models. 

 

Figure 5 The variable importance measures of healthy controls and BC samples 

obtained by RF models. 

 

Figure 6 The variable importance measures of BC and BE samples obtained by RF 

models. 
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Table 1. Qualitative and quantitative metabolic profiles of three groups’ samples. 

id tr
a (min) endogenous metabolites BC group Be group Healthy 

1 5.922 Ethylbis(trimethylsilyl)amine 0.2456±0.0705 0.1905±0.0567 0.1958±0.0551 

2 6.593 Ethylene glycol 0.0182±0.0020 0.0530±0.0428 0.0746±0.0626 

3 6.608 N,N-diethylacetamide 0.0120±0.0060 0.0220±0.0325 0.0227±0.0302 

4 6.84 N,N-diethyl-Acetamide  0.0657±0.0087 0.0476±0.0202 0.0557±0.0107 

5 7.716 Lactic acid *  0.0872±0.0374 0.0952±0.0592 0.1482±0.2155 

6 7.934 Acetic acid 0.0629±0.0140 0.0856±0.0333 0.0412±0.0403 

7 10.01 phosphate 3.1278±1.0173 1.4730±0.7381 1.3767±1.0361 

8 10.2 l-Threonine 0.0173±0.0098 0.0108±0.0068 0.0096±0.0065 

9 10.297 Acetic acid, phenyl- 0.0047±0.0023 0.0159±0.0133 0.0147±0.0117 

10 10.382 Succinic acid * 0.0811±0.0429 0.0098±0.0131 0.0119±0.0086 

11 10.447 
[1,2-phenylenebis(oxy)]bis[tri

methyl- 
0.0120±0.0072 0.0078±0.0047 0.0067±0.0039 

12 10.503 Glyceric acid  0.0961±0.0266 0.0400±0.0282 0.0183±0.0167 

13 10.723 
(R*,R*)-2,3-Dihydroxybutano

ic acid 
0.0267±0.0053 0.0137±0.0014 0.0053±0.0029 

14 11.357 
2,4-bis[(trimethylsilyl)oxy]- 

Butanoic acid 
0.0147±0.0051 0.0055±0.0030 0.0066±0.0047 

15 11.583 
(R*,S*)-3,4-Dihydroxybutano

ic acid 
0.0304±0.0098 0.0132±0.0064 0.0178±0.0107 

16 11.797 N-(1-oxobutyl)- Glycine 0.0653±0.0244 0.0319±0.0186 0.0274±0.0151 

17 12.341 Isovaleroglycine 0.0356±0.0134 0.0160±0.0079 0.0107±0.0073 

18 12.483 D- Threitol 0.0214±0.0073 0.0290±0.0130 0.0251±0.0151 

19 12.645 N-Crotonylglycine 0.0640±0.0146 0.0207±0.0129 0.0148±0.0099 

20 14.53 N-(1-oxohexyl)-glycine 0.0160±0.0072 0.0121±0.0073 0.0132±0.0081 

21 14.713 d-Xylose 0.0208±0.0075 0.0082±0.0044 0.0093±0.0063 

22 
14.823, 

15.057 
d-Ribose 0.0126±0.0070 0.0152±0.0042 0.0250±0.0110 

23 
15.509, 

15.733 
Arabitol 0.0487±0.0364 0.0283±0.0179 0.0278±0.0215 

24 16.023 

D-Galactose, 

6-deoxy-2,3,4,5-tetrakis-O-(tri

methylsilyl)- 

0.0336±0.0083 0.0177±0.0100 0.0149±0.0104 

25 16.087 Mannonic acid 0.0505±0.0177 0.0211±0.0143 0.0168±0.0138 

26 16.2 cis-Aconitic acid* 0.0435±0.0388 0.0105±0.0079 0.0168±0.0147 

27 16.357 Phosphoric acid 0.0414±0.0252 0.0230±0.0141 0.0212±0.0168 

28 17.177 Isocitric acid* 0.0464±0.0121 0.0340±0.0093 0.0448±0.0838 

29 17.563 Hippuric acid 0.0270±0.0126 0.0180±0.0104 0.0156±0.0116 

30 17.85, D-Fructose* 0.0712±0.0586 0.0471±0.0145 0.0580±0.1031 
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17.96 

31 18.087 d-Galactose* 0.0796±0.0214 0.0455±0.0272 0.0389±0.0287 

32 
18.197, 

18.147 
d-Glucose* 0.2785±0.0918 0.1741±0.7354 0.1859±0.4136 

33 18.507 Altronic acid 0.0202±0.0069 0.0185±0.0100 0.0102±0.0074 

34 
18.577, 

18.65 
D-Sorbitol* 0.0259±0.0169 0.0254±0.0187 0.0300±0.0275 

35 
18.983, 

19.533 
Galactonic acid 0.1213±0.0482 0.0817±0.0328 0.0441±0.0351 

36 19.99 Palmitic acid 0.0127±0.0017 0.0148±0.0029 0.0071±0.0025 

37 20.403 Myo-Inositol 0.0247±0.0128 0.0197±0.0037 0.0334±0.0129 

38 25.465 D-Turanose  0.0216±0.0138 0.0197±0.0190 0.0510±0.1099 

39 28.125 D-（+）-lactose monohydrate* 0.8475±0.1366 1.0400±0.3349 0.6559±0.2286 

40 29.927 Lactose 0.0142±0.0043 0.0143±0.0075 0.0190±0.0163 

41 35.223 Cholesterol* 0.0107±0.0038 0.0101±0.0021 0.0107±0.0034 

*: Identified by standard substances 

a: Retention time; 
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Figure 1: 
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Figure 3: 
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Figure 5: 
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