RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

REVIEW

Metal-free domino one-pot protocols for quinoline synthesis[†]

Jaideep B. Bharate,^{ab} Ram A. Vishwakarma,^{ab}* Sandip B. Bharate^{ab}*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

- 5 Quinoline is one of the most widely investigated scaffold by synthetic chemists because of its medicinal importance. The wide range of metal-catalyzed, metal-free, multi-step or domino one-pot protocols are reported in literature for construction of this scaffold. Several reviews appeared on 10 synthetic aspects of this scaffold, however there is no focused review on metal-free domino one-pot protocols. Domino onepot protocols offer an opportunity to access highly functionalized final products from simple starting materials. Because of this unique feature of domino protocols, in recent
- 15 years their utility for generation of molecular libraries has been widely appreciated. In this review, all contributions till March 2015 are surveyed with particular emphasis on metalfree domino reactions for quinoline ring construction and are discussed herein along with mechanistic aspects.

20 1. Introduction

Quinoline (1-aza-napthalene or benzo[b]pyridine) is a weak tertiary base. It was first extracted from coal tar in 1834 by Friedlieb Ferdinand Runge and this source still remains the principal source of commercial quinoline. This scaffold has found

- 25 many applications in diverse chemical domains. This scaffold has wide occurrence among natural products (alkaloids)¹ and is a key structural component of several pharmaceuticals, agrochemicals, dyestuffs, and materials. In coordination chemistry, quinolines are used to chelate metallic ions as N-donor ligands.² The 30 quinoline scaffold has been reported to possess diverse range of pharmacological activities³⁻¹⁴ including antiprotozoal,¹⁵⁻²⁰ antitubercular,^{21, 22} anticancer,^{4, 23, 24} antipsychotics,²⁵ antiinflammatory,^{26, 27} antioxidant,³ anti-HIV,²⁸ antifungal,²⁹ as efflux pump inhibitors,³⁰ and for treatment of neurodegenerative ³⁵ diseases, ¹⁹ and treatment of lupus, ³¹ etc.

The well known antimalarial natural products quinine and quinidine alkaloids isolated from Cinchona bark comprises quinoline scaffold.^{32, 33} Camptothecin is a quinoline alkaloid discovered in 1966 by Wall and Wani through systematic 40 screening of natural products for anticancer drugs. Two

Fax: +91-191- 2586333: Tel: +91-191- 2585006

camptothecin analogues namely topotecan and irinotecan have been approved for clinical use for cancer chemotherapy,³⁴ and another analog exatecan is under clinical studies. A fused quinoline natural product mappicine ketone is an antiviral lead 45 compound with selective activities against herpes viruses HSV-1 and HSV-2 and human cytomegalovirus (HCMV).³⁵ A fused quinoline alkaloid cryptolepine isolated from Cryptolepis sp. is an antimalarial natural product possessing cytotoxic properties.36 Its structural isomers isocrytolepine and neocryptolepine also 50 possesses antimalarial activity.37 The chemical structures of quinoline class of natural products are shown in Figure 1.

Figure 1. Structures of quinoline ring containing natural products and their analogs

Quinoline is also part of several clinically used drugs, where their major occurrence is among antimalarial drugs. The aminoquinoline scaffold has been a backbone of antimalarial drugs since 1940s. In this class, chloroquine was the first drug 60 discovered in 1934 by Hans Andersag and coworkers at the Bayer laboratories.³⁸ With the emergence of resistance to chloroquine, a series of its analogs (e.g. amodiaquine, primaquine, mefloquine, tafenoquine, bulaquine, NPC-1161B, AQ-13, IAAQ) were discovered. Other antimalarial quinolines include piperaquine and 65 pyronaridine. Quinoline has also been a part of drugs used for other diseases. This includes fluoroquinolone antibiotic ciprofloxacin (and its analogs), pitavastatin (cholesterol lowering agent), lenvatinib (kinase inhibitor for cancer) and its other structural analogs (such as carbozantinib, bosutinib), tipifarnib 70 (farnesyl transferase inhibitor for leukemia), saguinavir (antiretroviral), bedaguiline (anti-TB), etc. The 2-(2fluorophenyl)-6,7-methylenedioxy quinolin-4-one monosodium phosphate (CHM-1-P-Na) is a preclinical anticancer agent, showing excellent antitumor activity in a SKOV-3 xenograft nude 75 mice model.^{39, 40} The chemical structures of above discussed

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India. *E-mail: <u>sbharate@iiim.ac.in;</u> <u>ram@iiim.ac.in</u> [†]IIIM Publication number IIIM/xxxxx/2015

representative quinoline based drugs are shown in Figure 2a. Several quinoline based compounds showed inhibition of kinases involved in cancer progression.⁴ The chemical structures of representative kinase inhibitors are shown in Figure 2b.

Figure 2. Chemical structures of (a) quinoline containing drugs and clinical candidates; and (b) quinoline-based kinase inhibitors

- As a consequence of their tremendous biological importance, ¹⁰ chemists have developed a plethora of methods to elaborate this structure, and most of them have been compiled in a series of reviews.^{41.47} Recently, Patel's group (2014)⁴¹ have reviewed advances in the synthesis of quinolines, which covered very broadly various reports on quinoline synthesis and cited 57 ¹⁵ references. Koorbanally's group (2014)⁴² have reviewed synthesis and anti-cancer activity of 2-substituted quinolines. Nammalwar and Bunce (2014)⁴⁵ have reviewed recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions. Alam's group ²⁰ (2013)⁴⁷ have briefly discussed various synthetic and biological aspects of this scaffold and cited total of 75 references. Hussanin *et al* (2012)⁴⁴ reviewed synthesis and chemical reactivity of
- pyrano[3,2-c]quinolinones. Mekheimer *et al* (2012)⁴⁶ reviewed recent developments in the chemistry of pyrazolo[4,3-²⁵ c]quinolines. Barluenga *et al* (2009)⁴³ reviewed advances in the synthesis of indole and quinoline derivatives through cascade
- reactions and cited total of 46 references.

Despite of the fact that large number of metal-free domino onepot protocols for quinoline synthesis have been published; this ³⁰ has never been reviewed. The metal-free domino protocols provide rapid access to structural diversity, and metal-free nature

of the reaction makes these protocols environmentally friendly. Therefore, a critical review on such protocols for synthesis of this medicinally important scaffold is highly desirable. The present

³⁵ review provides a comprehensive compilation of synthetic approaches involving specifically metal-free one-pot domino and

multicomponent reactions (MCRs) for quinolines and related fused skeletons.

2. Classical methods for quinoline synthesis

⁴⁰ There exist several classical methods (name reactions) for synthesis of quinolines. Most of the methods involve simple arylamines as starting materials. The 'name reactions' involving arylamines as one of the starting material includes: (a) Combes quinoline synthesis (from anilines and β-diketones); (b) Skraup
⁴⁵ synthesis (from ferrous sulfate, glycerol, aniline, nitrobenzene, and sulfuric acid); (c) Conrad-Limpach synthesis (from anilines and β-ketoesters); (d) Povarov reaction (from aniline, benzaldehyde and an activated alkene); (e) Doebner reaction (from anilines, aldehyde and pyruvic acid); (f) Doebner-Miller
⁵⁰ reaction (from anilines and α,β-unsaturated carbonyl compounds); (g) Gould-Jacobs reaction (from aniline and ethyl ethoxymethylene malonate); and (h) Reihm synthesis (from aniline and acetone).

- A number of other name reactions exists, which require specifically substituted anilines or related substrates. These includes: (i) Knorr quinoline synthesis (from β-ketoanilide and sulfuric acid); (j) Pfitzinger reaction (from an isatin with base and a carbonyl compound); (k) Friedländer synthesis (from 2aminobenzaldehyde and carbonyl compounds); (l) Niementowski 60 quinoline synthesis (from anthranilic acid and carbonyl compounds); (m) Meth-Cohn synthesis (from acylanilides and DMF/POCl₃); and (n) Camps quinoline synthesis (from an oacylaminoacetophenone and hydroxide). The synthetic schemes of these classical methods are summarized in Figure 3.
- ⁶⁵ Despite of the availability of several classical methods for quinoline synthesis, extensive efforts have been made on the development of new metal-free domino protocols for preparation of quinolines, which are described in this review.

⁷⁰ 3. Metal-free domino one-pot or multicomponent protocols for synthesis of quinolines and related quinoline fused heterocycles

Development of domino reactions for the concise construction of diverse heterocyclic architectures is of a tremendous importance 75 in synthetic organic and medicinal chemistry.⁴⁸ Extensive amount of efforts have been made in this area towards development of domino one-pot protocols or multicomponent reactions (MCRs) for construction of heterocycles.⁴⁹⁻⁵⁸ Few specific reviews on multicomponent synthesis of particular heterocycles such as ⁸⁰ pyrroles, ^{50, 59} indoles, ⁶⁰ and pyridines⁶¹ have been published. Such domino reactions achieve high level of atom-efficiency, and avoids time-consuming isolation and purification of intermediates. Reduction in number of steps is the major advantage with these protocols, thus reduces manpower and 85 avoids waste production.⁶² This section discusses all reported metal-free one-pot protocols for quinoline synthesis. Most of the metal-free protocols discussed herein, comprises simple acid catalysts, bases, molecular iodine, ionic liquids or organocatalysts, and few methods are catalyst-free. In this ⁹⁰ section, these protocols have been discussed according to the use of different non-metal reagents/ catalysts: (a) acid catalyzed protocols; (b) base catalyzed protocols; (c) molecular iodine catalyzed protocols; (d) ionic liquid mediated quinoline synthesis; (e) organocatalysis for quinoline synthesis; (f) catalyst-free 95 reactions; and (g) miscellaneous reactions.

RSC Advances

Figure 3. Classical methods ("Name Reactions") for quinoline synthesis

3.1. Acid catalyzed protocols

Acids have been widely used as simple and ecofriendly catalysts and promoters for various organic reactions. Acid catalysts which ⁵ are routinely used in various organic transformations include trifluroacetic acid (TFA), formic acid, acetic acid, triflic acid, and pTSA. Acetic acid and formic acid are the two most common reagents available in most of the chemistry laboratories and their

use for quinoline synthesis has been well documented. Among 10 various starting materials, arylamines are among most widely used precursors for quinoline synthesis.

Many acid catalyzed protocols are based on the traditional name reactions. Pavarov reaction is one of the most widely investigated reaction for quinoline synthesis, comprising the aza Diels-Alder

- ¹⁵ cycloaddition as the key step. Recently our group⁶³ have developed an efficient formic acid catalyzed one-pot synthesis of 4-arylquinoline 2-carboxylates 4 in water via three-component Pavarov reaction of arylamines 1, glyoxylates 2 and phenylacetylenes 3 (Scheme 1). The reaction mechanism involves
- ²⁰ a cascade of reactions involving initial condensation of arylamine 1 and ethyl glyoxylate 2 to form imine intermediate I. Next, there is a protonation of the nitrogen of the imine which facilitates the attack by phenylacetylene, resulting in cyclization to produce dihydroquinoline III, which on oxidation produces 4amaging 2 archevelates 4. These accompanyeds dimlayed
- ²⁵ arylquinoline 2-carboxylates **4**. These compounds displayed neuroprotective, antioxidant and Pgp-induction activities.

Scheme 1. Formic acid-catalyzed synthesis of quinoline-2-carboxylates **4**; some representative examples are shown.

³⁰ Zhang et al⁶⁴ reported a three-component Pavarov reaction between aryl aldehydes 5, arylamines 1, and alkynes 3 in presence of triflic acid leading to formation of 2,4-disubstituted quinolines 6 (Path A of Scheme 2). Interestingly, the use of alkenes 3 instead of alkynes 7 with the increase in reaction time ³⁵ (from 4 h to 8 h) produced same quinoline products 6 (Path B of Scheme 2).

Mujumdar et al⁶⁵ reported another Pavarov-type three-component ⁵ domino reaction of heterocyclic amines **8**, aldehydes **5**, and terminal alkynes **3** in the presence of BF₃.OEt₂, which led to formation of pyrano[3,2-f]quinolines **9a** and phenanthrolines **9b**. The imine intermediate **I** undergoes intermolecular concerted type aza-Diels–Alder reaction with an alkyne **3** leading to ¹⁰ formation of quinoline skeleton **II**, which on aromatization produces **9** (Scheme 3).

Scheme 3. BF₃.OEt₂-catalyzed synthesis of pyrano[3,2f]quinolines 9a and phenanthrolines 9b; some representative 15 examples are shown.

Ketene-dithioacetals have been used as important building blocks for construction of heterocycles.⁶⁶ Ethynyl-*S*,*S*-acetals **10** are highly reactive electron-rich dienophiles which undergo regiospecific aza-Diels-Alder (Povarov) reaction with arylimines

²⁰ to produce quinoline skeleton. A triflic acid mediated threecomponent reaction between ethynyl-*S*,*S*-acetals **10**, arylamines **1** and aldehydes **5** produced quinoline skeleton **11** via consecutive arylimine **I** formation, regiospecific aza-Diels-Alder reaction, and reductive amination (Scheme 4).⁶⁷

Scheme 4. Triflic acid-catalyzed synthesis of 2,4-disubstituted quinolines **11** via three-component aza Diels-Alder reaction; some representative examples are shown.

An interesting utility of Pavarov reaction for construction of pentacyclic quinoline based fused heterocycles has been recently reported by Khadem et al.⁶⁸ This protocol implies the three component reaction between arylamine 1, 2-carboxy benzaldehyde 12 and cyclopentadiene 13 in presence of TFA to ³⁵ furnish isoindolo[2,1-a]quinoline 14 (Scheme 5). The Schiffs base I undergoes a step-wise aza Diels–Alder reaction with cyclopentadiene 13 to produce isoindolo[2,1-a]quinolines 14. Authors mentioned that the concerted [4+2] cycloaddition route would afford a mixture of regio-isomeric products due to free N–⁴⁰ Ar bond rotation prior to addition.

Scheme 5. TFA catalyzed synthesis of pentacyclic isoindoloquinolines **14**; some representative examples are shown.

⁴⁵ Borel et al⁶⁹ reported a three-component Povarov reaction of pyridine aldehydes **15** and arylamines **1** with ethyl vinyl ether **16** in presence of boron trifluoride methyl etherate producing 2-(2-pyridyl)quinolines **17** (Scheme 6).

⁵⁰ Scheme 6. BF₃.OMe₂-catalyzed synthesis 2-(2-pyridyl)quinolines **17**; some representative examples are shown.

Shindoh *et al*⁷⁰ reported triflic imide and triflic acid catalyzed Povarov-Hydrogen-Transfer cascade reaction to produce ⁵⁵ quinolines **20**. The reaction between electron-rich olefins **19** and excess amount of imines **18** in the presence of triflic imide in DCM at 60 °C afforded substituted quinolines **20** in one-pot (Scheme 7).

Scheme 7. Triflic imide-catalyzed synthesis of imidazopyrroloquinolines **20**; some representative examples are shown.

Para-toluene sulfonic acid (pTSA) catalyzed condensation of aromatic amines 1 with δ,ε-unsaturated aldehydes 21, followed by intramolecular formal hetero Diels-Alder reaction produced cyclopenta[b]quinolines 22.⁷¹ Mechanistically, reaction proceeds through the iminium ion transition state I which further
 undergoes ring closure via intramolecular Diels–Alder reaction to produce II with a trans-arrangement of allylic cation and an amine. The electrophilic aromatic substitution reaction between allylic cation and aniline moiety then leads to formation of stable cyclopenta[b]quinoline 22 (Scheme 8).

Scheme 8. pTSA catalyzed synthesis of cyclopenta[b]quinolines 22 from δ_{λ} -unsaturated aldehydes 21; some representative examples are shown.

- ²⁰ Boron trifluoride etherate is a widely used lewis acid catalyst in various reactions. Shan *et al*⁷² reported boron trifluoride etherate catalyzed single-step approach toward the regioselective synthesis of 2-alkylquinolines **23** from 3-ethoxycyclobutanones **24** and aromatic amines **1**. The imine intermediate **I** formed from
- ²⁵ two substrates undergoes intramolecular cyclization followed by aromatization to produce quinoline product **23** (Scheme 9).

Scheme 9. BF₃.OEt₂-catalyzed synthesis of alkyl quinolines **23** from 3-ethoxycyclobutanones **24** and aromatic amines **1**; some ³⁰ representative examples are shown.

Apart from the Pavarov reaction, arylamines are also one of the key precursors in several other protocols. There are several reports on the three-component reaction of arylamines, aryl ³⁵ aldehydes and active methylene compounds leading to formation of a quinoline skeleton. Mirza and Samiei⁷³ reported Doebner type multicomponent reaction of arylamine **1**, acetone **25** and benzaldehyde **5** without any solvent under microwave irradiation on the surface of alumina impregnated with hydrochloric acid to ⁴⁰ produce substituted quinolines **26** (Scheme 10).

Scheme 10. HCl-catalyzed synthesis of 4-methyl quinolines 26.

Tu's group⁷⁴ established a sequential three-component reaction 45 between 2-aminoanthracene 27, aromatic aldehyde 5 and cyclic 1,3-dicarbonyl compounds 28 (such as tetronic acid 28d, 5,5dimethyl,3-cyclohexanedione 28e, 1,3-indanedione 28c, 3Hchromene-2,4-dione 28f, quinoline-2,4(1H, 3H)-dione 28b and barbituric acid 28a) in acidic medium under microwave 50 irradiation to produce a series of unusual fused heterocyclic compounds, naphtho[2,3-*f*]quinoline derivatives 29 (Scheme 11). This scaffold exhibited good luminescent properties with emission wavelengths in the blue region.

Scheme 11. AcOH-catalyzed synthesis of naphtho[2,3-/]quinoline derivatives **29a-f**.

⁵ Khan and Das⁷⁵ utilized 3-aminocoumarins 30 as the arylamine precursor for synthesis of chromeno[3,4-b]quinolines 31. The pTSA catalyzed one-pot three component reaction between aryl aldehydes 5, 3-aminocoumarins 30, and cyclic 1,3-diketones 28e (Scheme 12) produced chromeno[3,4-b]quinolines 31. The
¹⁰ reaction proceeds through the key intermediate I which on cyclization produces chromeno[3,4-b]quinoline 31.

Scheme 12. *p*TSA-catalyzed synthesis of chromeno[3,4-b]quinolines **31**; some representative examples are shown.

Tu and coworkers⁷⁶ employed the use of enaminones **33** as the amine precursor and 1,3-indanedione **32a** as an active methylene precursor for preparation of quinoline skeleton. The three component one-pot protocol involving treatment of aldehydes **5**,

- 20 1,3-indanedione 32a and enaminone 33 in presence of acetic acid produced indeno[1,2-b]quinoline-9,11(6H,10H)-diones 34a. Authors also used other active methylene compounds such as 5substituted-cyclohexane-1,3-dione 32b or malononitrile 32c in this protocol to produce acridine-1,8(2H,5H)-diones 34b or multi substituted arguing 24a (64 here 12). The
- ²⁵ multi-substituted quinolines **34c** (Scheme 13). The reaction mechanism involves Michael addition as the key step; and the protocol was found to work both by microwave irradiation and conventional heating.

30 Scheme 13. AcOH-catalyzed synthesis of imidazopyrroloquinolines 34a-c.

Azizian *et al*⁷⁷ also utilized enaminones as amine precursors for quinoline synthesis. A three-component reaction between 2-³⁵ hydroxynaphthalene-1,4-dione **35**, 6-amino-uracils **36**, and aromatic aldehydes **5** in presence of pTSA in aqueous media produced pyrimido[4,5-b]quinoline-tetraones **37**. This reaction has been proposed to proceed by first condensation of 2-hydroxynaphthalene-1,4-dione **35** and aldehyde **5** followed by ⁴⁰ coupling with 6-amino-uracil **36** and then cyclization of **II** to yield **37** (Scheme 14).

Scheme 14. pTSA-catalyzed synthesis pyrimido[4,5-b]quinolinetetraones **37**; some representative examples are shown.

The four-component reaction between naphthylamines **41**, phenylhydrazine **39**, isatins **40** and 3-ketoesters **38** in presence of pTSA under solvent-free conditions afforded spiro[1Hpyrazolo[3,4-b]benzo[h]dihydroquinolin-4,3-indolin-2-ones] **42a**-⁵⁰ **b** (Scheme 15). Authors also employed this 4-CR protocol for anilines instead of naphthylamines, which produced 4-substituted pyrazolo[3,4-b]quinoline derivatives.⁷⁸

Scheme 15. pTSA-catalyzed synthesis of spiro[1 H-pyrazolo[3,4b]benzo[h]dihydroquinolin-4,3-indolin-2-ones] **42** using 4-CR; some representative examples are shown.

Yu et al⁷⁹ reported acetic acid catalyzed three-component reaction between aryl aldehyde **5**, β -naphthylamine **41b**, and 2Hthiopyran-3,5(4H,6H)-dione **44** in the presence of acetic acid leading to formation of benzo[f]thiopyrano[3,4-b]quinolin-¹⁰ 11(8H)-ones **43** (Scheme 16).

Scheme 16. AcOH catalyzed synthesis of benzo[f]thiopyrano[3,4-b]quinolin-11(8H)-ones 43; some representative examples are shown.

15

25

Narasimhulu *et al*⁸⁰ used silica supported perchloric acid as a heterogeneous recyclable catalyst for synthesis of various polysubstituted quinolines **45** using Friedlander condensation of 2aminoarylketones **46** with carbonyl compounds **47** and α -keto ²⁰ esters at ambient temperature (Scheme 17).

Scheme 17. Silica supported perchloric acid-catalyzed synthesis of poly-substituted quinolines 45; some representative examples are shown.

The quinoline synthesis through condensation of benzylideneanilines with active methylene compounds has been reported by two groups. Tanaka *et al*⁸¹ reported the condensation of benzylideneanilines **48** with carbonyl compounds (aldehydes ³⁰ or ketones or diketones) **47** in presence of catalytic HCl leading to formation of quinolines **49**. The enol form of carbonyl compound reacts with imine to form quinoline ring **II** via intramolecular cyclization, which further on aromatization produces **49** (Scheme 18).

Scheme 18. HCl-catalyzed synthesis of substituted quinolines **49**; some representative examples are shown.

Bojinov and Grabchev⁸² reported cyclization of 3-(arylidene-⁴⁰ amino)-benzo[de]anthracen-7-ones **50**, with 3-oxo-butyric acid ethyl ester **38** in presence of catalytic amount of HCl to produce fluorescent ethyl 3-aryl-1-methyl-8-oxo-8H-anthra[9,1gh]quinoline-2-carboxylates **51** in 40-43% yields (Scheme 19). The reaction proceeds through key amine intermediate **I**, which ⁴⁵ on cyclization produces **51**.

Scheme 19. HCl-catalyzed synthesis of anthra[9,1-*gh*]quinoline-2-carboxylates **51** by cyclization of 3-(arylidene-amino)-benzo[*de*]anthracen-7-ones **50**.

Apart from the above discussed protocols involving either arylamine, enaminone or benzylimine as one of the key precursor, several groups have established protocols involving precursors other than those involved in conventional name ¹⁰ reactions. Yu *et al.*,⁸³ established a domino one-pot protocol for the synthesis of highly substituted imidazopyrroloquinolines 52 by simply refluxing a reaction mixture of different types of isatins 40 and heterocyclic ketene aminals 53 in presence of acetic acid. The reaction mechanism involves cascade of reaction involving 15 first addition of ketene N,N-acetals to the carbonyl group of isatin 40. This was followed by imine-inamine tautomerization, intramolecular cyclization, dehydration and ring opening to produce amino intermediate II. This intermediate on protonation followed by cyclization leads to the formation of 20 imidazopyrrologuinoline 52 (Scheme 20).

Scheme 20. AcOH-catalyzed synthesis of imidazopyrroloquinolines **52** via cascade of reactions; some representative examples are shown.

Yu et al⁸⁴ described a three-component reaction of enaminones **55**, amines **1**, and isatin **40** under acidic condition. The reaction proceeds through an unusual hydride transfer from in situ formed

dimethylamine to a carbocation intermediate **VIII** to produce ³⁰ structurally diverse pyrrolo[3,4-c]quinoline-1-ones **54** (Scheme 21).

Scheme 21. TFA-catalyzed synthesis of pyrrolo[3,4-c]quinoline-³⁵ 1-ones **54**; some representative examples are shown.

Quiroga *et al.*,⁸⁵ showed that microwave-assisted intramolecular cyclization of N-4-substituted 6-chloropyrimidine-5-carbaldehydes **57** in acetic acid leads to formation of ⁴⁰ pyrimido[4,5-b]quinolines **56** (deazaflavin analogs), which exhibited excellent fluorescence properties (Scheme 22). The reaction process involves removal of the both Cl and NH₂ groups of the starting material, as these groups are not present in the final products.

Scheme 22. Synthesis of pyrimido[4,5-b]quinolines 56 via intramolecular cyclization of N-4-substituted 6-chloropyrimidine-5-carbaldehydes 57; some representative examples are shown.

The reaction of *N*-methyl-*N*-phenylcinnamamides **59** with phenyliodine bis(trifluoroacetate) (PIFA) in the presence of TFA produced 3-arylquinolin-2-one compounds **58**. First, the nucleophilic attack on the iodine center by the carbonyl oxygen s of the amide moiety in **59** affords 3-azatriene **I** which undergoes an electrocyclic ring closure and the subsequent proton elimination to give intermediate **III**. Next, the 1,2-aryl shift followed by the breakage of the O-I bond gives 3-phenylquinolin-2-one **58** (Scheme 23).⁸⁶

Scheme 23. TFA catalyzed synthesis of 3-arylquinolin-2-ones 58 from N-methyl-N-phenylcinnamamides 59; some representative examples are shown.

- ¹⁵ Arylmethyl azides **62** undergo rearrangement to produce N-aryl iminium ion intermediate **I** which can be trapped with a variety of nucleophiles.⁸⁷ Tummatorn *et al*⁸⁸ utilized arylmethyl azides as the precursors to give an N-aryl iminium ion intermediate. Following the addition of ethyl 3-ethoxyacrylate **63**, the 2-
- 20 substituted quinoline products 61 were obtained in moderate to excellent yields (Scheme 24), via a cascade of reactions including intramolecular electrophilic aromatic substitution, elimination and subsequent oxidation.

25 Scheme 24. Triflic acid catalyzed domino synthesis of quinolines57 from arylmethyl azides 62; some representative examples are shown.

A three-component reaction between arylisothiocyanate **65** ³⁰ alkyltriflate **67**, and alkynes **66** led to the formation of substituted quinolines **64** in high yields. The reaction undergoes alkyltriflate triggered domino electrophilic activation and avoids the use of a transition-metal catalyst. This transformation consisted of a cascade reaction of the arylisothiocyanate **65** with alkyltriflate **67** ³⁵ to form alkylthiosubstituted carbenium ion **I**, which followed the reaction with alkyne **66** to form intermediate **II** and subsequent electrophilic annulation to give quinoline **64** (Scheme 25).⁸⁹

Scheme 25. Alkyl triflate triggered- synthesis of quinolines 64 40 from arylisothiocyanates 65; some representative examples are shown.

The reaction between pyridine-substituted o-alkynylanilines **70** and β -keto esters **38** in presence of pTSA in ethanol produced ⁴⁵ quinoline-based tetracyclic scaffold **69**. Reaction proceeds through sequential hydration-condensation-double cyclization reactions. Interestingly, in the absence of β -keto esters, multisubstituted quinolines **68** were formed via condensation of two molecules of o-alkynylanilines **70** in reasonable yields ⁵⁰ (Scheme 26).⁹⁰

55

Scheme 26. pTSA-catalyzed synthesis of quinoline-based tetracyclic scaffolds 69 and multisubstituted quinolines 68 from o-alkynylanilines.

A cascade reaction of (E)-5-(arylamino)pent-3-en-1-ols **72a** and thiols **72b** with various aldehydes **5** in the presence of 30 mol% BF₃·OEt₂ in 1,2-dichloroethane at 80 °C afforded trans-fused hexahydro-1H-pyrano[3,4-c]quinolines **71a** and hexahydro-1H-⁶⁰ thiopyrano[3,4-c]quinolines **71b** in good yields with high selectivity.⁹¹ The reaction proceeds via formation of an oxocarbenium ion I from the hemiacetal that is formed in situ from the aldehyde and a homoallylic alcohol likely after activation with BF₃·OEt₂. The oxocarbenium ion is attacked by ⁶⁵ an internal olefin resulting in the formation of a carbocation that is simultaneously trapped by a tethered aryl group, leading to the formation of hexahydro-1H-pyrano[3,2-c]quinolines **71** (Scheme 27).

Scheme 27. BF₃.OEt₂-catalyzed synthesis of hexahydro-1Hpyrano[3,4-c]quinolines 71a-b; some representative examples are shown.

Zhang *et al*⁹² developed an efficient synthesis of pyrano[2,3-¹⁰ *b*]quinolines **74** via the H₂SO₄-mediated domino cyclization/ringopening/recyclization reaction of readily available activated cyclopentanes **73**. This transformation commences from a H₂SO₄mediated Combes-type annulation of cyclopentane to provide an alcohol intermediate **I**, which on elimination of water, produces a ¹⁵ tertiary benzylic cation intermediate **II**. The elimination of a proton from intermediate **II** directly provide a terminal alkene intermediate **III**, which undergoes an intramolecular Markovnikov addition to produce pyrano[2,3-*b*]quinoline **74** (Scheme 28).

Scheme 28. H_2SO_4 -mediated synthesis of pyrano[2,3b]quinolines 74; some representative examples are shown.

Aksenov *et al*⁹³ reported synthesis of 3-aryl-2-quinolones **75** from ²⁵ indoles **76** via a metal-free transannulation reaction of 2-substituted indoles **76** with 2-nitroalkenes **77** in polyphosphoric acid. The conjugation of nitroalkene with indole in presence of PPA produces hydroxamic acid intermediate **I**. Next the intramolecular nucleophilic attack by the N-hydroxyl moiety at ³⁰ the C-2 of indole followed by tautomerization affords cyclized

enamine II. Retro-Diels-Alder reaction followed by migration of acyl group from aniline to the more nucleophilic imine nitrogen produces IV, followed by the nucleophilic attack by the aniline at the acyliminium moiety in IV affords aminoquinoline V, which ³⁵ further on hydrolytic cleavage produces 3-aryl-2-quinolones **75**

Scheme 29. PPA-catalyzed synthesis of 3-aryl-2-quinolones **75** from 2-substituted indoles **76** and nitroalkenes **77**; some ⁴⁰ representative examples are shown.

Aksenov et al⁹³ also reported a three-component condensation of arylhydrazines **39**, 2-nitroalkenes **77** and acetophenone **78** to produce 3-aryl 2-quinolones **75** (Scheme 30).⁹³

Scheme 30. PPA-catalyzed synthesis of 3-aryl-2-quinolones 75 from arylhydrazines 39; some representative examples are shown.

Yamaoka et al⁹⁴ reported a Brønsted acid-promoted ⁵⁰ arene-ynamide cyclization reaction to construct 3H-pyrrolo[2,3c]quinolines **79**. This reaction involves generation of a highly reactive keteniminium intermediate **IV** from arene-ynamide activated by a Brønsted acid and electrophilic aromatic substitution reaction to give arene-fused quinolines **79** in high ⁵⁵ yields (Scheme 31).

Scheme 31. TfOH catalyzed synthesis of 3H-pyrrolo[2,3-c]quinolines **79**; some representative examples are shown.

5 3.2. Base catalyzed protocols

Like acids, various simple and commonly used bases have been employed to catalyze several important organic transformations. This has opened up a way to greener routes for synthesis of heterocyclic structures. Wu et al⁹⁵ reported synthesis of ¹⁰ substituted quinolines **81** via direct reaction between the corresponding aminoalcohol **83** and ketone **84** using PEG-400 as reaction medium in the presence of a base (Scheme 32). This method was also effective for cyclic ketones **85** such as cyclopentanone, cyclohexanone and cycloheptanone producing ¹⁵ corresponding substituted quinolines **82**.

Scheme 32. KOH-catalyzed synthesis of quinolines 81-82; some representative examples are shown.

²⁰ Zhi and Cai⁹⁶ reported similar protocol for synthesis of quinolines
 86 using N-heterocyclic carbene as a catalyst. The reaction between 2-aminobenzyl alcohol
 83 and ketones
 84 proceeds via two tandem reactions - alpha-alkylation and indirect Friedländer annulation. The base deprotonates *N*-heterocyclic carbene salt I
 ²⁵ to generate a free carbine II. A cross aldol reaction between keto-intermediate IV and deprotonated ketone V, followed by a cyclization leads to formation of quinoline 86 (Scheme 33).

Scheme 33. N-heterocyclic carbene and KOH catalyzed synthesis ³⁰ of quinolines **86**; some representative examples are shown.

Using similar starting materials (aminobenzylalcohol **83** and ketones **47** or **84**), Mierde et al⁹⁷ have accomplished the synthesis of 2,3-disubstituted quinolines **87** in the presence of potassium ³⁵ tert-butoxide (Scheme 34). In the same year, Yus and coworkers⁹⁸ have reported exactly same protocol, with the inclusion of 100 mol% benzophenone as an additive.

Scheme 34. KOtBu-catalyzed synthesis of quinolines **86** from ⁴⁰ amino benzyl alcohols **83**; some representative examples are shown.

Yan et al⁹⁹ employed the use of alkyl or aryl nitro olefins 77 and 2-aminobenzaldehydes **90** in the presence of DABCO for synthesis of 2-substituted-3-nitro-1,2-dihydroquinolines **89**. The ⁴⁵ amino group of **90** attacks the aryl nitro olefin 77 to form 1,4addition intermediate **I**, which on cyclization followed by dehydration gives product **88**. After oxidation with DDQ, high yields of 2-alkyl-3-nitroquinolines **88** were obtained (Scheme 34).

Scheme 34. DABCO-catalyzed synthesis of 3-nitro quinolines **88**; some representative examples are shown.

⁵ Base-catalysed cyclization of β-(2-aminophenyl)-α,β-ynones 92 led to formation of 2,4-disubstituted quinolines 91 through tandem nucleophic addition annulations reactions.¹⁰⁰ Interestingly, the exposure of the β-(2-malonylamidophenyl)-α,βynone 94 to K₂CO₃ accomplished the synthesis of fused ¹⁰ quinolones 93 through an intramolecular Michael addition /tautomerisation and trans-esterification cascade reaction. Similarly, other fused quinolines 95-97 were also obtained (Scheme 35) from β-(2-aminophenyl)-α,β-ynones.

15 Scheme 35. Base-catalyzed synthesis of 2,4-disubstituted quinolines 91 and fused quinolines 93, 95-97 from β -(2-aminophenyl)- α , β -nones

Wang and coworkers¹⁰¹ reported a three-component reaction ²⁰ between cyanoacetic acid methyl ester **102**, substituted secondary amine **103** and 2-aminobenzalehyde **90** in the presence of NaOH in ethanol as a solvent produced 2-aminoquinoline-3carboxamides **101** in good yields (Scheme 36).

25 Scheme 36. Base catalyzed one-pot three-component synthesis of 2-aminoquinoline-3-carboxamides 101; some representative examples are shown.

Cameron et al¹⁰² described an efficient one-pot procedure for the four-step preparation of 7-hydroxyquinoline **104** from 3-Ntosylaminophenol **105** in presence of diisopropylethylamine in 60% isolated yield. This one-pot procedure has reduced the risk of exposure to acrolein. The 3-N-tosylaminophenol **105** on condensation with acrolein **106** produces intermediate **I**. In ³⁵ ethanol, this intermediate **I** is readily converted to the stable acetal **II**, which further on intramolecular Friedel-Craft reaction, followed by dehydration, oxidation and detosylation produces 7hydroxyquinoline **104** (Scheme 37).

⁴⁰ **Scheme 37**. Diisopropylethylamine catalyzed synthesis of 7hydroxyquinoline **104** from 3-N-tosylaminophenol **105**.

The reaction of aminochalcones **108** with tosylmethyl isocyanide **109** in presence of NaOH produced tricyclic pyrrolo[3,4-⁴⁵ c]quinolines **107**. In this domino process, three new bonds and two rings are successively formed at ambient conditions.¹⁰³ The overall reaction process involves (i) Michael addition of **109** to aminochalcone **108** under basic conditions that provides the carbanion intermediate **I**; (ii) intramolecular cyclization of the ⁵⁰ resulting anion **I** to form the imidoyl anion intermediate **II** followed by hydrogen shift and elimination of tosylic acid to give the pyrrole intermediate **III**; and finally (iii) intramolecular condensation of ketone with amine to furnish pyrrolo[3,4c]quinoline **107** (Scheme 38).

Scheme 38. Synthesis of pyrrolo[3,4-c]quinolines 107 in presence of base in ethanol; some representative examples are shown.

Rehan et al¹⁰⁴ reported synthesis of 2-aryl 4-substituted quinolines **110** from *O*-cinnamylanilines **111** (which are prepared from anilines and cinnamylalcohols). The reaction occurs via a regioselective 6-endo-trig intramolecular oxidative cyclization ¹⁰ using KOtBu as a mediator and DMSO as an oxidant at room temperature (Scheme 39).

Scheme 39. Potassium tert-butoxide catalyzed synthesis of 2-aryl 4-substituted quinolines 110; some representative examples are 15 shown.

The *N*-protected *O*-aminobenzaldehydes **113** in presence of K_2CO_3 in DMSO smoothly react with α,γ -dialkylallenoates **114** under brønsted basic conditions to yield 2,3-disubstituted

25 Scheme 40. K₂CO₃ catalyzed synthesis of 2,3-disubstituted quinolines 112; some representative examples are shown.

The treatment of 3-(2-bromophenyl)-3-oxopropanals **115** with amines **1** in presence of K_2CO_3 in dimethylsulfoxide led to ³⁰ formation of 3-substituted 4-quinolones **114**.¹⁰⁶ Reaction cascade involves base promoted enamine **I** - imine **II** transformation followed by dehydrobromination leading to cyclization to yield quinolone **114** (Scheme 41). In this reaction, weaker bases failed to function in either of the processes and stronger base triggered ³⁵ aldol condensation, however K_2CO_3 was proved to be the most suitable base.

Scheme 41. K₂CO₃-catalyzed synthesis of 3-substituted 4quinolones 114 in DMSO; some representative examples are ⁴⁰ shown.

Fu et al¹⁰⁷ have constructed another quinoline ring in the 2chloroquinoline-3-carbaldehyde structure **117** by treatment with enaminones **33** in presence of Cs_2CO_3 catalyst, producing 1,8-45 naphthyridines **116**. Initially, the aza-ene addition of enaminones **33** to 2-chloroquinoline-3-carbaldehyde **117** catalyzed by base leads to the formation intermediate **I**. The intermediate **I** then undergo an intramolecular cyclization to give intermediate **II**, which on elimination of water produces 1,8-naphthyridines **116** 5 (Scheme 42).

Scheme 42. Cs_2CO_3 catalyzed synthesis of 1,8-naphthyridines 116; some representative examples are shown.

10

Zhu and coworkers established a facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids **118** via the Pfitzinger reaction of isatins **40** with sodium pyruvate **120** following consequent decarboxylation under ¹⁵ microwave irradiation (Scheme 43).¹⁰⁸

Scheme 43. Synthesis of quinoline-4-carboxylic acids 118-119 under basic condition; some representative examples are shown.

²⁰ Rineh and coworkers¹⁰⁹ have established triethylamine mediated protocol for synthesis of quinolines **121** via reaction between ethyl chloropyruvate **123** and activated acetylenic compounds **122** in the presence of nucleophilic form of isatin in water as the solvent. Nucleophilic form of isatin is produced from the reaction ²⁵ of isatin **40** and triethylamine (Scheme 44).

Scheme 44. Et₃N catalyzed synthesis of substituted quinolines **121** from isatins **40**; some representative examples are shown.

³⁰ Alizadeh et al¹¹⁰ reported three component reaction of isatins **40**, 1-aryl-2-(1,1,1-triphenyl- λ 5-phosphanylidene)-1-ethanone **125** and hydrazonoyl chlorides **126** in the presence of Et₃N as a catalyst to produce pyrazolo[4,3-c]quinoline **124** (Scheme 45).

Scheme 45. Et_3N catalyzed synthesis of pyrazolo[4,3-c]quinolines 124 from isatins 40; some representative examples are shown.

Kato et al¹¹¹ developed a domino protocol for synthesis of pyrazolo[1,5-a]quinolines
 127 starting from 2-fluorobenzaldehydes
 128 and substituted 3,5-dimethyl-1H-pyrazoles
 129 participates in the Knoevenagel
 45 cyclization upon arylating at the nitrogen of the pyrazoles

Scheme 46. Base catalyzed synthesis of pyrazolo[1,5s a]quinolines **127**; some representative examples are shown.

Kato et al¹¹² reported another similar protocol for synthesis of pyrazolo[1,5-a]quinolines **130** from 2-fluoro aryl aldehydes **128** and pyrazole-3-carboxylic acid ester **131** using cesium carbonate ¹⁰ base. This cascade reaction involves a sequential intermolecular aromatic nucleophilic substitution (SNAr) and intramolecular Knoevenagel condensation (Scheme 47).

¹⁵ Scheme 47. Cs₂CO₃-catalyzed cascade synthesis of pyrazolo[1,5a]quinolines 130; some representative examples are shown.

The reaction of 2-methyl benzimidazole **133** with 2fluorobenzaldehydes **128** in presence of cesium carbonate in ²⁰ DMF produces benzimidazo[1,2-a]quinolines **132** via a cascade reactions involving sequential aromatic nucleophilic substitution and intramolecular Knoevenagel condensation reactions (Scheme **48**).¹¹³

Scheme 48. CS_2CO_3 catalyzed synthesis of benzimidazo[1,2-a]quinolines 132; some representative examples are shown.

Kapoor and coworkers¹¹⁴ have reported synthesis of ³⁰ polyhydroquinolines **134-135** via a four-component one-pot reaction of aldehydes **5**, dimedone **28e**, active methylene compounds **38** and ammonium acetate **136** under solvent-free conditions at room temperature via grinding. The products of this protocol were obtained simply by recrystallization from ethanol ³⁵ (Scheme 49).

Scheme 49. Catalyst and solvent free synthesis of polyhydroquinolines **134-135** using a one pot four component ⁴⁰ reaction; some representative examples are shown.

Zhu and coworkers¹¹⁵ have developed a transition-metal-free method for the synthesis of C6 phenanthridine derivatives **138** by arylative cyclization of 2-isocyanobiphenyls **139** with arylamines ⁴⁵ **1** in presence of tert-butyl nitrite (t-BuONO) and using benzoyl

⁴⁵ I in presence of teri-butyl infinite (I-BuONO) and using benzoyl peroxide as a promoter and sodium acetate as a base (Scheme 45). Initially, the anilines 1 reacts with t-BuONO to produce aryldiazonium ion which then gets decomposed (releasing N₂ and t-BuO•) in presence of benzoyl peroxide to produce aryl radical.
⁵⁰ The resulting aryl radical gets added to the terminal divalent carbon of 2-isocyanobiphenyl 139, to produce the N-biphenyl-2-yl imidoyl radical intermediate I. Next, the intramolecular hemolytic aromatic substitution of the imidoyl radical on the pending phenyl ring, forms the cyclohexadienyl radical

Scheme 50. Sodium acetate and benzoyl peroxide mediated s synthesis of phenanthridine derivatives **138**; some representative examples are shown.

Berteina-Raboin and Guillaumet¹¹⁶ described DBU catalyzed synthesis of pyrido[2',1':2,3]imidazo[4,5-b]quinolines **141** from ¹⁰ (ethynyl)H-imidazo[1,2-a]pyridin-3-amines **142**. The electronrich secondary amine **142** assists in the hydroarylation of the triple bond after deprotonation by DBU. Next, aromatization leads to formation of pyrido[2',1':2,3]imidazo[4,5-b]quinoline **141** (Scheme 51).

Scheme51.DBU-catalyzedsynthesisofpyrido[2',1':2,3]imidazo[4,5-b]quinolines141;somerepresentative examples are shown.

²⁰ Zhou et al.¹¹⁷ described synthesis of polyfunctionalized quinolines **143** via the sequence of propargyl–allenyl isomerization and aza-electrocyclization from but-2-yn-1-yl-phenylimines **144** (Scheme 52).

²⁵ Scheme 52. DBU promoted synthesis of polyfunctionalized quinolines 143; some representative examples are shown.

3.3. Molecular iodine catalyzed protocols

Iodine has been very extensively used in organic chemistry to ³⁰ catalyze diverse range of organic transformations including multicomponent reactions.¹¹⁸ Gao et al¹¹⁹ developed a highly efficient molecular iodine mediated formal [3+2+1] cycloaddition reaction for the direct synthesis of substituted 2-acyl quinolines **145** from methyl ketones **78**, arylamines **1**, and styrenes **7**. Initial ³⁵ reaction of molecular iodine with acetophenone **78** leads to formation of the α-iodo ketone **I**, which gets converted to phenylglyoxal **II** by a subsequent Kornblum oxidation. The reaction of p-toluidine **1** with the aldehyde group of **II** then gives the C-acyl imine **III**, which reacts with HI to give the activated ⁴⁰ C-acyl imine ion **IV**. This activated C-acylimine species **IV** then undergoes cycloadition reaction with styrene (Povarov-type reaction) to give intermediate **V** in the presence of excess or regenerated iodine. Intermediate **V** then undergoes sequential oxidation and aromatization reactions to give **145** (Scheme 53).

Scheme 53. Molecular iodine-catalyzed synthesis of 2-acyl quinolines 145 from a three-component reaction between methyl ketones 78, arylamines 1 and styrenes 7; some representative examples are shown.

Recently Deshidi et al¹²⁰ reported molecular iodine catalyzed tandem reaction between styrenes 7 and anilines 1 producing 2,4disubstituted quinolines 146. Styrene 7 first gets oxidized to 5 aldehyde I which on condensation with arylamine 1 produces imine II. Imine intermediate II then on coupling with iodine forms iminium ion intermediate III which undergoes aza-Diels-Alder cycloaddition reaction with styrene 7 to form IV. Intermediate IV on oxidation leads to formation of quinoline 146 10 (Scheme 54).

Scheme 54. Synthesis of 2,4-disubstituted quinolines 146; some representative examples are shown.

¹⁵ Deshidi et al¹²⁰ also reported molecular iodine catalyzed threecomponent reaction between arylamines 1, styrenes 7 and carbonyl compound 5, 78, 148-149 leading to formation of substituted quinolines 146a, 1147a-c (Scheme 55).

Scheme 55. Synthesis of 2,4-disubstituted quinolines 146d and 147a-c.

Lin's group have developed molecular iodine catalysed synthesis ²⁵ of quinolines **150-151** from aldehydes, amines, and alkynes at mild reaction conditions.¹²¹ The method was also applicable for construction of benzo[f] quinolines **151a** (70% yield) and ellipticine **151b** (68% yield) (Scheme 56).

30 Scheme 56. Molecular iodine catalyzed synthesis of 2,4disubstituted quinolines 150-151; some representative examples are shown.

Wang's group¹²²⁻¹²⁴ have developed a mild and efficient method 35 for the synthesis of pyranoquinoline 152, thiopyranoquinoline 153, thienoquinoline 154, chromanoquinolines 155 and naphtho[2,7]naphthyridine 156 derivatives via three-component reaction of aromatic aldehyde 5, naphthalene-2-amines 41b, and heterocycloketones 149 and 161-168 including tetrahydropyran-⁴⁰ 4-one **161**, tetrahydrothiopyran-4-one **162**, dihydrothiophen-3(2H)-one 163, chroman-4-one 164 and N-Boc 4-piperidinone 165, using iodine as catalyst (routes A-E).¹²² On the use of 2halogenated acetophenones **149** in the place of cyclic ketones, 1,3-diarylbenzo[f]quinolines **157** were obtained (route F).¹²³ 45 Further same group explored the utility of this method for construction of several other fused quinolines viz. benzo[f]furo[3,2-c]quinoline 158 (route G), benzo[f]pyrano[3,2c]quinoline 159 (route H), and benzo[f]quinolines 160 (route I) using dihydrofuran 166, dihydropyran 167 and *n*-butylvinyl ether ⁵⁰ **168** as third coupling partners (Scheme 57).¹²⁴

Scheme 57. Molecular iodine catalyzed synthesis of pyranoquinoline 152, thiopyranoquinoline 153, thienoquinoline 154, chromanoquinolines 155 and naphtho[2,7]naphthyridine 156 derivatives.

Wang's group¹²⁵ further investigated this reaction, wherein a three-component reaction of aromatic aldehyde **5**, naphthalene-2-amine **41b** and tetrahydro-2,5-dimethoxyfuran **170** in methanol catalyzed by iodine, produced 3-aryl-2-(3-arylbenzo[f]quinolin-2-s yl)benzo[f]quinoline derivatives **169** via ring opening of furan (Scheme 58).

Scheme 58. Molecular iodine catalyzed synthesis of bisbenzoquinolines 169; some representative examples are shown.

These authors^{124, 126} also investigated the utility of this method for preparation of naphtho[2,3-f]furo[3,2-c]quinolines **171** (route A),¹²⁴ naphtho[2,3-f]pyrano[3,2-c]quinolines **172** (route B)¹²⁴ and naphtho[2,3-f]quinolines **173** (route C)¹²⁴ and naphtho[2,3-f]pyrano[3,4-c]quinolines **174** (route D) (Scheme 59) from anthracen-2-amine **27**.¹²⁶ The mechanism involves the formation of imine **II** which undergoes covalent bond formation with iodine to produce intermediate **III**. This intermediate reacts with enol

form I of tetrahydropyran-4-one 161 to produce cyclized ²⁰ intermediate IV, which on dehydration produces V. Finally air oxidation of V produces naphthoquinoline 174 (Scheme 60).

Scheme 59. Molecular iodine catalyzed synthesis of 25 naphthoquinolines 171-174 from anthracenyl amines.

Scheme 60. Reaction mechanism for molecular iodine catalyzed synthesis of naphthoquinolines 174.

⁵ Molecular iodine catalyzed three-component imino Diels– Alder reaction of aromatic aldehyde 5, anthracene-2-amine 27 or 1H-indazol-5-amine 177 and cyclopentanone 85 produced cyclopenta[c]naphtho[2,3-f]quinoline 175 and cyclopenta[c] pyrazolo[4,3-f]quinoline 176 (Scheme 61).¹²⁷

Scheme 61. Molecular iodine catalyzed synthesis of cyclopenta[c]naphtho[2,3-f]quinoline 175 and cyclopenta[c] pyrazolo[4,3-f]quinolines 176.

- ¹⁵ Anionic surfactant sodium dodecyl sulfate has also been employed in heterocycle synthesis.¹²⁸ Recently Ganguly and Chandra¹²⁹ have employed the use of molecular iodine and sodium dodecyl sulfate for the construction of quinoline skeleton using a three-component reaction. A three-component coupling of 6-aminocoumarin 8, aromatic aldehyde 5 and an excess of styrene 7 in water in presence of molecular iodine and sodium dodecyl
- sulfate produced pyrano[3.2-f]quinolin-3-ones **178** and pyrano[2.3-g]quinolin-2-ones **179**. The reaction mechanism involves a cascade of two key transformations viz. Povarov ²⁵ reaction and hydrogen transfer (Scheme 62).

Scheme 62. Molecular iodine catalyzed synthesis of synthesis of pyrano[3.2-f]quinolin-3-ones 178 and pyrano[2.3-g]quinolin-2-30 ones 179; some representative examples are shown.

Wu and coworkers¹³⁰ reported a mild and efficient route for the synthesis of quinolines **181** and polycyclic quinolines **182-183** via Friedlander annulation utilizing molecular iodine (1 mol%). ³⁵ Treatment of 2-aminoaryl ketone **46** with α-methylene ketones **38** in ethanol in presence of molecular iodine produced quinolines **181**. Cyclic ketones such as cyclopentanone **85** and cyclohexadione **28e** also underwent smooth condensation with 2-aminoaryl ketones to afford the respective tricyclic quinolines **182-183** (Scheme 63). The synthesis of **181** from 2-aminoaryl ketone **46** with α-methylene ketones **38** has also been reported using (bromodimethyl)sulfonium bromide¹³¹ or cyanuric chloride¹³² as a catalyst.

⁴⁵ Scheme 63. Molecular iodine-catalyzed synthesis of 2,3,4trisubstituted quinolines 181-183; some representative examples are shown.

Zeng and Cai¹³³ reported a domino protocol for synthesis of benzo[f]quinolinyl acetamides **184** and benzo[h]quinolinyl acetamides **185** from diketene **186**, benzyl amines **187**, aromatic aldehydes **5** and naphthalene amines **41b** using molecular iodine s as a catalyst (Scheme 64).

Scheme 64. Molecular iodine catalyzed synthesis of benzo[f]quinolinyl and benzo[h]quinolinyl acetamides 184-185; ¹⁰ some representative examples are shown.

Fotie et al¹³⁴ reported synthesis of a series of unusual 2,3,4,5tetrahydro-4,4-tetramethylene-1H- cyclopenta[c] quinolines **188** through the Skraup-Doebner–Von Miller quinoline synthesis. ¹⁵ The reaction mechanism involves three basic sequences: (a) the formation of a Schiff base I through a reaction between the

ketone **85** and the aniline **1** in the first step, followed by (b) a cycloalkenylation at the ortho-position to the amine functional group of the aniline, and (c) an annulations in the final step to ²⁰ close the quinoline ring, leading to a dihydroquinoline derivative **188** as described in Scheme 65.

Scheme 65. I₂-catalyzed synthesis of cyclopenta[c]quinolines **188**; some representative examples are shown.

188c. 53%

188b, 58%

The oxidative cyclization of phenyl-*N*-(*o*-alkynylphenyl)imines **190** in presence of molecular iodine produced furanoquinolines **189** (Scheme 66).¹³⁵ The iodide cation on coupling with imine **190** generated iminium ion I which further undergoes ³⁰ intramolecular cyclization to produce quinoline II, which in elimination of HI produces **189**.

Scheme 66. I₂-catalyzed synthesis of furanoquinolines 189; some representative examples are shown.

Batra's group¹³⁶ reported molecular iodine catalyzed synthesis of 2-substituted quinolines **191** from substituted primary allylamines **192**. Iodine initially activates the carbonyl group, which is then followed by electrophilic cyclization to produce ⁴⁰ dihydroquinoline **II**. The intermediate **II** on the subsequent elmination of two protons in the form of 2 HI molcules produces intermeidate **V**, which finally oxidizes to the quinoline **191** (Scheme 67).

45 Scheme 67. Iodine-catalyzed synthesis of 2-substitutedquinolones 191 from allylamines 192; some representative examples are shown.

188a. 46%

2-Tosylaminophenylprop-1-yn-3-ols 194 in the presence of molecular iodine undergoes 6-endo-dig iodocyclization leading to formation of substituted 3-iodoquinolines 193 (Scheme 68).¹³⁷
 ⁵ The mechanism involves anti-attack of the iodide cation and the nitrogen of the tosylated amino group on the alkyne moiety of 170

- **178** to produce an intermediate **II**, which further undergoes a proton removal by the iodide producing intermediate **III**. The intermediate **III** then loses hydroxyl ion to give cation **IV**, which
- ¹⁰ finally on elimination of tosyl group leads to formation of quinoline **193**.

Scheme 68. Molecular iodine catalyzed synthesis of 2-aryl-3-iodo-quinolines **193**; some representative examples are shown.

15

- Activation of C2 and C3 of indoles **196** by molecular iodine and base followed by in situ reaction with 1-(2tosylaminophenyl)ketones **197** or 2-tosylaminobenzaldehyde afforded highly substituted indolo(2,3-b)quinolines **195** in ²⁰ moderate to excellent yields.¹³⁸ This is a domino one-pot protocol involving cascade of three reactions – amination, alkylation and aromatization. The mechanism of this reaction involves electrophilic addition of iodonium to the 3-position of indole **196** to give cation **I**, which undergoes 2-amination with **197** to afford
- ²⁵ II. The intermediate II eliminates a molecule of HI in the presence of base to give III. Alkylation and subsequent detosylation of III in the prescence of HCl gives 195 (Scheme 69).

³⁰ Scheme 69. I₂-catalyzed synthesis of indolo(2,3-b)quinolines 195; some representative examples are shown.

Isocyanides are one of the promising precursors for the preparation of N-heterocycles such as pyrroles, indoles, and ³⁵ guinolines. ¹³⁹⁻¹⁴¹ Tu and coworkers¹⁴² have established a iodinepromoted domino reaction of 2-aminochromene-3-carbonitriles isocyanates 200 199 with various for synthesis of polyfunctionalized N-substituted 2-aminoquinoline-3carbonitriles 198 with high regioselectivity under microwave 40 heating. The reaction of phenyl isocyanate 200 with 2aminochromene-3-carbonitrile 199 underwent [2+2] cyclization to produce β -lactam intermediate I, which then gets hydrolyzed forming a ring-opened intermediate II. Next, the intermediate II releases CO₂ to give intermediate III, which undergoes ⁴⁵ intramolecular cyclization to afford the 1,4-dihydropyridine IV. Finally, the aromarization of IV led to formation of 198 (Scheme 70).

Scheme 70. I₂-catalyzed synthesis of aminoquinoline-3carbonitriles **198**; some representative examples are shown.

Mitamura and Ogawa¹⁴³ found that upon photoirradiation of O-alkynylaryl isocyanides **202** in the presence of molecular iodine, it undergoes intramolecular cyclization to afford the corresponding 2,4-diiodoquinolines **201** in good yields. This reaction does not took place in the dark, indicating that the reaction requires photoirradiation (Scheme 71).

Scheme 71. Synthesis of 2,4-diiodoquinolines 201 via the photochemical cyclization of o-alkynylaryl isocyanides 202 with molecular iodine; some representative examples are shown.

3.4. Ionic liquid mediated quinoline synthesis

15

Ionic liquid have been considered as a green reaction media with recyclability and this has been used as catalyst as well as reaction media.⁵⁵ Our group¹⁴⁴ have developed an expedient and metal-²⁰ free synthetic protocol for construction of substituted quinolines

- **203-204** from anilines **1** and phenylacetaldehydes **205** using imidazolium cation-based ionic liquids as the reaction medium. [Bmim]BF₄ activates the aldehyde electrophile by interaction with the carbonyl oxygen. The ionic liquid [Bmim]BF₄ also
- 25 enhances the nucleophilicity of the amine through interaction of tetrafluoroborate with N-H bond. The resulting imine intermediate I undergo self-condensation to generate II as a key

intermediate. The C-2 benzyl moiety gets cleaved through radical mechanism by release of benzaldehyde, producing 3-substituted ³⁰ quinoline **204** (Scheme 72).

Scheme 72. Synthesis of 2,3-disubstituted **203** and 3-substituted quinolines **204** in ionic liquid; some representative examples are shown.

Another ionic liquid mediated synthesis of quinolines is reported, involving a four-component, one-pot reaction of aromatic aldehyde 5, cyclohexanone 85, malononitrile 33c, and amines 1 or 205 in basic ionic liquid [Bmim]OH to produce ⁴⁰ tetrahydroquinoline-3-carbonitriles 206 (Scheme 73).¹⁴⁵

Scheme 73. Synthesis of tetrahydroquinoline-3-carbonitriles 206 in ionic liquid; some representative examples are shown.

⁴⁵ A two-phase microwave-assisted cascade reaction between isatins **40** and β -ketoamides **208** in [Bmim]BF₄/toluene led to the formation of pyrrolo[3,4-c]quinoline-1,3-diones **207** (Scheme 74).¹⁴⁶ The recyclability of the ionic liquid for 6 cycles was

shown. The prepared pyrrolo[3,4-c]quinoline-1,3-diones displayed antibacterial activity.

s Scheme 74. Synthesis of pyrrolo[3,4-c]quinoline-1,3-diones 207 in ionic liquid; some representative examples are shown.

The condensation reaction involving an *O*-aminoaryl ketones **46** with α -methylene ketones **47** in ionic liquid [Hbim][BF₄] as a ¹⁰ solvent with methanol as co-solvent at room temperature under ultrasound irradiation afforded the corresponding quinolines derivatives **209** in excellent yields, via tandem addition/annulation reactions.¹⁴⁷ The reaction was also applicable to cyclic ketones producing tricyclic compounds (Scheme 75).

Scheme 75. Synthesis of substituted quinolines 209 in ionic liquid under ultra-sound irradiation; some representative examples are shown.

20

Kowsari and Mallakmohammadi¹⁴⁸ described synthesis of quinoline-4-carboxylates **210** by condensation of isatins **40** α -methylene ketones **47** in presence of 0.5 equiv [Bmim]OH ionic liquid and ultrasonication (Scheme 76). The mechanism of this ²⁵ reaction involves the reaction of isatin **40** with a [Bmim]OH that hydrolyses the amide bond to produce the keto-acid I. The enamine II form on cyclization produces quinoline III which finally on dehydration result in the formation of desired quinoline product **210**.

Scheme 76. Synthesis of quinoline-4-carboxylates 210 in ionic liquid; some representative examples are shown.

A three-component reaction of aryl aldehyde **5**, (E)-3-aminobut-³⁵ 2-enenitrile **212** and 2-hydroxynaphthalene-1,4-dione **35** in ionic liquid produced polysubstituted benzo[h]quinolines **211** (Scheme 77). Another three-component reaction involving concensation of aryl aldehyde **5**, (E)-3-aminobut-2-enenitrile **212** and dimedone **28e** in ionic liquid produced 1,4,5,6,7,8-hexahydro-2,7,7-⁴⁰ trimethyl-5-oxo-4-arylquinoline-3-carbonitriles **213** (Scheme 78).¹⁴⁹ The reaction mechanism involves subsequent Knoevenagel condensation, Michael addition, intra-molecular cyclization, and dehydration reaction.

⁴⁵ **Scheme 77**. Synthesis of polysubstituted benzo[h]quinolines **211** in ionic liquid; some representative examples are shown.

Scheme 78. Synthesis of 2,7,7-trimethyl-5-oxo-4-arylquinoline-3-carbonitriles 213 in ionic liquid; some representative examples are shown.

5 A series of 7-aryl-11,12-dihydrobenzo[h]pyrimido-[4,5b]quinoline-8,10(7H,9H)-diones 214 were synthesized via threecomponent reaction of aryl aldehydes 5, 1-naphthylamine 41a and barbituric acid 215 in ionic liquid (Scheme 79).¹⁵⁰

10 Scheme 79 Synthesis of pyrimido-[4,5-b]quinoline-8,10(7H,9H)-diones 214; some representative examples are shown.

3.5. Organocatalysis for quinoline synthesis

- 15 The use of small chiral organic molecules as catalysts, has proven to be a valuable and attractive tool for synthesis of enantiomerically enriched molecules and thus it finds wide applications in drug discovery.¹⁵¹ Furthermore, organocatalysis finds tremendous utility in asymmetric C-C bond formation 20 reactions.^{152, 153} The utility of these catalysts in quinoline synthesis has also been well reported. An organocatalytic asymmetric three-component Povarov reaction involving 2hydroxystyrenes produced structurally diverse cis-disubstituted tetrahydroquinolines 216 in high stereoselectivities of up to >99:1

²⁵ dr and 97% ee.¹⁵⁴ The 2- hydroxystyrene **217** is structurally similar to an dienol species, which participate in a vinylogous Mannich reaction with an aldimine II generated from an aryl aldehyde 5 or aliphatic aldehyde 205 and aniline 1 under the catalysis of a chiral phosphoric acid, forming a transient ³⁰ intermediate III, which principally undergoes an intramolecular Friedel-Crafts reaction (the 1,4-addition of aniline to the enone functionality) to afford enantio-enriched multiply substituted tetrahydroquinolines 216 (Scheme 80).

35 Scheme 80. Chiral phosphoric acid-catalyzed synthesis of cisdisubstituted tetrahydroquinolines 216; some representative examples are shown.

A series of 4-aza-podophyllotoxin derivatives 218 have been 40 synthesized regioselectively via the three-component reaction of aldehydes 5, aromatic amines 1, and tetronic acid 28d catalyzed by L-proline.155 L-proline catalyzes the formation of iminium ion II in a reversible reaction with tetronic acid 28d. The higher reactivity of the iminium ion II compared with the carbonyl 45 species facilitates the addition of aniline 1, via intermediate III, producing intermediate IV. The intermediate IV on elimination of L-proline produces V. The product 218 was then formed by tautomerization of intermediate V (Scheme 81).

Scheme 81. L-Proline-catalyzed synthesis of dihydrofuro[3,4-*b*]quinolin- 1(3*H*)-ones **218**; some representative examples are shown.

Khalafi-Nezhad *et al.*¹⁵⁶ have described a L-proline mediated synthesis of 5-arylpyrimido-[4,5-b]quinoline-diones **219** via a three-component reaction between anilines **1**, aldehydes **5** and barbituric acids **215** (or **220**) under aqueous conditions. L-proline ¹⁰ activates the aldehyde to produce intermediate **I**. Similarly, Lproline assists in enolization of the barbituric acid **215** (or **220**) to produce **II**. Coupling of **I** and **II** produces adduct **III**, which further loses a L-proline molecule to generate ortho-quinone methide **IV**. L-proline further activates this adduct **IV**, followed ¹⁵ by coupling of aniline produces **VI**. Intermediate **VI** subsequently

undergoes an intramolecular reaction to give the desired product **219** (Scheme 82).

Scheme 82. L-Proline-catalyzed synthesis of aryl-pyrimido[4,5-²⁰ b]quinoline-diones **219**; some representative examples are shown.

Khalafi-Nezhad *et al.*¹⁵⁶ also described a L-proline mediated synthesis of 2-amino-4-arylquinoline-3-carbonitriles **221** using a similar three-component reaction between anilines **1**, aldehydes **5** and malanonitrile **33c** under aqueous conditions (Scheme 83).

Scheme 83. L-Proline-catalyzed synthesis of 2-amino-4arylquinoline-3-carbonitriles 221; some representative examples are shown.

30

A series of 2H-benzo[g]pyrazolo[3,4-b]quinoline-5,10(4H,11H)diones **222** were synthesized using three component reaction of 2-hydroxy-1,4-naphthoquinone **35**, aldehydes **5**, and aminopyrazoles **223** in the presence of a catalytic amount of L-³⁵ proline.¹⁵⁷ Reaction proceeds via domino Aldol reaction-Michael addition–N-cyclization–tautomerism sequence to give fused quinoline product regioselectively (Scheme 84).

Scheme 84. L-Proline-catalyzed synthesis of benzo[g]pyrazolo[3,4-b]quinoline diones 222; some representative examples are shown.

A cascade reaction of ortho-azido-β-nitro-styrenes 225 with various carbonyl compounds 45 furnished substituted quinolines 224 (Scheme 85).¹⁵⁸ The Michael reaction of ketone 47 to β-nitroolefins 225 followed by coupling of PPh₃ led to formation of ¹⁰ iminophosphorane intermediate II via Staudinger reaction. This iminophosphorane II undergoes the intramolecular ring-closure via the aza-Wittig reaction at room temperature to produce quinoline III which on elimination of nitromethane moiety produces 224. The cyclic ketones 85 produced corresponding ¹⁵ tricyclic products 226 via intermediate IV.

Scheme 85. L-Proline-catalyzed synthesis of 2,3-disubstituted quinolines 224, 226; some representative examples are shown.

20 3.6. Catalyst-free quinoline synthesis

Apart from the use of above discussed simple non-metal catalysts, several reactions proceeds efficiently in suitable solvents without use of any catalyst. Reaction of 2- (aminomethyl)aniline **228** with ketones **47** in presence of oxygen ²⁵ atmosphere produced quinoline products **207**.¹⁵⁹ Reaction involved condensation of aniline **211** with ketone **47** to form imine **I** which gets oxidized to aldehyde **II** by oxygen and high temperature. This was followed by cyclization and dehydration to produce quinolines **227** (Scheme 86).

Scheme 86. Catalyst-free synthesis of 2-substituted quinolines **227** by treatment of 2-(aminomethyl)aniline **228** with ketones **47**; some representative examples are shown.

³⁵ The condensation and cyclization of two molecules of *ortho*haloacetophenones **230** with primary amines **1** produced halogensubstituted 2-aryl quinolines **229**.¹⁶⁰ The mechanism involves first the formation of ketimine I by dehydration of **230** with amine **1**. This was then followed by the intermolecular nucleophilic attack of **1** by enamine carbon of **II** followed by ⁵ dehydration to give α,β -unsaturated imine **III**. Next the electrocyclic reaction of **III** leads to formation of the intermediate **IV**. Finally the elimination and subsequent SN₂ reaction of **IV** produces **229** (Scheme 87).

¹⁰ **Scheme 87**. Catalyst-free synthesis of 2-aryl quinolines **229**; some representative examples are shown.

A three-component reaction of aromatic aldehyde **5**, 1H-indol-5amine **235**, and 1,3-dicarbonyl compounds **28c**, **28e**, **28g** ¹⁵ produced pyrrolo[3,2-f]quinoline **231-233** and pyrrolo[3,2a]acridine **234** derivatives under catalyst-free conditions (Scheme **88**).¹⁶¹

20 Scheme 88. Catalyst free synthesis of pyrrolo[3,2-f]quinoline 231-233 and pyrrolo[3,2-a]acridines 234; some representative examples are shown.

Fayol and Zhu¹⁶² have reported synthesis of polysubstituted ²⁵ furo[2,3-c]quinoline **236**, simply by mixing an *ortho*-alkynyl aniline **237**, an aldehyde **5**, and ammonium chloride in toluene at room temperature, followed by addition of an isocyanoacetamide **238** under heating condition (Scheme 89). The proposed reaction mechanism involves the formation of ³⁰ oxazole **III** as a key intermediate. Next the intramolecular cycloaddition reaction of an oxazole **III** as an aza-diene with the properly predisposed triple bond produce an furo[2,3c]quinolines **236**.

Scheme 89. Catalyst-free synthesis of furo[2,3-c]quinolines **236**; some representative examples are shown.

The condensation of *O*-phenylaniline **241** and its homologues 5 with cyclic ketones **85** under hydrothermal conditions led to formation of phenanthridines **239-240**.¹⁶³ The mechanism proposed for this transformation involves aza-triene-type electrocyclization, followed by irreversible cycloalkane ringfission as crucial steps (Scheme 90).

Scheme 90. Catalyst free synthesis of phenanthridines 239-240; some representative examples are shown.

These authors¹⁶³ further extended this protocol to the reaction of 2-isopropenylanilines HCl **244** to obtain quinoline derivatives **242-243**. The reaction pathway has been depicted in Scheme 91.

Scheme 91. Catalyst-free synthesis of quinolines 242-243.

- ²⁰ Yuvaraj et al¹⁶⁴ described a microwave-assisted, chemoselective synthesis of oxazolo[5,4-b]quinoline fused spirooxindoles **245** via three-component tandem Knoevenagel/Michael addition reaction of 5-amino-3-methylisoxazole **246**, β -diketones **28e** and isatins **40** in good to excellent yields under catalyst- and solvent-
- ²⁵ free conditions. A possible mechanism for the established 3CC reaction indicated that the β-diketone **28e** initially reacts with isatin **40** to give the Knoevenagel condensation product I which undergoes a Michael-type addition with 5-amino-3-methylisoxazole **246** followed by the cyclocondensation of the mintermediate adduct **U** to give a preserve dimensional states and the states of the transmission of the mintermediate adduct **U** to give a preserve dimensional states and the states of the transmission of the mintermediate adduct **U** to give a preserve dimensional states of the transmission of the mintermediate adduct **U** to give a preserve dimensional states of the transmission of the mintermediate adduct **U** to give a preserve dimensional states of the transmission of the mintermediate adduct **U** to give the transmission of the transmission of
- ³⁰ intermediate adduct **II** to give corresponding quinolines **245** (Scheme 92).

Scheme 92. Catalyst free MW assisted synthesis of oxazolo[5,4b]quinoline-fused spirooxindoles 245; some representative ³⁵ examples are shown.

The four-component domino reaction of 2-hydroxy-1,4naphthaquinone 35, aldehydes 5, methyl/ethyl aromatic acetoacetate 38 and ammonium acetate in ethanol under 40 microwave irradiation at 100 °C afforded tetrahydrobenzo[g]quinoline-5,10-diones 247 regioselectively in good yields. The mechanism involved first the Mannich reaction between 2-hydroxy-1,4-naphthaquinone 35 with aromatic aldehydes 5 to produce intermediate I which further on release of 45 ammonia produces II. The condensation of II with amine intermediate III leads to formation of a cyclized intermediate IV, which finally on dehydration generated product 247 (Scheme 93).¹⁶⁵

50 Scheme 93. Catalyst free synthesis of tetrahydrobenzo[g]quinolines 247; some representative examples are shown.

Alizadeh and Rezvanian¹⁶⁶ reported one-pot, catalyst-free, four-component synthesis of octahydro-imidazo[1,2-a]quinolin-6-ones
248 from aromatic aldehydes 5, cyclic 1,3-diones 28e, diamines
250, and nitro ketene dithioacetal 249 under catalyst and solvent free conditions. Mechanism involves first Knoevenagel condensation between the aldehyde 5 and the cyclic 1,3-dione 28e, resulting in the adduct I. Then the reaction between
60 intermediate I and the ketene aminal II (which is derived from the addition of diamine 250 to nitro ketene dithioacetal 249) gives

the Michael adduct **III**. The Michael adduct **III** undergoes a cyclocondensation reaction through amino and carbonyl to afford compound **248** (Scheme 94).

Scheme 94. Catalyst-free synthesis of octahydro-imidazo[1,2-a]quinolin-6-ones 248; some representative examples are shown.

Chidurala et al¹⁶⁷ reported one-pot multicomponent atom-¹⁰ efficient, catalyst-free reaction between resorcinol **252**, aromatic aldehyde **5**, acetoacetanilide **253** and ammonium acetate **136** to produce substituted 1,4-dihydroquinolines **251** (Scheme 95).

Scheme 95. Catalyst-free synthesis of substituted 1,4-15 dihydroquinolines **251**; some representative examples are shown

Findik et al 168 reported one-pot four-component condensation of dimedon $28e,\ \alpha\text{-ionone}$ 255, ammonium acetate 136 and

benzaldehyde **5** under reflux condition to produce 7,8-²⁰ dihydroquinolin-5-(1H,4H,6H)-ones **254** (Scheme 96).

Scheme 96. Catalyst free synthesis of substituted 7,8-dihydroquinolin-5-(1H,4H,6H)-ones **254**; some representative examples are shown.

3.7. Miscellaneous protocols

Ghorbani-Vaghei and Malaekehpoor¹⁶⁹ reported the use of Nbromosuccinimide as a catalyst for synthesis of polycyclic indolo[2,3-b]quinolines **256** from aryl amines **1** with indole-3-³⁰ carbaldehyde **257** at room temperature. Initially, Nbromosuccinimide catalyzed the formation of an imine **I** and then a 3-bromo-indolinium cation as intermediate **II**. After nucleophilic attack by a second mole of aniline, intramolecular cyclization and oxidation lead to indoloquinolines **256**. Reaction ³⁵ is shown in scheme 97.

Scheme 97. NBS catalyzed synthesis of polycyclic indolo[2,3-b]quinolines 256; some representative examples are shown.

⁴⁰ Plaskon *et al.*¹⁷⁰ described synthesis of 7H-chromeno[3,2c]quinolin-7-ones **258** using TMSCI-mediated recyclization of 3formylchromone **259** with various anilines **1** (Scheme 98).

Scheme 98. TMSCI-mediated synthesis of quinolines **258** from 3-formyl chromones **259**; some representative examples are s shown.

Khong and Kwon¹⁷¹ reported phosphine-catalyzed efficient onepot procedure for preparation of 3-substituted and 3,4disubstituted quinolines **260** from stable starting materials ¹⁰ (activated acetylenes **262** and *O*-tosylamidobenzaldehydes/ *O*tosylamidophenones **261**, respectively) under mild conditions.

- Mechanism involves a general base catalysis. Coupling of **261** and **262** in presence of PPh₃ produces anion intermediate II. Nucleophilic addition of the free phosphine to the activated
- ¹⁵ alkyne 262 generated phosphonium allenolate III, which acts as a base to activate the pro-nucleophile II through deprotonation, resulting in a subsequent general base-catalyzed Michael/aldol reaction to produce IV (Scheme 99). Intermediate IV on aromatozation produces 260.

Scheme 99. Phosphine-catalyzed synthesis of dihydroquinolines **260**; some representative examples are shown.

An efficient and facile one-step synthesis of pyrrolo[3,4-²⁵ c]quinolinedione derivatives **263** has been developed using ethylenediamine diacetate (EDDA)-catalyzed cascade reactions of isatins **40** and β-ketoamides **208**.¹⁷² The carbonyl group of isatin **40** gets protonated by EDDA, which facilitates a nucleophilic attack of the enol form of β-ketoamide **208** followed ³⁰ by dehydration and proton transfer to give **I**. Intermediate **I** then undergoes intramolecular cyclization by N1 nucleophilic attack of the β-ketoamide group followed by proton transfer to form intermediate **II**. Ring opening of intermediate **II** followed by proton transfer gives the free aromatic amine **III**. Subsequently, ³⁵ the NH2 group of **III** attacks a carbonyl group by intramolecular cyclization to form intermediate **IV**, which on elimination of water and deprotonation results in formation of **263** (Scheme 100).

Scheme 100. Ethylenediamine diacetate-catalyzed synthesis of pyrrolo[3,4-c]quinolinediones 263; some representative examples are shown.

- 5 1,1-Cyclopropane aminoketones 265 on reaction with diethyl azodicarboxylate 266 (DEAD, 2.0 equiv.) in toluene at 80 °C for 8 h produced 2-benzoyl quinolines 264 via oxidation, ring-opening and cyclization.¹⁷³ The reaction is proposed to proceed via a cascade procedure. 1,1-Cyclopropane aminoketone 265 is 6 for the DECAD.
- ¹⁰ first oxidized with DEAD to give cyclopropene intermediate **II**. Then, ring-opening of **II** gives N-aza-diene intermediate **III**, which undergoes an intramolecular [4+2] reaction, followed by dehydrogenation to form **264** (Scheme 101).

15 Scheme 101. Catalyst free synthesis of 2-benzoyl quinolines 264 from 1,1-cyclopropane aminoketones 265; some representative examples are shown.

The synthesis of highly substituted spiro[indolo-3,10'-indeno[1,2-²⁰ b]quinolin]-2,4,11'-triones **267** has been developed under CTAB/H₂O system to provide spiro-products with excellent yields.¹⁷⁴ At first, the nucleophilic addition reaction occurs between the enaminone **33** with the more electrophilic carbonyl centre of isatin **40** in ecofriendly water medium to give an imine ²⁵ species that tautomerizes to yield I (Scheme 102). This intermediate I undergoes intramolecular cyclization to form the intermediate II, which is immediately converted to a more reactive and unstable intermediate III via ring-opening of indoline-2,3-dione. After that, due to the high reactivity, ³⁰ intermediate III instantly undergoes further nucleophilic addition with the other molecule of indane-1,3-dione 28c to produce another imine intermediate IV, which tautomerizes to yield V. Finally, the intramolecular cyclisation of V results in the ultimate spiro compound 267.

Scheme 102. Cetyltrimethyl ammonium bromide (CTAB)catalyzed synthesis of spiro[indolo-3,100-indeno[1,2-b]quinolin]-2,4,11'-triones **267**; some representative examples are shown.

⁴⁰ Fang *et al*¹⁷⁵ reported metal-free cyclization reaction of 2isocyanobiphenyls **269** with amides **270** by using tert-butyl peroxybenzoate (TBPB) as oxidant, which provided an access to 6-amidophenanthridine **268**. The reactions proceeds through a sequence of functionalization of the C(sp3)–H bond adjacent to ⁴⁵ the nitrogen atom and intramolecular radical aromatic cyclization with good yields (Scheme 103).

Scheme 103. Synthesis of 6-amidophenanthridines 268; some representative examples are shown.

4. Summary and future prospects

As illustrated through the comprehensive compilation of role of metal-free domino one-pot reactions for quinoline synthesis, it is clear that these protocols has numerous advantages such as high ¹⁰ yields, shorter reaction times, environmentally benign milder

reactions and safe operations.

Many metal-free domino one-pot protocols have been developed by using inorganic/ organic acids, bases, organocatalysts, ionic liquids or molecular iodine. Use of these non-metal reagents

- 15 certainly makes these protocols an environmentally friendly. Thus, these reagents and solvents have an indispensable role in the development of many new domino one-pot protocols for several other heterocycles. An appropriate use of solvent or reagents as catalysts in such protocols avoids the use of metal-
- 20 catalyst and allows development of new metal-free methodologies for the efficient synthesis of quinolines. With the great importance of quinoline scaffold in drug discovery, these protocols will have great impact in rapid development of molecular libraries and structure-activity relationship generation.
- ²⁵ In summary, metal-free domino one-pot strategies toward quinoline synthesis encompass the vast majority of green chemistry criteria and represent a solid, efficient, experimentally simple, and somehow elegant alternative to other methods. Based on the progress summarized in this review, we feel certain that
- ³⁰ combined strategy of domino one-pot protocols and metal-free cabability of the reaction will find broad applications and will continue to attract much attention in organic synthesis applications.

35 Author biographies

Jaideep B. Bharate obtained M.Sc. degree in Organic Chemistry from the University of Pune in 2009. Currently he is pursuing Ph.D. in Chemical Sciences, at Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Jammu under the supervision of Dr. Ram A. Vishwakarma. His current research interests are in the field of development of new tandem one-pot or multicomponent approaches for synthesis of medicinally important scaffolds and metal catalyzed C-H activation.

45 Ram Vishwakarma studied chemistry at the Central Drug Research Institute (CDRI), Lucknow and completed Ph.D. in 1986 under joint supervision of Drs. SP Popli and RS Kapil. After working for few years as research scientist at CIMAP, Lucknow, he moved to the Cambridge 50 University in 1991 to work with Sir Alan Battersby on biosynthesis of cyanocobalamin (vitamin B_{12}) and related porphyrins/corrins. In the end of 1993, he joined as staff-scientist at the National Institute of Immunology at New Delhi and initiated a research program on chemical biology of Glycosyl Phosphatidyl Inositol (GPI) anchors of parasitic 55 protozoa (Leishmania and Malaria). In 2005, he moved to Piramal Life Sciences (Mumbai) as vice-president and head of medicinal chemistry & natural product groups. During this period, he worked on the clinically validated disease targets relevant to cancer (PI3K/mTOR, IGFR1), diabetes (DGAT1) and infection (VRE/MRSA), learnt the "intricacies" of 60 drug-discovery under guidance of Dr. Somesh Sharma, and realized the potential of marine natural products. In 2009, he joined as Director of Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research) at Jammu, where his primary focus remain naturalproducts driven drug discovery for cancer and infection. His scientific 65 work has been published in over 200 papers and >40 patent applications filed. Ram Vishwakarma is an elected Fellow of the National Academy of Sciences, India.

⁷⁰ Sandip B. Bharate obtained B. Pharm. degree from the University of Pune in 2001 and received a M.S. (Pharm.) degree from the National Institute of Pharmaceutical Education and Research (NIPER), Mohali (India), in 2002. In 2003, he worked in the discovery research unit of Dr Reddy's Laboratories, Hyderabad, for six months before commencing his 75 Ph.D., which he completed under the supervision of Dr. Inder Pal Singh

at NIPER Mohali in January 2007. Subsequently, he worked as a

Research Scientist in the Department of Medicinal Chemistry, Piramal Life Sciences Ltd, Mumbai (formerly, Nicholas Piramal Research Center), for 1.5 years. He subsequently pursued postdoctoral studies (2008-2010) at the University of Montana (USA) with Professor Charles

- ⁵ M. Thompson in the area of neuroscience. Presently, he is working as a Senior Scientist in the Medicinal Chemistry Division of the Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Jammu, India. His current research interests are in the field of development of new tandem one-pot protocols for construction of
- 10 medicinally important scaffolds and medicinal chemistry of marine natural products. He is recipient of several innocentive awards in the area of new drug discovery.

15 Acknowledgements

JBB is thankful to CSIR Innovation Center project ITR001 for fellowship. The financial support from DST-SERB is gratefully acknowledged (grant no. SR/FT/CS-168/2011).

References and notes

- 20 1. J. P. Michael, Nat. Prod. Rep., 2008, 25, 166-187.
- A. Marson, J. E. Ernsting, M. Lutz, A. L. Spek, P. W. N. M. van Leeuwena and P. C. J. Kamer, *Dalton Trans.*, 2009, 621-633.
- M. Orhan Püsküllü, B. Tekiner and S. Suzen, *Mini-Rev. Med. Chem.*, 2013, 13, 365-372.
- 25 4. V. R. Solomon and H. Lee, Curr. Med. Chem., 2011, 18, 1488-1508.
- 5. J. Lavrado, R. Moreira and A. Paulo, *Curr. Med. Chem.*, 2010, **17**, 2348-2370.
- 6. S. Kumar, S. Bawa and H. Gupta, *Mini-Rev. Med. Chem.*, 2009, **9**, 1648-1654.
- 7. J. P. Michael, Nat. Prod. Rep., 2002, 19, 742-760.
- 8. J. P. Michael, Nat. Prod. Rep., 1997, 14, 605-618.
- R. N. Kharwar, A. Mishra, S. K. Gond, A. Stierle, D. Stierle and S. Bawa, *Nat. Prod. Rep.*, 2011, 28, 1208-1228.
- 35 10. I. P. Singh and H. S. Bodiwala, *Nat. Prod. Rep.*, 2010, **27**, 1781-1800.
 - 11. P. Williams, A. Sorribas and M.-J. R. Howes, *Nat. Prod. Rep.*, 2011, **28**, 48-77.
- 12. P. M. S. Chauhan and S. K. Srivastava, *Curr. Med. Chem.*, 2001, **8**, 1535.
- Y.-L. Chen, K.-G. Fang, J.-Y. Sheu, S.-L. Hsu and C.-C. Tzeng, J. Med. Chem., 2001, 44, 2374.
- G. Roma, M. D. Braccio, G. Grossi, F. Mattioli and M. Ghia, *Eur. J. Med. Chem.*, 2000, **35**, 1021-1035.
- 45 15. S. Bawa, S. Kumar, S. Drabu and R. Kumar, J. Pharm. Bioallied Sci., 2010, 2, 64-71.
 - 16. B. Gryzło and K. Kulig, Mini-Rev. Med. Chem., 2014, 14, 332-344.
- K. Kaur, M. Jain, R. P.Reddy and R. Jain, *Eur. J. Med. Chem.*, 2010, 45, 3245-3264.
- ⁵⁰ 18. A. P. Gorka, A. d. Dios and P. D. Roepe, *J. Med. Chem.*, 2013, **56**, 5231–5246.
- 19. S. Bongarzone and M. L. Bolognesi, *Expert Opin. Drug Discov.*, 2011, 6, 251-268.
- 20. K. A. Reynolds, W. A. Loughlin and D. J. Young, *Mini-Rev. Med.* 55 *Chem.*, 2013, **13**, 730-743.
- 21. R. S. Keri and S. A. Patil, *Biomed. Pharmacother.*, 2014, 68, 1161-1175.
- 22. S. Singh, G. Kaur, V. Mangla and M. K. Gupta, *J. Enzyme Inhib. Med. Chem.*, 2014, PMID: 25032745.
- 60 23. O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi and S. Bawa, *Eur. J. Med. Chem.*, 2014, PMID: 25073919.
- S. Vlahopoulos, E. Critselis, I. F. Voutsas, S. A. Perez, M. Moschovi, C. N. Baxevanis and G. P. Chrousos, *Curr. Drug Targets*, 2014, 15, 843-851.
- 65 25. P. Zajdel, A. Partyka, K. Marciniec, A. J. Bojarski, M. Pawlowski and A. Wesolowska, *Future Med. Chem.*, 2014, 6, 57-75.
 - 26. S. Mukherjee and M. Pal, Drug Discov. Today, 2013, 18, 389-398.
 - 27. S. Mukherjee and M. Pal, Curr. Med. Chem., 2013, 20, 4386-4410.
 - 28. R. Musiol, Curr. Pharm. Des., 2013, 19, 1835-1849.

- 70 29. R. Musiol, M. Serda, S. Hensel-Bielowka and J. Polanski, *Curr. Med. Chem.*, 2010, **17**, 1960-1973.
- A. Mahamoud, J. Chevalier, A. Davin-Regli, J. Barbe and J. M. Pagès, *Curr. Drug Targets*, 2006, 7, 843-847.
- N. Costedoat-Chalumeau, B. Dunogué, N. Morel, V. Le Guern and G. Guettrot-Imbert, *Presse. Med.*, 2014, 43, e167-180.
- 32. H. BF, Chem. News, 1931, 142, 129-133
- J. Achan, A. O. Talisuna, A. Erhart, A. Yeka, J. K. Tibenderana, F. N. Baliraine, P. J. Rosenthal and U. D'Alessandro, *Malaria J.*, 2011, 10, 144.
- 80 34. M. E. Wall, M.C.Wani, C. E. Cook, K.H.Palmer, A. I. McPhail and G.A.Sim, J. Am. Chem. Soc., 1966, 88, 3888–3890.
 - I. Pendrak, S. Barney, R. Wittrock, D. M. Lambert and W. D. Kingsbury, J. Org. Chem., 1994, 59, 2623-2625.
- C. W. Wright, J. Addae-Kyereme, A. G. Breen, J. E. Brown, M. F. Cox, S. L. Croft, Y. Gökçek, H. Kendrick, R. M. Phillips and P. L. Pollet, *J. Med. Chem.*, 2001, 44, 3187–3194.
- P. Grellier, L. Ramiaramanana, V. Millerioux, E. Deharo, J. Schrével, F. Frappier, F. Trigalo, B. Bodo and J.-L. Pousset, *Phytother. Res.*, 1996, **10**, 317-321.
- 90 38. K. Krafts, E. Hempelmann and A. Skórska-Stania, Parasitol. Res., 2012, 11, 1–6.
- L. C. Chou, C. T. Chen, J. C. Lee, T. D. Way, C. H. Huang, S. M. Huang, C. M. Teng, T. Yamori, T. S. Wu, C. M. Sun, D. S. Chien, K. Qian, S. L. Morris-Natschke, K. H. Lee, L. J. Huang and S. C. Kuo, *J. Med. Chem.*, 2010, **53**, 1616-1626.
- L. C. Chou, M. T. Tsai, M. H. Hsu, S. H. Wang, T. D. Way, C. H. Huang, H. Y. Lin, K. Qian, Y. Dong, K. H. Lee, L. J. Huang and S. C. Kuo, J. Med. Chem., 2010, 53, 8047-8058.
- 41. S. M. Prajapati, K. D. Patel, R. H. Vekariya, S. N. Panchal and H. D. Patel, *RSC Adv.*, 2014, **4**, 24463-24476.
- K. Gopaul, S. A. Shintre and N. A. Koorbanally, *Anticancer Agents Med Chem.*, 2014, PMID: 25511516.
- 43. J. Barluenga, F. Rodríguez and F. J. Fañanás, *Chem. Asian J.*, 2009, 4, 1036-1048.
- 105 44. H. M. Hassanin, M. A. Ibrahim, Y. A. Gabr and Y. A. Alnamer, J. *Heterocyclic Chem.*, 2012, **49**, 1269-1289.
 - 45. B. Nammalwar and R. A. Bunce, *Molecules*, 2014, 19, 204-232.
 - R. A. Mekheimer, E. A. Ahmed and K. U. Sadek, *Tetrahedron*, 2012, 68, 1637-1667.
- 110 47. A. Marella, O. P. Tanwar, R. Saha, M. R. Ali, S. Srivastava, M. Akhter, M. Shaquiquzzaman and M. M. Alam, *Saudi Pharm. J.*, 2013, 21, 1-12.
 - 48. L. Q. Lu, J. R. Chen and W. J. Xiao, Acc. Chem. Res., 2012, 45, 1278-1293.
- 115 49. B. H. Rotstein, S. Zaretsky, V. Rai and A. K. Yudin, *Chem. Rev.*, 2014, **114**, 8323-8359.
 - V. Estevez, M. Villacampa and J. C. Menendez, *Chem. Soc. Rev.*, 2014, 43, 4633-4657.
- 51. A. Domling, W. Wang and K. Wang, *Chem. Rev.*, 2012, **112**, 3083-3135.
 - 52. M. S. Singh and S. Chowdhury, *RSC Adv.*, 2012, **2**, 4547-4592.
 - 53. B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439-4486.
 - 54. C. de Graaff, E. Ruijter and R. V. A. Orru, *Chem. Soc. Rev.*, 2012, **41**, 3969-4009.
- 125 55. N. Isambert, M. d. M. S. Duque, J.-C. Plaquevent, Y. Genisson, J. Rodriguez and T. Constantieux, *Chem. Soc. Rev.*, 2011, 40, 1347-1357.
 - K. C. Nicolaou, D. J. Edmonds and P. G. Bulger, *Angew. Chem. Int.* Ed., 2006, 45, 7134-7186.
- 130 57. J. D. Sunderhaus and S. F. Martin, *Chem. Eur. J.*, 2009, **15**, 1300-1308.
 - D. M. D'Souza and T. J. J. Muller, Chem. Soc. Rev., 2007, 36, 1095–1108.
- 59. V. Estevez, M. Villacampa and J. C. Menendez, *Chem. Soc. Rev.*, 2010, **39**, 4402-4421.
 - 60. M. Shiri, Chem. Rev., 2012, 112, 3508-3549.
- 61. C. Allais, J.-M. Grassot, J. Rodriguez and T. Constantieux, *Chem. Rev.*, 2014, **114**, 10829-10868.
- 62. H. Bienayme, C. Hulme, G. Oddon and P. Schmitt, *Chem. Eur. J.*, 2000, **6**, 3321-3329.

- J. B. Bharate, A. Wani, S. Sharma, S. I. Reja, M. Kumar, R. A. Vishwakarma, A. Kumar and S. B. Bharate, *Org. Biomol. Chem.*, 2014, 12, 6267-6277.
- 64. X. Zhang, X. Xu, L. Yu and Q. Zhao, *Asian J. Org. Chem.*, 2014, **3**, 281-284.
- 65. K. C. Majumdar, S. Ponra, D. Ghosh and A. Taher, *Synlett*, 2011, 1, 104-110.
- 66. L. Pan, X. Bi and Q. Liu, Chem. Soc. Rev., 2013, 42, 1251-1286.
- 67. Y.-L. Zhao, W. Zhang, S. Wang and Q. Liu, *J. Org. Chem.*, 2007, 10 **72**, 4985-4988.
- S. Khadem, K. A. Udachin, G. D. Enright, M. Prakesch and P. Arya, *Tetrahedron Lett.*, 2009, 50, 6661-6664.
- 69. C. R. Borel, L. C. A. Barbosa, C. R. A. Maltha and S. A. Fernandes, *Tetrahedron Lett.*, 2014, doi: http://dx.doi.org/10.1016/j.tetlet.2014.1012.1016.
 - N. Shindoh, H. Tokuyama, Y. Takemoto and K. Takasu, J. Org. Chem., 2008, 73, 7451-7456.
 - 71. N. A. Magomedov, Org. Lett., 2003, 5, 2509-2512.
- 72. G. Shan, X. Sun, Q. Xia and Y. Rao, Org. Lett., 2011, **13**, 5770-5773.
- 73. B. Mirza and S. S. Samiei, J. Chem. Chem. Eng., 2011, 5, 644-647.
- 74. S. Tu, S. Wu, S. Yan, W. Hao, X. Zhang, X. Cao, Z. Han, B. Jiang, F. Shi, M. Xia and J. Zhou, *J. Comb. Chem.*, 2009, **11**, 239-242.
- A. T. Khan and D. K. Das, *Tetrahedron Lett.*, 2012, **53**, 2345–2351.
 S.-J. Tu, B. Jiang, R.-H. Jia, J.-Y. Zhang, Y. Zhang, C.-S. Yao and F. Shi, *Org. Biomol. Chem.*, 2006, **4**, 3664-3668.
- 77. J. Azizian, A. S. Delbari and K. Yadollahzadeh, Synth. Commun., 2014, 44, 3277-3286.
- H. Hosseinjani-Pirdehi, K. Rad-Moghadam and L. Youseftabar-Miri, *Tetrahedron*, 2014, **70**, 1780-1785.
- C. Yu, H. Zhang, C. Yao, T. Li, B. Qin, J. Lu and D. Wang, J. Heterocyclic Chem., 2014, 51, 702-705.
- M. Narasimhulu, T. S. Reddy, K. C. Mahesh, P. Prabhakar, C. B. Rao and Y. Venkateswarlu, *J. Mol. Catal. A Chem.*, 2007, 266, 114-117.
- 81. S.-y. Tanaka, M. Yasuda and A. Baba, J. Org. Chem., 2006, 71, 800-803.
- 82. V. B. Bojinov and I. K. Grabchev, Org. Lett., 2003, 5, 2185-2187.
- 83. F. Yu, S. Yan, L. Hu, Y. Wang and J. Lin, *Org. Lett.*, 2011, **13**, 4782-4785.
- F.-C. Yu, B. Zhou, H. Xu, Y.-M. Li, J. Lin, S.-J. Yan and Y. Shen, *Tetrahedron*, 2015, **71**, 1036-1044.
- J. Quiroga, J. Trilleras, B. Insuasty, R. Abonía, M. Nogueras, A. Marchal and J. Cobo, *Tetrahedron Lett.*, 2010, 51, 1107–1109.
- 45 86. L. Liu, H. Lu, H. Wang, C. Yang, X. Zhang, D. Zhang-Negrerie, Y. Du and K. Zhao, Org. Lett., 2013, 15, 2906-2909.
 - 87. Z. Song, Y.-M. Zhao and H. Zhai, Org. Lett., 2011, 13, 6331-6333.
- J. Tummatorn, C. Thongsornkleeb, S. Ruchirawat and T. Gettongsong, Org. Biomol. Chem., 2013, 11, 1463-1467.
- 50 89. P. Zhao, X. Yan, H. Yin and C. Xi, *Org. Lett.*, 2014, **16**, 1120-1123.
- L. Peng, H. Wang, C. Peng, K. Ding and Q. Zhu, *Synthesis*, 2011, 11, 1723-1732.
- B. V. Subba Reddy, D. Medaboina, B. Sridhar and K. K. Singarapu, J. Org. Chem., 2013, 78, 8161-8168.
- 55 92. Q. Zhang, Z. Zhang, Z. Yan, Q. Liu and T. Wang, Org. Lett., 2007, 9, 3651-3653.
- A. V. Aksenov, A. N. Smirnov, N. A. Aksenov, I. V. Aksenova, L. V. Frolova, A. Kornienko, I. V. Magedov and M. Rubin, *Chem. Commun.*, 2013, 49, 9305-9307.
- 60 94. Y. Yamaoka, T. Yoshida, M. Shinozaki, K.-i. Yamada and K. Takasu, J. Org. Chem., 2015, 80, 957-964.
- 95. F.-W. Wu, R.-S. Hou, H.-M. Wang, I.-J. Kang and L.-C. Chen, J. Chin. Chem. Soc., 2012, **59**, 535-539.
- 96. Y. Zhu and C. Cai, *RSC Adv.*, 2014, DOI: 65 10.1039/C1034RA07858F.
- 97. H. V. Mierde, P. V. D. Voort and F. Verpoort, *Tetrahedron Lett.*, 2008, 49, 6893-6895.
- R. Martínez, D. J. Ramón and M. Yus, J. Org. Chem., 2008, 73, 9778-9780.
- 70 99. M.-C. Yan, Z. Tu, C. Lin, S. Ko, J. Hsu and C.-F. Yao, J. Org. Chem., 2004, 69, 1565-1570.
- 100. A. Arcadi, F. Marinelli and E. Rossi, *Tetrahedron*, 1999, **55**, 13233-13250.

- 101. K. Wang, E. Herdtweck and A. Domling, *ACS Comb. Sc.*, 2012, **14**, 316-322.
- M. Cameron, R. S. Hoerrner, J. M. McNamara, M. Figus and S. Thomas, Org. Process Res. Dev., 2006, 10, 149-152.
- 103. Z. Hu, Y. Li, L. Pan and X. Xu, Adv. Synth. Catal., 2014, 356, 2974-2978.
- 80 104. M. Rehan, G. Hazra and P. Ghorai, Org. Lett., 2015, DOI: 10.1021/acs.orglett.1025b00419.
 - 105. P. Selig and W. Raven, Org. Lett., 2014, 16, 5192-5195.
- 106. Q.-L. Liu, Q.-L. Li, X.-D. Fei and Y.-M. Zhu, ACS Comb. Sci., 2011, **13**, 19-23.
- 85 107. L. Fu, X. Feng, J.-J. Wang, Z. Xun, J.-D. Hu, J.-J. Zhang, Y.-W. Zhao, Z.-B. Huang and D.-Q. Shi, ACS Comb. Sci., 2014, dx.doi.org/10.1021/co500120b.
 - 108. H. Zhu, R. F. Yang, L. H. Yun and J. Li, *Chin. Chem. Lett.*, 2010, 21, 35–38.
- 90 109. A. Rineh, M. A. Khalilzadeh, M. M. Hashemi, M. Rajabi and F. Karimi, J. Heterocycl. Chem., 2012, 49, 789-791.
 - A. Alizadeh, L. Moafi, R. Ghanbaripour, M. H. Abadi, Z. Zhu and M. Kubicki, *Tetrahedron*, 2015, doi: 10.1016/j.tet.2015.1003.1062.
- 111. J.-y. Kato, H. Aoyama and T. Yokomatsu, Org. Biomol. Chem., 2013, 11, 1171-1178.
 - 112. J.-y. Kato, R. Ijuin, H. Aoyama and T. Yokomatsu, *Tetrahedron*, 2014, **70**, 2766-2775.
 - 113. J.-y. Kato, Y. Ito, R. Ijuin, H. Aoyama and T. Yokomatsu, *Org. Lett.*, 2013, **15**, 3794–3797.
- 100 114. S. Kumar, P. Sharma, K. K. Kapoor and M. S. Hundal, *Tetrahedron*, 2008, 64, 536-542.
 - 115. Z. Xia, J. Huang, Y. He, J. Zhao, J. Lei and Q. Zhu, Org. Lett., 2014, 16, 2546-2549.
- M. Arnould, M.-A. Hiebel, S. Massip, J. M. Leger, C. Jarry, S. Berteina-Raboin and G. Guillaumet, *Chem. Eur. J.*, 2013, 19, 12249-12253.
 - 117. H. Zhou, L. Liu and S. Xu, J. Org. Chem., 2012, 77, 9418-9421.
 - 118. Y.-M. Ren, C. Cai and R.-C. Yang, RSC Adv., 2013, 3, 7182-7204.
 - 119. Q. Gao, S. Liu, X. Wu and A. Wu, Org. Lett., 2014, 16, 4582-4585.
- 110 120. R. Deshidi, S. Devari and B. A. Shah, Org. Chem. Front. , 2015, DOI: 10.1039/C1035QO00010F.
 - 121. X. Li, Z. Mao, Y. Wang, W. Chen and X. Lin, *Tetrahedron*, 2011, 67, 3858-3862.
- 122. X.-S. Wang, Q. Li, J.-R. Wu and S.-J. Tu, *J. Comb. Chem.*, 2009, 115 11, 433-437.
 - 123. X.-S. Wang, Q. Li, J. Zhou and S.-J. Tu, J. Heterocycl. Chem., 2009, 46, 1222-1228.
 - 124. X.-S. Wang, J. Zhou, M.-Y. Yin, K. Yang and S.-J. Tu, J. Comb. Chem., 2010, **12**, 266-269.
- 120 125. D.-S. Chen, Y.-L. Li, Y. Liu and X.-S. Wang, *Tetrahedron*, 2013, 69, 7045-7050.
 - 126. W. Wang, M. M. Zhang and X. S. Wang, J. Heterocycl. Chem., 2014, 51, 175-178.
 - 127. W. Wang, H. Jiang, M.-M. Zhang and X.-S. Wang, *J. Heterocyclic. Chem.*, 2014, **51**, 830-834.
 - 128. P. Ghosh and A. Mandal, Catal. Commun., 2011, 12, 744–747.
 - 129. N. C. Ganguly and S. Chandra, *Tetrahedron Lett.*, 2014, 55, 1564-1568.
- 130. J. Wu, H.-G. Xia and K. Gao, Org. Biomol. Chem., 2006, 4, 126– 130 129.
 - 131. R. Venkatesham, A. Manjula and B. V. Rao, J. Heterocyclic Chem., 2012, 49, 833-838.
 - 132. B. P. Bandgar, P. E. More and V. T. Kamble, J. Chin. Chem. Soc., 2008, 55, 947-951.
- 135 133. L.-Y. Zeng and C. Cai, Org. Biomol. Chem., 2010, 8, 4803–4805.
 - 134. J. Fotie, H. V. Kemami Wangun, F. R. Fronczek, N. Massawe, B. T. Bhattarai, J. L. Rhodus, T. A. Singleton and D. S. Bohle, *J. Org. Chem.*, 2012, **77**, 2784-2790.
 - 135. R. Halim, P. J. Scammells and B. L. Flynn, Org. Lett., 2008, 10, 1967-1970.

- 136. H. Batchu, S. Bhattacharyya and S. Batra, Org. Lett., 2012, 14, 6330-6333.
- 137. S. Ali, H.-T. Zhu, X.-F. Xia, K.-G. Ji, Y.-F. Yang, X.-R. Song and Y.-M. Liang, *Org. Lett.*, 2011, **13**, 2598–2601.
- ¹⁴⁵ 138. S. Ali, Y.-X. Li, S. Anwar, F. Yang, Z.-S. Chen and Y.-M. Liang, J. Org. Chem., 2012, **77**, 424-431.

- 139. S. Sadjadi and M. M. Heravi, *Tetrahedron*, 2011, 67, 2707–2752.
- 140. A. Kruithof, E. Ruijter and R. V. Orru, *Chem. Asian J.*, 2015, **10**, 508-520.
- 141. A. Domling, Chem. Rev., 2006, 106, 17-89.
- 5 142. B. Jiang, C. Li, S.-J. Tu and F. Shi, J. Comb. Chem., 2010, 12, 482-487.
- 143. T. Mitamura and A. Ogawa, J. Org. Chem., 2011, 76, 1163-1166.
- 144. J. B. Bharate, S. B. Bharate and R. A. Vishwakarma, ACS combinatorial science, 2014, 16, 624-630.
- ¹⁰ 145. Y. Wan, R. Yuan, F.-R. Zhang, L.-L. Pang, R. Ma, Cai-Hui, Y. Lin, W. Yin, R.-C. Bo and a. H. Wu, *Synth. Commun.*, 2011, **41**, 2997-3015.
- 146. L. Xia, A. Idhayadhulla, Y. R. Lee, S. H. Kim and Y.-J. Wee, *ACS Comb. Sci.*, 2014, **16**, 333-341.
- 147. M. R. P. Heravi, Ultrason. Sonochem., 2009, 16, 361-366.
 148. E. Kowsari and M. Mallakmohammadi, Ultrason. Sonochem., 2011, 18, 447-454.
 - 149. Y. Sun, P.-J. Cai and X.-S. Wang, *Res. Chem. Intermed.*, 2014, doi: 10.1007/s11164-11014-11819-y.
- 20 150. H. Y. Guo and Y. Yu, Chin. Chem. Lett., 2010, 21, 1435-1438.
 - 151. J. Alemán and S. Cabrera, Chem. Soc. Rev., 2013, 42, 774-793.
 - 152. R. Mahrwald, Drug Discov. Today Technol., 2013, 10, e29-36.
 - 153. U. Scheffler and R. Mahrwald, Chemistry, 2013, 19, 14346-14396.
- 154. F. Shi, G.-J. Xing, Z.-L. Tao, S.-W. Luo, S.-J. Tu and L.-Z. Gong, J. 25 Org. Chem. , 2012, **71**, 6970–6979.
- 155. C. Shi, J. Wang, H. Chen and D. Shi, J. Comb. Chem., 2010, 12, 430-434
- 156. A. Khalafi-Nezhad, S. Sarikhani, E. S. Shahidzadeh and F. Panahi, Green Chem., 2012, 14, 2876-2884.
- 30 157. S. Karamthulla, S. Pal, T. Parvin and L. H. Choudhury, RSC Adv., 2014, 4, 15319-15324.
 - 158. Z.-H. Yu, H.-F. Zheng, W. Yuan, Z.-L. Tang, A.-D. Zhang and D.-Q. Shi, *Tetrahedron*, 2013, **69**, 8137-8141.
 - 159. K. Wu, Z. Huang, C. Liu, H. Zhang and A. Lei, *Chem. Commun.*, 2015, DOI: 10.1039/c1034cc08074b.
 - 160. C. Qi, Q. Zheng and R. Hua, Tetrahedron, 2009, 65, 1316-1320.
 - 161. Y.-J. Zhou, D.-S. Chen, Y.-L. Li, Y. Liu and X.-S. Wang, ACS Comb. Sci., 2013, 15, 498-502.
 - 162. A. Fayol and J. Zhu, Angew. Chem. Int. Ed., 2002, 41, 3633-3635.
- 40 163. B. K. Mehta, K. Yanagisawa, M. Shiro and H. Kotsuki, Org. Lett., 2003, 5, 1605-1608.
 - 164. P. Yuvaraj, K. Manivannan and B. S. R. Reddy, *Tetrahedron Lett.*, 2015, 56, 78–81.
- 165. B. D. Bala, K. Balamurugan and S. Perumal, *Tetrahedron Lett.*, 2011, **52**, 4562-4566.
- 166. A. Alizadeh and A. Rezvanian, C. R. Chim. , 2014, 17, 103-107.
- 167. P. Chidurala, V. Jetti, R. Pagadala, J. S. Meshram and S. B. Jonnalagadda, J. Heterocyclic Chem., 2014, DOI: 10.1002/jhet.2230.
- 50 168. E. Findik, M. Ceylan and M. Elmastas, J. Heterocyclic Chem., 2012, 49, 253-260.
 - R. Ghorbani-Vaghei and S. M. Malaekehpoor, *Tetrahedron Lett.*, 2012, 53, 4751–4753.
- A. S. Plaskon, S. V. Ryabukhin, D. M. Volochnyuk, K. S. Gavrilenko, A. N. Shivanyuk and A. A. Tolmachev, J. Org. Chem., 2008, 73, 6010–6013.
 - 171. S. Khong and O. Kwon, J. Org. Chem., 2012, 77, 8257-8267.
 - 172. L. Xia and Y. R. Lee, Org. Biomol. Chem., 2013, 11, 5254–5263.
- 173. Z. Mao, H. Qu, Y. Zhao and X. Lin, *Chem. Commun.*, 2012, **48**, 9927–9929.
- 174. A. Mondal, M. Brown and C. Mukhopadhyay, *RSC Adv.*, 2014, 4, 36890-36895.
- 175. H. Fang, J. Zhao, S. Ni, H. Mei, J. Han and Y. Pan, J. Org. Chem., 2015, DOI: 10.1021/acs.joc.1025b00058.
- 65