RSC Advances

4,5-Seco-probotryenols A-C, a new type of sesquiterpenoids from Stachybotrys bisby

Journal:	RSC Advances
Manuscript ID:	RA-ART-04-2015-007122.R1
Article Type:	Paper
Date Submitted by the Author:	13-May-2015
Complete List of Authors:	Bao, Yan-Ru; Shenyang Pharmaceutical University, Chen, Guo-Dong; Jinan University, Gao, Hao; Institute of Traditional Chinese Medicine \& Natural Products, Jinan University, He, Rong-Rong; Institute of Traditional Chinese Medicine \& Natural Products, Jinan University, Wu, Yue-Hua; Jinan University, Li, Xiao-Xia; Jinan University, Hu, Dan; Jinan University, Wang, Chuan-Xi; Jinan University, Li, Xing-Zhong; Institute of Microbiology, Chinese Academy of Sciences, Li, Yan; Kunming institute of Botany, Yao, Xin-Sheng; Institute of Traditional Chinese Medicine \& Natural Products,College of Pharmacy, Jinan University, ; Shenyang Pharmaceutical University,

Cite this: DOI: 10.1039/xoxx00000x

Received ooth January 2012,
Accepted ooth January 2012

DOI: 10.1039/x0xx00000x
www.rsc.org/

4,5-Seco-probotryenols A-C, a new type of sesquiterpenoids from Stachybotrys bisbyi

Yan-Ru Bao, ${ }^{a}$ Guo-Dong Chen, ${ }^{*}$ b Hao Gao, ${ }^{*}$ 號 Rong-Rong He, ${ }^{b}$ Yue-Hua Wu, ${ }^{b}$ Xiao-Xia Li, ${ }^{b}$ Dan Hu, ${ }^{b}$ Chuan-Xi Wang, ${ }^{b}$ Xing-Zhong Liu, ${ }^{c}$ Yan Li, ${ }^{d}$ and Xin-Sheng Yao ${ }^{*} a, b$

Abstract

4,5-Seco-probotryenols A-C (1-3), a new type of sesquiterpenoids named seco-probotryanetype sesquiterpenoid, have been obtained from Stachybotrys bisbyi (PYH05-7), along with five new botryane skeleton sesquiterpenoids (4,5, and 8-10), and two known ones (6 and 7). Their structures were determined by NMR analyses, chemical derivatization, and X-ray crystallography.

Introduction

Probotryane (or presilphiperfolane)-type sesquiterpenoids possess a 5/5/6 tricyclic system skeleton (Fig. 1), ${ }^{1}$ and they were first isolated from the flowering plants Eriophyllum staechadifolium and Flourensia heterolepis. ${ }^{2}$ Due to its special molecular structure, this carbon skeleton serves as the important branch point for the biosynthesis of many sesquiterpene natural products. ${ }^{3}$ The classification of the downstream sesquiterpenoids could depend on ring rearrangement or ring cleavage of the probotryane skeleton. Polycyclic sesquiterpenoids, such as silphiperfolane, cameroonane, nopsane, prenopsane, isocomane, silphinane, terrecyclane, and modhephane (Fig. 1), are the downstream products from the rearrangement of the probotryane skeleton. Botryane sesquiterpenoids are generated from the cleavage of the probotryane skeleton C-10/C-15. ${ }^{4}$ Botryane sesquiterpenoids possessing a bicyclic skeleton (6/5), are usually identified from the fungi of Botrytis cinerea ${ }^{5-11}$ Boletus edulis, ${ }^{12}$ B. squamosa, ${ }^{13}$ Daldinia concentrica, ${ }^{14}$ Geniculosporium sp., ${ }^{15}$ and Hypocrea sp. ${ }^{16}$ and they exhibit phytotoxicity, ${ }^{9,11,17}$ cytotoxicity, ${ }^{14,}{ }^{15}$ and antibiotic activity. ${ }^{12}$
In the course of our search for bioactive secondary metabolites from wetland fungi, ${ }^{18}$ the chemical investigation of metabolites from Stachybotrys bisbyi (PYH05-7) was carried out, which led to the isolation of three unusual sesquiterpenoids [4,5-seco-probotryenols A-C (1-3)] and five new botryane sesquiterpenoids
[dehydrobotrylactone (4), 12-acetoxydehydrobotrydienol (5), and dehydrobotryosides A-C (8-10)] along with two known ones [12hydroxydehydrobotrydienol (6) and dehydrobotrydienol (7)]. Notably, 4,5-seco-probotryenols A-C $(\mathbf{1}-\mathbf{3})$ are a new type of sesquiterpenoid and are derived from cleavage of the probotryane skeleton at C-4/C-5. This new type is named seco-probotryane-type sesquiterpenoid. In addition, dehydrobotryosides A-C (8-10) are the first glycosylation derivatives of botryane sesquiterpenoids. Details of the isolation, elucidation of the structural and absolute configurations, antibiotic activity, and cytotoxicity of all isolated compounds are reported herein.

Results and discussion

terrecyclane modhephane
Fig. 1 Natural sesquiterpenoids derived from the probotryane skeleton.
4,5-Seco-probotryenol A (1) was obtained as a colorless crystal. Its molecular formula was determined to be $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$ by HR-ESIMS, with 3 degrees of unsaturation. The ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra showed 15 carbon signals ascribable to one sp^{2} methine, one sp^{2} quaternary carbon, two sp^{3} quaternary carbons, three sp^{3} methines [including an oxygenated one ($\delta_{\mathrm{C}} 80.9$)], four sp^{3} methylenes [including an oxygenated one ($\delta_{\mathrm{C}} 61.3$)], and four sp^{3} methyls ($\delta_{\mathrm{C}} 31.3,30.5,19.9$, and 17.9 , respectively). An analysis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY data revealed the presence of one isolated spinsystem corresponding to a $\mathrm{C}-4-\mathrm{C}-3-\mathrm{C}-2(\mathrm{C}-11)-\mathrm{C}-1-\mathrm{C}-10-\mathrm{C}-15$ subunit (Fig. 3). Combined with the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY analysis and the degrees of unsaturation, the HMBC correlations from $\mathrm{H}_{3}-12$ to C -5/C-6/C-7/C-13, from $\mathrm{H}_{3}-13$ to C-5/C-6/C-7/C-12, from H-5 to C-1/C-6/C-7/C-8/C-9, from $\mathrm{H}_{3}-14$ to C-7/C-8/C-9/C-15, from Ha$10 / \mathrm{Hb}-10$ to $\mathrm{C}-1 / \mathrm{C}-8 / \mathrm{C}-9 / \mathrm{C}-15$, and from $\mathrm{H}_{3}-11$ to $\mathrm{C}-1 / \mathrm{C}-2 / \mathrm{C}-3$ deduced the planar structure of $\mathbf{1}$ as shown in Fig. 3, and the assignments of all proton and carbon resonances are provided in Table 1. In the NOESY experiment, the observed correlations between $\mathrm{H}_{3}-14$ and $\mathrm{Ha}-10 / \mathrm{H}-2$, and between $\mathrm{H}-15$ and $\mathrm{H}-1$, signified that $\mathrm{H}_{3}-14$, $\mathrm{Ha}-10$ and $\mathrm{H}-2$ were located on the same face of the cyclopentane ring (C-1-C-9-C-8-C-15-C-10), while $\mathrm{H}-15$ and $\mathrm{H}-1$ were on the other face. Furthermore, the NOESY correlations

$1 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
$2 \mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{H}$
$3 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

$7 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
$8 \mathrm{R}_{1}=\beta$-D-mannopyranosyl, $\mathrm{R}_{2}=\mathrm{H}$
$9 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\beta$-D-mannopyranosyl

4

$5 \mathrm{R}=\mathrm{Ac}$ $6 \mathrm{R}=\mathrm{H}$

Fig. 2 Chemical structures of $\mathbf{1 - 1 0}$
between $\mathrm{Hb}-7$ and $\mathrm{H}_{3}-13 / \mathrm{H}_{3}-14$, and between $\mathrm{Ha}-7$ and $\mathrm{H}_{3}-12 / \mathrm{H}-15$, signified that $\mathrm{H}_{3}-13, \mathrm{Hb}-7$ and $\mathrm{H}_{3}-14$ were located on the same face of the cyclopentene ring (C-5-C-6-C-7-C-8-C-9), while Ha-7, H_{3} 12 , and $\mathrm{H}-15$ were on the other face. On the basis of the above analyses, the relative configurations of $\mathrm{C}-1, \mathrm{C}-8$, and $\mathrm{C}-15$ in 1 were established as $1 S^{*}, 8 S^{*}$, and $15 S^{*}$, respectively. The NOESY correlations between $\mathrm{H}_{3}-11$ and $\mathrm{Ha}-10 / \mathrm{Hb}-10 / \mathrm{H}-1$, and between $\mathrm{Ha}-$ $3 / \mathrm{Hb}-3$ and $\mathrm{H}-1 / \mathrm{H}-5$ (Fig. 4), indicated that the relative configurations of C-1, C-2 were $1 S^{*}, 2 R^{*}$. A single-crystal X-ray diffraction experiment unambiguously confirmed the above deduction. Furthermore, the Flack parameter of $0.02(18)$ allowed the assignment of the absolute configuration of $\mathbf{1}$ was $1 S, 2 R, 8 S$, $15 S$ (Fig. 5).

Fig. 4 Key NOESY/ROESY correlations of 1 and 3

4,5-Seco-probotryenol B (2) was obtained as a colorless oil. Its molecular formula was determined to be $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}$ by HR-ESI-MS. The molecular weight of $\mathbf{2}$ was 42 atomic mass units more than $\mathbf{1}$, which indicated that $\mathbf{2}$ may be an acetylated derivative of $\mathbf{1}$. Except for the signals for one ester carbonyl ($\delta_{\mathrm{C}} 171.2$) and one methyl (δ_{C} $21.0 / \delta_{\mathrm{H}} 2.04$), the NMR data (in CDCl_{3}) of $\mathbf{2}$ were similar to $\mathbf{1}$. The key HMBC correlations from $\mathrm{Ha}-4 / \mathrm{Hb}-4$ to the additional ester carbonyl ($\delta_{\mathrm{C}} 171.2$), and from the additional methyl protons ($\delta_{\mathrm{H}} 2.04$) to the ester carbonyl ($\delta_{\mathrm{C}} 171.2$) indicated the existence of the acetyl group and the acetylation at C-4. The planar structure of $\mathbf{2}$ was further established by the 2D NMR analyses (see the supporting information Table S2), and the assignments of all proton and carbon resonances are provided in Table 1. The similar observed NOESY correlations (see the supporting information Table S2) of $\mathbf{2}$ and $\mathbf{1}$ suggested that their relative configurations were identical. Since 2 and $\mathbf{1}$ coexist in the same strain, the absolute configurations of C-1, $\mathrm{C}-2, \mathrm{C}-8$, and $\mathrm{C}-15$ in $\mathbf{2}$ should be the same as those in $\mathbf{1}$. To confirm the above deduction, the derivatization of $\mathbf{2}$ was carried out. After hydrolysis in 2% sodium methanolate-methanol solution, compound $\mathbf{2}$ was transformed into $\mathbf{1}$. Thus, the absolute configuration of $\mathbf{2}$ was assigned as $1 S, 2 R, 8 S, 15 S$, which was the same as that of $\mathbf{1}$.

Fig. 5 X-ray structure of 1
4,5-Seco-probotryenol C (3) was obtained as a colorless oil. Its molecular formula was determined to be $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3}$ by HR-ESI-MS ($\mathrm{m} / \mathrm{z} 277.1781,[\mathrm{M}+\mathrm{Na}]^{+}$), indicating that $\mathbf{3}$ has one more oxygen atom than 1. Except for an oxygenated methine carbon at $\delta_{\mathrm{C}} 83.1$ and the loss of a methylene carbon at $\delta_{\mathrm{C}} 40.9$, the NMR spectroscopic data of $\mathbf{3}$ (Table 1) were similar to those of $\mathbf{1}$, indicating $\mathbf{3}$ was a hydroxylated derivative of $\mathbf{1}$. The key ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY correlation between $\mathrm{H}-10\left(\delta_{\mathrm{H}} 4.00, \mathrm{t}, J=7.6 \mathrm{~Hz}\right.$) and $\mathrm{H}-15$ ($\delta_{\mathrm{H}} 3.48, \mathrm{~d}, J=7.6 \mathrm{~Hz}$), and the HMBC cross-peaks from $\mathrm{H}-10$ to $\mathrm{C}-$ 1/C-8/C-9/C-15, from H-1 to C-5/C-9/C-10/C-11, and from H-15 to C-7/C-8/C-10/C-14 indicated that the hydroxylation occurred at the C-10 position. The key ROESY correlations between $\mathrm{H}_{3}-14$ and $\mathrm{H}-$ $10 / \mathrm{H}-2$, between $\mathrm{H}-15$ and $\mathrm{H}-1$, signified that $\mathrm{H}_{3}-14, \mathrm{H}-10$, and $\mathrm{H}-2$ were located on the same face of the cyclopentane ring ($\mathrm{C}-1-\mathrm{C}-9-\mathrm{C}-$ $8-\mathrm{C}-15-\mathrm{C}-10$), while $\mathrm{H}-15$ and $\mathrm{H}-1$ were on the other face. Furthermore, the ROESY correlations between $\mathrm{Hb}-7$ and $\mathrm{H}_{3}-13 / \mathrm{H}_{3}-$ 14, and between Ha-7 and $\mathrm{H}_{3}-12 / \mathrm{H}-15$, signified that $\mathrm{H}_{3}-13, \mathrm{Hb}-7$, and $\mathrm{H}_{3}-14$ were located on the same face of the cyclopentene ring (C-5-C-6-C-7-C-8-C-9), while $\mathrm{H}_{3}-12$, Ha-7, and $\mathrm{H}-15$ were on the other face. On the basis of the above analyses, the relative configurations of $\mathrm{C}-1, \mathrm{C}-8, \mathrm{C}-10$, and $\mathrm{C}-15$ in 3 were established as $1 S^{*}, 8 S^{*}, 10 R^{*}$, and $15 R^{*}$, respectively (Fig. 4). The coupling constant between H-1 and H-2 ($\left.{ }^{3} J_{\mathrm{H}-1, \mathrm{H}-2}=7.2 \mathrm{~Hz}\right)$, the ROESY correlations between $\mathrm{H}_{3}-11$ and $\mathrm{H}-10 / \mathrm{H}-1$, and the ROESY correlations between $\mathrm{Ha}-3 / \mathrm{Hb}-3$ and $\mathrm{H}-1 / \mathrm{H}-5$ (Fig. 4) suggested that the relative configurations of C-1, C-2 were $1 S^{*}, 2 R^{*}$. Considering the co-occurrence of $\mathbf{1}-\mathbf{3}$ in the fungus S. bisbyi (PYH05-7) the absolute configuration of $\mathbf{3}$ was assigned as $1 S, 2 R, 8 S, 10 R, 15 R$.

ARTICLE

Table $1{ }^{1} \mathrm{H}(400 \mathrm{~Hz})$ NMR and ${ }^{13} \mathrm{C}$ NMR (100 Hz) data for $\mathbf{1 - 4}\left(\mathrm{CDCl}_{3}\right)$

No.	1		2		3		4	
	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)
1	42.0	2.10	41.7	2.10	49.6	2.14, t (7.2)	143.4	
2	35.7	1.46	35.9	1.45	33.4	1.69	125.2	
3	38.1	$\begin{aligned} & 1.95, \mathrm{a} \\ & 1.29, \mathrm{~b} \end{aligned}$	33.7	$\begin{aligned} & 1.99, \mathrm{a} \\ & 1.34, \mathrm{~b} \end{aligned}$	37.2	$\begin{aligned} & 1.86, \mathrm{a} \\ & 1.36, \mathrm{~b} \end{aligned}$	124.9	7.76, d (8.0)
4	61.3	$\begin{gathered} 3.73, \mathrm{a} \\ 3.65, \mathrm{br} \mathrm{dt}(10.4,7.5), \mathrm{b} \end{gathered}$	63.0	$\begin{gathered} \text { 4.15, } \operatorname{ddd}(10.8,8.0,5.3), \mathrm{a} \\ 4.05, \mathrm{dt}(10.8,7.6), \mathrm{b} \end{gathered}$	61.0	$\begin{gathered} 3.73, \mathrm{a} \\ 3.65, \mathrm{br} \mathrm{dt}(10.3,7.4), \mathrm{b} \end{gathered}$	123.9	7.27, d (8.0)
5	134.8	5.13, s	134.9	5.13, s	135.2	5.18, s	159.5	
6	50.0		50.0		49.1		43.4	
7	53.7	$\begin{aligned} & 1.65, \mathrm{~d}(12.8), \mathrm{a}(\beta) \\ & 1.61, \mathrm{~d}(12.8), \mathrm{b}(\alpha) \end{aligned}$	53.6	$\begin{aligned} & 1.65, \mathrm{~d}(12.8), \mathrm{a}(\beta) \\ & 1.61, \mathrm{~d}(12.8), \mathrm{b}(\alpha) \end{aligned}$	54.3	$\begin{aligned} & 1.68, \mathrm{~d}(12.4), \mathrm{a}(\beta) \\ & 1.58, \mathrm{~d}(12.4), \mathrm{b}(\alpha) \end{aligned}$	51.6	$\begin{aligned} & 2.11, \mathrm{~d}(13.6), \mathrm{a}(\beta) \\ & 1.87, \mathrm{~d}(13.6), \mathrm{b}(\alpha) \end{aligned}$
8	57.7		57.6		56.0		48.8	
9	151.4		151.2		147.7		141.3	
10	40.9	$\begin{gathered} 2.36 \text {, ddd }(12.8,8.1,7.4) \text { a }(\alpha) \\ 1.60, \mathrm{~b}(\beta) \end{gathered}$	40.9	$\begin{gathered} 2.37, \text { ddd }(12.8,8.0,7.6), \mathrm{a}(\alpha) \\ 1.59, \mathrm{~b}(\beta) \end{gathered}$	83.1	4.00, t (7.6)	69.5	$\begin{aligned} & 5.51, \mathrm{~d}(15.6), \mathrm{a} \\ & 5.34, \mathrm{~d}(15.6), \mathrm{b} \end{aligned}$
11	17.9	0.88, d (6.4)	17.7	0.89, d (6.4)	17.9	1.00, d (6.8)	171.5	
12	31.3	1.05, s	31.3	1.05, s	31.4	1.06 , s	31.2	1.36, s
13	30.5	1.18, s	30.4	1.18, s	30.3	1.15, s	31.9	1.36, s
14	19.9	1.14, s	19.9	1.14, s	21.4	1.12, s	23.8	1.39, s
15	80.9	3.73 , dd (10.4, 7.2)	80.8	3.74 , dd (10.4, 7.2)	86.8	3.48, d (7.6)	70.7	3.71, s
$\begin{aligned} & \mathrm{CO} \\ & \mathrm{CH}_{3} \\ & \hline \end{aligned}$			$\begin{gathered} 171.2 \\ 21.0 \\ \hline \end{gathered}$	2.04, s				

The indiscernible signals due to overlap or having complex multiplicity are reported without designating their multiplicity

Dehydrobotrylactone (4) was obtained as a colorless oil. Its molecular formula was determined to be $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ by HR-ESI-MS, with 7 degrees of unsaturation. In the ${ }^{1} \mathrm{H}$ NMR data we observed characteristic protons for two aromatic protons [$\delta_{\mathrm{H}} 7.76, \mathrm{~d}, J=8.0$ $\left.\mathrm{Hz}),\left(\delta_{\mathrm{H}} 7.27, \mathrm{~d}, J=8.0 \mathrm{~Hz}\right)\right]$ and three methyl groups [$\delta_{\mathrm{H}} 1.39(\mathrm{~s})$, 1.36 (s), and 1.36 (s)]. The ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra (Table 1) showed 15 carbon signals including one carbonyl carbon (δ_{C} 171.5), six aromatic carbons ($\delta_{\mathrm{C}} 159.5,143.4,141.3,125.2,124.9$, and 123.9), three sp^{3} methylene carbons, two sp^{3} quaternary carbons, and three methyls ($\delta_{\mathrm{C}} 31.9,31.2$, and 23.8). The above information indicated that $\mathbf{4}$ possessed a botryane skeleton. Combined with the molecular formula and chemical shifts, the HMBC correlations (MeOD) from H-3 to C-1/C-5/C-11, from H-4 to $\mathrm{C}-2 / \mathrm{C}-9$, from $\mathrm{H}_{3}-12$ to $\mathrm{C}-5 / \mathrm{C}-6 / \mathrm{C}-7 / \mathrm{C}-13$, from $\mathrm{H}_{3}-13$ to $\mathrm{C}-5 / \mathrm{C}-$ 6/C-7/C-12, from $\mathrm{H}_{3}-14$ to C-7/C-8/C-9/C-15, from Ha-15/Hb-15 to C-7/C-8/C-9/C-14, and from $\mathrm{Ha}-10 / \mathrm{Hb}-10$ to $\mathrm{C}-1 / \mathrm{C}-2 / \mathrm{C}-9 / \mathrm{C}-11$ deduced the planar structure of $\mathbf{4}$ as shown in Fig. 3. Since $\mathbf{4}$ and dehydrobotrydienol (7) coexist in the same fungus, the absolute configurations of $\mathrm{C}-8$ in $\mathbf{4}$ should be the same as 7 . The X-ray crystallography analysis (Fig. 6) of 7 suggested the absolute configuration of C-8 is S, which was consistent with Collado's deduction from chemical derivatization of dehydrobotrydienal. ${ }^{9}$ Thus, the absolute configuration of $\mathbf{4}$ was identified as $8 S$.

12-Acetoxydehydrobotrydienol (5) was obtained as a colorless oil. Its molecular formula was determined to be $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ by HR-ESI-MS (m / z 293.1777, $[\mathrm{M}+\mathrm{H}]^{+}$). The ${ }^{1} \mathrm{H}$ NMR data exhibited characteristic protons for two aromatic protons at $\delta_{\mathrm{H}} 7.12$ (d, $J=$ 8.0 Hz) and $7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz})$ and four methyl groups at $\delta_{\mathrm{H}} 2.43$ (s), 2.04 (s), 1.39 (s), and $1.34(\mathrm{~s})$. The ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra showed 17 carbon signals including one ester carbonyl carbon, six aromatic carbons, four sp^{3} methylene carbons, two sp^{3} quaternary carbons, and four methyl carbons. Except for the presence of an acetyl group ($\delta_{\mathrm{H}} 2.43,3 \mathrm{H}, \mathrm{s} ; \delta_{\mathrm{C}} 171.3$, and 18.9), the NMR data of 5 were similar to those of 12hydroxydehydrobotrydienol $(\mathbf{6})^{9}$ suggesting that $\mathbf{5}$ might be an acetylated derivative of $\mathbf{6}$. The HMBC correlation from $\mathrm{H}_{2}-12$ to $-\mathrm{OCOCH}_{3}$, suggested that the acetoxyl group was at $\mathrm{C}-12$. The planar structure of $\mathbf{5}$ was further established by the analyses of 2D NMR (see the supporting information Table S6), and the assignments of all proton and carbon resonances are provided in Table 2. In the ROESY experiment, the observed correlations between $\mathrm{Ha}-7$ and $\mathrm{H}_{2}-12 / \mathrm{Ha}-15 / \mathrm{Hb}-15$, and between $\mathrm{Hb}-7$ and $\mathrm{H}_{3}-$ $13 / \mathrm{H}_{3}-14$ indicated that $\mathrm{C}-12$ and $\mathrm{C}-15$ on the same face of the cyclopentene ring (C-5-C-6-C-7-C-8-C-9), while C-13 and C-14 were on the other face. On the basis of the above analyses, the relative configurations of C-6 and C-8 in $\mathbf{5}$ were established as $6 R^{*}$ and $8 S^{*}$. Since $\mathbf{5}$ and $\mathbf{6}$ coexist in the same strain, the absolute
configurations of C-6 and C-8 in $\mathbf{5}$ should be the same as those in $\mathbf{6}$. To confirm the deduction, the derivatization of $\mathbf{5}$ was carried out. After hydrolysis in 2% sodium methanolate-methanol solution, compound $\mathbf{5}$ was transformed into $\mathbf{6}$ whose absolute configuration was determined as $6 R, 8 S$ by X-ray crystallographic analysis (Fig. 6). Thus, the absolute configuration of 5 was identified as $6 R, 8 S$.

The molecular formula of $\mathbf{8}$ was in accordance with $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{7}$ as determined by HR-ESI-MS data. The ${ }^{1} \mathrm{H}$ NMR data exhibited characteristic protons for two aromatic protons at $\delta_{\mathrm{H}} 7.07$ (d, $J=$
7.6 Hz) and $6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, one anomeric proton signal at $4.42(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and four methyls at $\delta_{\mathrm{H}} 2.41(\mathrm{~s}), 1.49(\mathrm{~s}), 1.27(\mathrm{~s})$, and $1.25(\mathrm{~s})$. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 2) of $\mathbf{8}$ showed 21 carbon signals including six aromatic carbons (δ_{C} 151.1, 145.0, $137.5,135.9,130.4$, and 122.4), two sp^{3} quaternary carbons, three sp^{3} methylenes [including two oxygenated ones ($\delta_{\mathrm{C}} 58.7,78.4$)], four methyls ($\delta_{\mathrm{C}} 32.1,31.7,26.9$, and 19.3), and a set of sugar moiety carbons ($\delta_{\mathrm{C}} 100.9,71.0,73.8,66.1,76.1$, and 60.5). The

Table $2{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data for 5 and $\mathbf{8}-\mathbf{1 0}\left(\mathrm{CDCl}_{3}\right)$.

No.	5^{a}		$8^{\text {b }}$		9^{a}		$10^{\text {a }}$	
	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)	$\delta_{\text {C }}$	${ }^{*} \delta_{\mathrm{H}}(J$ in Hz)
1	134.8		135.9		130.7		132.8	
2	137.5		137.5		137.3		138.5	
3	130.4	7.12, d (8.0)	130.4	7.07, d (7.6)	130.0	7.06, d (7.6)	131.6	7.10, d (7.6)
4	123.5	7.05, d (8.0)	122.4	6.97, d (7.6)	123.3	7.02, d (7.6)	127.4	7.18, d (7.6)
5	147.3		151.1		152.4		152.0	
6	44.4		40.6		40.8		41.3	
7	49.3	$\begin{aligned} & 2.37, \mathrm{~d}(13.2), \mathrm{a}(\beta) \\ & 1.72, \mathrm{~d}(13.2), \mathrm{b}(\alpha) \end{aligned}$	55.0	$\begin{aligned} & 1.92, \mathrm{~d}(13.6), \mathrm{a}(\beta) \\ & 1.84, \mathrm{~d}(13.6), \mathrm{b}(\alpha) \end{aligned}$	53.1	$\begin{aligned} & 2.28, \mathrm{~d}(13.2), \mathrm{a}(\beta) \\ & 1.66, \mathrm{~d}(13.2), \mathrm{b}(\alpha) \end{aligned}$	53.8	$\begin{aligned} & 2.19, \mathrm{~d}(13.6), \mathrm{a}(\beta) \\ & 1.84, \mathrm{~d}(13.6), \mathrm{b}(\alpha) \end{aligned}$
8	50.4		48.4		50.2		49.1	
9	145.1		145.0		145.5		148.3	
10	58.3	$\begin{aligned} & 4.77, \mathrm{~d}(11.6), \mathrm{a} \\ & 4.71, \mathrm{~d}(11.6), \mathrm{b} \end{aligned}$	58.7	$\begin{aligned} & 5.02, \mathrm{~d}(11.6), \mathrm{a} \\ & 4.57, \mathrm{~d}(11.6), \mathrm{b} \end{aligned}$	65.2	$\begin{aligned} & 5.08, \mathrm{~d}(10.0), \mathrm{a} \\ & 4.46, \mathrm{~d}(10.0), \mathrm{b} \end{aligned}$	195.8	10.61, s
11	20.9	2.04, s	19.3	2.41, s	19.2	2.33 , s	21.2	2.49, s
12	72.4	4.09, s	32.1	$1.25, \mathrm{~s}$	32.3	1.27, s	31.3	1.27, s
13	27.1	1.34, s	31.7	1.27 , s	31.1	1.27, s	32.0	1.29 , s
14	26.9	1.39 , s	26.9	1.49, s	26.4	1.30 , s	26.9	1.51, s
15	70.9	$\begin{aligned} & 3.92, \mathrm{~d}(11.6), \mathrm{a} \\ & 3.64, \mathrm{~d}(11.6), \mathrm{b} \end{aligned}$	78.4	$\begin{aligned} & 4.06, \mathrm{~d}(9.4), \mathrm{a} \\ & 3.45, \mathrm{~d}(9.4), \mathrm{b} \end{aligned}$	69.8	$\begin{aligned} & 3.99, \mathrm{~d}(11.2), \mathrm{a} \\ & 3.52, \mathrm{~d}(11.2), \mathrm{b} \end{aligned}$	77.5	$\begin{aligned} & 4.08, \mathrm{~d}(9.6), \mathrm{a} \\ & 3.60, \mathrm{~d}(9.6), \mathrm{b} \end{aligned}$
CO	171.3							
CH_{3}	18.9	2.43, s						
1^{\prime}			100.9	4.42 , br s	100.1	4.49, br s	100.7	4.39, br s
2^{\prime}			71.0	4.01, br s	71.1	3.80, br s	70.9	3.93, br s
3^{\prime}			73.8	3.37 , br d (7.4)	73.7	3.30	73.9	3.47, br d (8.4)
4^{\prime}			66.1	$3.74, \mathrm{t}$ (8.3)	65.7	3.82	66.6	3.80
5^{\prime}			76.1	2.94, br d (8.4)	76.2	3.07	76.0	3.09, br d (8.4)
6^{\prime}			60.5	$\begin{gathered} 3.65, \mathrm{br} \mathrm{~d}(11.4), \mathrm{a} \\ 3.49, \mathrm{~d}(11.4), \mathrm{b} \end{gathered}$	60.7	$\begin{gathered} 3.82, \mathrm{a} \\ 3.72, \mathrm{~d}(12.0), \mathrm{b} \end{gathered}$	61.1	$\begin{gathered} 3.80, \mathrm{a} \\ 3.72, \mathrm{~d}(11.2), \mathrm{b} \end{gathered}$

[^0]structure of aglycone was established from the 1D and 2D NMR data (see the supporting information Table S8), and this was the same as that of dehydrobotrydienol (7). ${ }^{8}$ In the sugar moiety of 8 , the trans-axial arrangement for $\mathrm{H}-3^{\prime}, \mathrm{H}^{\prime} 4^{\prime}$, and $\mathrm{H}-5^{\prime}$ was deduced from the large coupling constants (${ }^{3} J_{\mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}}=8.3 \mathrm{~Hz}$ and ${ }^{3} J_{\mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}}=$ 8.4 Hz), whereas the cis relationship for $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-3^{\prime}$ was evident on the basis of a small coupling constant. From the analysis of coupling constants and comparison with the previously reported
${ }^{13} \mathrm{C}$ NMR data of mannopyranose, ${ }^{19}$ the sugar moiety of $\mathbf{8}$ was identified as mannopyranose (Man). After acid hydrolysis and derivatization of 8, HPLC analysis revealed the presence of Dmannose as compared with derivatives obtained by the same method with standard monosaccharides ${ }^{20}$ The Man unit in $\mathbf{8}$ was
attached to the aglycone via a β-linkage on the basis of the mutual ROESY correlations between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-3^{\prime} / \mathrm{H}-5^{\prime}$. The connection position of the sugar to aglycone was established at $\mathrm{C}-15$ on the basis of the HMBC correlation from $\mathrm{H}-1$ ' to $\mathrm{C}-15$. Therefore, the structure of $\mathbf{8}$ was elucidated as $15-O-\beta$-D-mannopyranosyldehydrobotrydienol, named dehydrobotryoside A.

Fig. 6 X-ray structures of 6 and 7.
Dehydrobotryoside $\mathrm{B}(\mathbf{9})$ was afforded as a colorless oil. The molecular formula was determined to be $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{7}$ by HR-ESI-MS. The NMR data of $\mathbf{9}$ also showed the presence of a mannopyranose moiety and a dehydrobotrydienol aglycone, which was the same as 8. The linkage of the mannopyranose moiety with the aglycone was established at C-10 on the basis of the HMBC correlation from H1^{\prime} to C-10. After acid hydrolysis and derivatization of 9, HPLC analysis revealed the presence of D-mannose as compared with derivatives obtained by the same method with standard monosaccharides. ${ }^{20}$ The Man unit in 9 was attached to the aglycone via a β-linkage on the basis of the mutual NOESY correlations between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-3^{\prime} / \mathrm{H}-5^{\prime}$. Therefore, the structure of 9 was elucidated as 10-O- β-D-mannopyranosyl-dehydrobotrydienol, named dehydrobotryoside B.
Dehydrobotryoside C (10) was obtained as a colorless oil. Its molecular formula was determined to be $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{7}$ by HR-ESI-MS data. The ${ }^{1} \mathrm{H}$ NMR data exhibited characteristic protons for one aldehyde hydrogen proton at $\delta_{\mathrm{H}} 10.61(\mathrm{~s})$, two aromatic protons at $\delta_{\mathrm{H}} 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz})$ and $7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, one anomeric proton signal at $4.39(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and four methyl groups at $\delta_{\mathrm{H}} 2.49$ (s), $1.51(\mathrm{~s}), 1.29(\mathrm{~s})$, and $1.27(\mathrm{~s})$. The ${ }^{13} \mathrm{C}$ NMR and DEPT-135 spectra showed 21 carbon signals, including one aldehyde carbonyl carbon ($\delta_{\mathrm{C}} 195.8$), six aromatic carbons ($\delta_{\mathrm{C}} 152.0,148.3,138.5$, 132.8, 131.6, and 127.4), two sp^{3} methylene carbons [including an oxygenated one ($\delta_{\mathrm{C}} 77.5$)], two sp ${ }^{3}$ quaternary carbons, four methyls ($\delta_{\mathrm{C}} 32.0,31.3,26.9$, and 21.2), and a set of sugar moiety carbons ($\delta_{\mathrm{C}} 100.7,70.9,73.9,66.6,76.0$, and 61.1). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the aglycone were similar to those of dehydrobotrydienol (7), except that an oxygenated methylene carbon in dehydrobotrydienol was replaced by an aldehyde carbon ($\delta_{\mathrm{C}} 195.8$) in 10. This assumption was confirmed by 2D NMR spectra analyses. The HMBC correlations from $\mathrm{H}-10$ to $\mathrm{C}-1 / \mathrm{C}-2$ determined the aldehyde group was located at the $\mathrm{C}-1$ position. The sugar moiety was determined to be mannopyranose on the basis of its ${ }^{13} \mathrm{C}$ NMR chemical shifts and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants compared with the previously reported NMR data. ${ }^{19}$ The connection of the mannopyranose with the aglycone was established at $\mathrm{C}-15$ on the basis of the HMBC correlation from H 1^{\prime} to $\mathrm{C}-15$. After acid hydrolysis and derivatization of $\mathbf{1 0}$, HPLC analysis revealed the presence of D-mannose as compared with derivatives obtained by the same method with standard monosaccharides. ${ }^{20}$ The Man unit in $\mathbf{1 0}$ was attached to the aglycone via a β-linkage on the basis of the mutual ROESY correlations between $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-3^{\prime} / \mathrm{H}-5^{\prime}$. Therefore, the structure of 10 was elucidated as $15-O-\beta$-D-mannopyranosyldehydrobotryenalol, named dehydrobotryoside C.

All isolated compounds were subjected to biological assays for antimicrobial activity against two bacteria (Staphylococcus aureus 209P and Escherichia coli ATCC0111) and two fungi (Candida albicans FIM709 and Aspergillus niger R330). In addition, all
isolated compounds were evaluated by the MTT method for their cytotoxicity against five tumor cell lines, including HL-60, SMMC7721 , A-549, MCF-7, and SW480, with cisplatin and paclitaxel as the positive controls. However, no compounds showed activity.

Conclusions

In summary, ten sesquiterpenoids were isolated from S. bisbyi, including eight new ones. Among them, 4,5-seco-probotryenols AC (1-3) are a new type of sesquiterpenoids named secoprobotryane sesquiterpenoid, which possess a bicyclic skeleton (5/5) derived from probotryane skeleton cleaved at C-4/C-5. In the downstream products of probotryane sesquiterpenoids, most members result from ring rearrangement. For now, only botryane sesquiterpenoids are derived from ring cleavage at $\mathrm{C}-10 / \mathrm{C}-15$. The identification of 4,5-seco-probotryenols A-C (1-3) signifies a new type of sesquiterpenoids. In addition, no glycosylation derivative of botryane sesquiterpenoid has been identified. Dehydrobotryosides A-C $(\mathbf{8}-\mathbf{1 0})$ are the first botryane glycosides. Furthermore, this is the first report about botryane skeleton sesquiterpenoids from Stachybotrys sp..

Experimental

General experimental procedures

The optical rotations were measured on a JASCO P-1020 polarimeter with a 1 cm cell at room temperature. The UV spectra were recorded on a JASCO V-550 UV/Vis spectrometer. The IR spectra were obtained using a JASCO FT/IR-480 plus spectrometer. The HR-ESI-MS spectra were acquired using a Waters Synapt G2 mass spectrometer. The NMR spectra were measured with Bruker AV-400 and Bruker AV 600 spectrometers using solvent signals ($\mathrm{CDCl}_{3}: \delta_{\mathrm{H}} 7.26 / \delta_{\mathrm{C}} 77.0$; $\mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}} 3.30 / \delta_{\mathrm{C}} 49.0$) as internal standard. The analytical HPLC was performed on a Dionex HPLC system equipped with an Ultimate 3000 pump, an Ultimate 3000 diode array detector (DAD), an Ultimate 3000 Column Compartment, an Ultimate 3000 autosampler (Dionex, USA) and an Alltech (Grace) 2000 ES evaporative light scattering detector (ELSD) (Alltech, USA) using a reversed-phase C18 column ($5 \mu \mathrm{~m}, 4.6 \times 250 \mathrm{~mm}$; Phenomenex, USA). The preparative HPLC was performed on a Shimadzu LC-6-AD Liquid Chromatography system with an SPD-20A Detector (Shimadzu, Japan) using a reversed-phase C18 column ($5 \mu \mathrm{~m}, 21.2 \times 250 \mathrm{~mm}$; Phenomenex, USA). The semi-preparative HPLC was carried out on a Shimadzu LC6AD Liquid Chromatography system with a SPD-20A Detector (Shimadzu, Japan) using a reversed-phase C18 column ($5 \mu \mathrm{~m}$, $10 \times 250 \mathrm{~mm}$; YMC, Japan). Column chromatography (CC) was carried out on Sephadex LH-20 (Pharmacia, USA) and ODS (50 $\mu \mathrm{m}$, YMC, Japan), respectively. TLC was performed on precoated silica gel plates (SGF254, 0.2 mm , Yantai Chemical Indus-try Research Institute, China).

Fungus Material.

The strain PYH05-7 was isolated from the mud, collected at Poyang Lake, Jiangxi Province, China. The strain was identified as Stachybotrys bisbyi based on morphological characteristics, its ribosomal internal transcribed spacer (ITS), and the 5.8 S rRNA gene (ITS1-5.8S-ITS2) sequence data (GenBank accession no. KP256004). The fungus was cultured on slants of potato dextrose agar at $25^{\circ} \mathrm{C}$ for 5 days. Agar plugs were used to inoculate four Erlenmeyer flasks (250 mL), each containing 100 mL of potato dextrose broth. Four flasks of the inoculated media were incubated at $25^{\circ} \mathrm{C}$ on a rotary shaker at 200 rpm for 5 days to prepare the seed culture. Fermentation was carried out in 22 Erlenmeyer flasks (500 mL), each containing 70 g of rice.

Distilled $\mathrm{H}_{2} \mathrm{O}(105 \mathrm{~mL})$ was added to each flask, and the rice was soaked overnight before autoclaving at $120^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, each flask was inoculated with 5.0 mL of the spore inoculum and incubated at room temperature for 51 days.

Extraction and Isolation.

The culture was extracted three times with EtOAc, and the organic solvent was evaporated under vacuum to afford the dry crude extract (45.8 g). The crude extract was dissolved in 90% v / v aqueous $\mathrm{MeOH}(500 \mathrm{~mL})$ and partitioned against the same volume of cyclohexane to afford a cyclohexane fraction (C, 15.3 g) and an aqueous MeOH fraction ($\mathrm{W}, 27.4 \mathrm{~g}$). The aqueous MeOH fraction ($\mathrm{W}, 27.4 \mathrm{~g}$) was separated by ODS CC eluting with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(30: 70,50: 50,70: 30$, and 100:0, v / v) to afford four fractions (W1 to W4). The fraction W2 (5.9 g) was further separated by ODS CC with a gradient of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ($40 \%-65 \%$, v/v) to yield eight fractions (W2a to W2h). Fraction W2c (319.2 mg) was subjected to Sephadex LH-20 CC using MeOH and purified with semi-preparative HPLC using $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(27: 73, \mathrm{v} / \mathrm{v})$ at flow rate of $4 \mathrm{~mL} / \mathrm{min}$ to yield $\mathbf{6}$ $(40.0 \mathrm{mg})$. Fraction W2d (1.34 g) was subjected to Sephadex LH-20 CC with MeOH yield three fractions (W2d1 to W2d3). Fraction W2d2 (751.7 mg) was purified by semi-preparative HPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(30: 70, \mathrm{v} / \mathrm{v})$ at flow rate of $4 \mathrm{~mL} / \mathrm{min}$ to yield $3(38.3 \mathrm{mg})$. Fraction W2e (352.2 mg) was subjected to Sephadex LH-20 CC with MeOH and purified with preparative HPLC using $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(30: 70, \mathrm{v} / \mathrm{v})$ at flow rate of $8 \mathrm{~mL} / \mathrm{min}$ to yield $\mathbf{1}(5.3 \mathrm{mg}), \mathbf{4}(8.3 \mathrm{mg}), \mathbf{5}(15.1 \mathrm{mg}), \mathbf{8}(20.3 \mathrm{mg}), \mathbf{9}$ $(26.7 \mathrm{mg})$, and $\mathbf{1 0}(29.8 \mathrm{mg})$. Fraction W2f (1.35 g) was separated by Sephadex LH-20 CC with MeOH to afford four fractions (W2f1 to W2f4). Fraction W2f4 (168.7 mg) was subjected to semi-preparative HPLC with $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$ (32:68, v / v) at a flow rate of $4 \mathrm{~mL} / \mathrm{min}$ to yield $7(15.3 \mathrm{mg})$. The fraction W3 (5.5 g) was further separated by ODS CC using a $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ gradient elution ($55 \%-75 \%$, v/v) to yield six fractions (W3a to W3f). Fraction W3b (1.12 g) was subjected to Sephadex LH-20 CC using MeOH and purified with semipreparative HPLC using $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(50: 50$, $\mathrm{v} / \mathrm{v})$ at flow rate of $3 \mathrm{~mL} / \mathrm{min}$ to yield $2(9.1 \mathrm{mg})$.

4, 5-Seco-probotryenol A (1). colorless crystals; $[\alpha]_{D}^{27}+19.5$ (c $\left.0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 208(4.68) \mathrm{nm}$; IR (KBr) $v_{\text {max }} 3270,2956,2874,1457,1359,1060 \mathrm{~cm}^{-1}$; HR-ESI-MS (positive): $m / z 261.1833[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na}$, 261.1830); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) data, see Table 1.

4, 5-Seco-probotryenol B (2). colorless oil; $[\alpha]_{\mathrm{D}}^{27}+10.9$ (c 0.1, CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 209(3.61) \mathrm{nm}$; IR (KBr) $v_{\text {max }}$ 3299, 2965, 1457, 1367, 1247, $1076 \mathrm{~cm}^{-1}$; HR-ESI-MS (positive): $m / z 303.1934[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Na}$, 303.1936); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) data, see Table 1.

4, 5-Seco-probotryenol C (3). colorless oil; $[\alpha]_{\mathrm{D}}^{27}-11.6$ (c 0.1 , $\left.\mathrm{CHCl}_{3}\right)$; UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 209$ (3.25), 327(2.58) nm; IR $(\mathrm{KBr}) v_{\text {max }} 3275,2963,1727,1471,1256,1067 \mathrm{~cm}^{-1}$; HR-ESIMS (positive): $m / z 277.1781[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Na}$, $277.1780) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) data, see Table 1.

Dehydrobotrylactone (4). colorless oil; $[\alpha]_{D}^{27}-13.2$ (c 0.1, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 208(4.69) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\max }$

3420, 2842, 1686, 1579, 1243, $1070 \mathrm{~cm}^{-1}$ HR-ESI-MS (positive): $\mathrm{m} / \mathrm{z} 247.1358[\mathrm{M}+\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}$, 247.1334); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) data, see Table 1.

12-Acetoxydehydrobotrydienol (5). colorless oil; $[\alpha]_{D}^{27}+11.7$ (c $0.1, \mathrm{CHCl}_{3}$); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }(\log \varepsilon) 209$ (4.75), 253 (4.16) nm ; IR (KBr) $v_{\max } 3455,2955,1748,1603,1471,1078 \mathrm{~cm}^{-1}$; HR-ESI-MS (positive): $m / z 293.1777[\mathrm{M}+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4}, 293.1753$); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) data, see Table 2.

12-Hydroxydehydrobotrydienol (6): colorless crystals; $[\alpha]_{D}^{27}$ $+12.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}\left(\mathrm{CHCl}_{3}\right) \lambda_{\max }(\log \varepsilon) 209(4.30) \mathrm{nm}$; IR (KBr) $v_{\max } 3455,2955,1655,1471,1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}(400 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) and ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) data, see the supporting information Table S7.

Dehydrobotrydienol (7): colorless crystals; $[\alpha]_{D}^{27}-13.0$ (c 0.1, CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 209(3.91) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\text {max }}$ $3356,2957,1655,1460,1042 \mathrm{~cm}^{-1}$.

Dehydrobotryoside A (8): colorless oil; $[\alpha]_{D}^{27}-26.6$ (c 0.1, CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 209(4.67) \mathrm{nm}$; IR (KBr) $v_{\text {max }}$ 3398, 2962, 1457, 1367, 1247, $1076 \mathrm{~cm}^{-1}$; HR-ESI-MS (positive): $m / z 397.2224[\mathrm{M}+\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{7}$, 397.2226); ${ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}) data, see Table 2.

Dehydrobotryoside B (9): colorless oil; $[\alpha]_{D}^{27}-23.5$ (c 0.1, CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 209(4.69) \mathrm{nm} ;$ IR $(\mathrm{KBr}) v_{\text {max }}$ 3317, 2882, 1446, 1388, 1236, $1041 \mathrm{~cm}^{-1}$; HR-ESI-MS (positive): $m / z 793.4368[2 \mathrm{M}+\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{42} \mathrm{H}_{65} \mathrm{O}_{14}$, 793.4374); ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) data, see Table 2.

Dehydrobotryoside C (10): colorless oil; $[\alpha]_{\mathrm{D}}^{27}-13.7$ (c 0.1, CHCl_{3}); UV $\left(\mathrm{CHCl}_{3}\right) \lambda_{\text {max }}(\log \varepsilon) 209(4.69) \mathrm{nm} ; \mathrm{IR}(\mathrm{KBr}) v_{\text {max }}$ 3317, 2882, 1446, 1388, 1236, $1041 \mathrm{~cm}^{-1}$; HR-ESI-MS (positive): $\mathrm{m} / \mathrm{z} 395.2119[\mathrm{M}+\mathrm{H}]^{+}$(calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{7}$, $395.2070) ;{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) data, see Table 2.

Alkaline hydrolysis of 2 and 5

A sample of $2(1 \mathrm{mg})$ dissolved in 2% sodium methanolatemethanol (3 mL) was stirred at $50^{\circ} \mathrm{C}$ for 12 h . After neutralizing with $10 \% \mathrm{HCOOH}$ and extracting with EtOAc, the EtOAc layer was evaporated to dryness and dissolved in MeOH. Then the mixture was purified by semi-preparative RP-HPLC with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(55: 45, \mathrm{v} / \mathrm{v})$ at flow rate of $4 \mathrm{~mL} / \mathrm{min}$ to yield 2a (0.9 mg), whose ${ }^{1} \mathrm{H}$ NMR spectrum, retention time and optical rotation $\left([\alpha]_{\mathrm{D}}^{27}+24.6, \mathrm{CHCl}_{3}\right)$ were identical with those of $\mathbf{1}$ (see the supporting information S2).

A sample of $5(1 \mathrm{mg})$ dissolved in 2% sodium methanolatemethanol (3 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 12 h . After neutralizing with $10 \% \mathrm{HCOOH}$ and extracting with EtOAc, the EtOAc layer was evaporated to dryness and dissolved in MeOH. Then the mixture was purified by semi-preparative RP-HPLC with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(46: 54, \mathrm{v} / \mathrm{v})$ at flow rate of $4 \mathrm{~mL} / \mathrm{min}$ to yield $\mathbf{5 a}(0.7 \mathrm{mg})$, whose ${ }^{1} \mathrm{H}$ NMR spectrum, retention time, and optical rotation $\left([\alpha]_{\mathrm{D}}^{27}+12.6, \mathrm{CHCl}_{3}\right)$ were identical with those of 6 (see the supporting information S2).

Cytotoxicity assay.

Five human cancer cell lines, human myeloid leukemia HL-60, hepatocellular carcinoma SMMC-7721, lung cancer A-549, breast cancer MCF-7, and colon cancer SW480, were used in the cytotoxicity assay. All the cells were cultured in DMEM medium (Hyclone, USA), supplemented with 10% fetal bovine serum (Hyclone, USA), in $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. The cytotoxicity assay was performed according to the MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) method in 96 -well microplates ${ }^{21,22}$ with cisplatin and paclitaxel (Sigma, USA) as the positive controls. Cell viability after 48 h treatment was detected and the cell growth curve was graphed. The IC_{50} values were calculated by Reed and Muench's method. ${ }^{23,24}$

Antimicrobial Assay.

Compounds were tested for antimicrobial activity using a diskdiffusion assay. ${ }^{25,26}$ Seed cultures of two bacteria
(Staphylococcus aureus 209P and Escherichia coli ATCC0111) and two fungi (Candida albicans FIM709 and Aspergillus niger R330) were prepared by incubating the organism for 12 hours at $32{ }^{\circ} \mathrm{C}$ (fungi) or $37^{\circ} \mathrm{C}$ (bacteria). Aliquots of the overnight cultures ($80 \mu \mathrm{~L}$) were spread onto the surfaces of nutrient agar (bacteria) or yeast extract agar with $2 \%(\mathrm{w} / \mathrm{v})$ glucose (fungi). Sterile filter disks (6 mm diameter) infused with $6 \mu \mathrm{~L}$ of test solution (in DMSO) and positive control, vehicle only (DMSO) were added to the plates. The plates were left upright for 30 min at room temperature before being placed in an incubator for 12 hours at $32{ }^{\circ} \mathrm{C}$ (fungi) or $37^{\circ} \mathrm{C}$ (bacteria). Then the diameter of the zone of growth inhibition around each disk was recorded. The continuous 2-fold dilution method was used to evaluate the minimal inhibitory concentrations. The MICs were defined as the lowest concentration at which no microbial growth could be observed.

Determination of the absolute configuration of mannose unit

 Authentic samples of D/L-Man and L-cysteine methyl ester hydrochloride (1.0 mg each) were dissolved in pyridine (1.0 mL) and heated at $60^{\circ} \mathrm{C}$, and then o-tolylisothiocyanate (0.2 mL) was added to the mixture and heated at $60^{\circ} \mathrm{C}$ for 1 h .A sample of $\mathbf{8 / 9} / 10(0.5 \mathrm{mg})$ was added to 2 mL of $2 \mathrm{~mol} / \mathrm{L} \mathrm{HCl}$ in a hydrolysis tube, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 2 h. The reaction was quenched with 3.0 mL of $\mathrm{H}_{2} \mathrm{O}$ and extracted twice with 2.0 mL of EtOAc to remove the aglycone. After evaporation of the aqueous layer, 1.0 mg of L-cysteine methyl ester hydrochloride and $100 \mu \mathrm{~L}$ of pyridine were added, and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h . o-Tolylisothiocyanate (50 $\mu \mathrm{L}$) was added, and the solution was stirred at $60^{\circ} \mathrm{C}$ for another 1 h . The reaction mixture was directly analyzed by RP HPLC (Phenomenex C18 column; $250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m} ; 25 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{HCOOH} ; 0.8 \mathrm{~mL} / \mathrm{min} ; 35^{\circ} \mathrm{C}$) detected at 250 nm . The resulting Man derivative ($t_{\mathrm{R}} 14.253 \mathrm{~min}$) coeluted with a derivatized D-Man standard ($t_{\mathrm{R}} 14.253 \mathrm{~min}$), but not with a derivatized L-Man standard ($t_{\mathrm{R}} 22.985 \mathrm{~min}$).

X-ray crystallographic analysis of 1,6 , and 7.

Crystal data for 4, 5-seco-probotryenol A (1): Data were collected using a Sapphire CCD with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation, $\lambda=1.54184 \AA$ at 173.0 K . Crystal data: $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, M=256.37$, space group orthorhombic, $P 2_{1} 2_{2} 2_{1}$; unit cell dimensions were determined to be $a=6.30805(13) \AA$, $b=14.8331(3) \AA, c=16.7092(3) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=$ $90.00^{\circ}, V=1563.44(5) \AA^{3}, Z=4, D x=1.089 \mathrm{mg} / \mathrm{m}^{3}, F(000)=$ $568, \mu(\mathrm{Cu} \mathrm{K} \alpha)=0.583 \mathrm{~mm}^{-1} .12848$ reflections were collected
to $\theta_{\max }=62.77^{\circ}$, in which 2417 reflections were observed $\left[F^{2}>\right.$ $\left.4 \sigma\left(F^{2}\right)\right]$. The final refinement gave $R=0.0281, R_{\mathrm{W}}=0.0708, S$ $=1.083$, Flack $=0.02(18)$, and Hooft $=0.04(8)$. Crystal data of 1 was deposited in the Cambridge Crystallographic Data Centre (CCDC 1060373).

Crystal data for 12-hydroxydehydrobotrydienol (6): Data were collected using a Sapphire CCD with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation, $\lambda=1.54184 \AA$ at 173.0 K . Crystal data: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}, M=250.33$, space group orthorhombic, $P 2_{1} 2_{1} 2_{1}$; unit cell dimensions were determined to be $a=9.13361$ (13) $\AA, b=$ 10.68806(3) $\AA, c=13.75024(19) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=$ $90.00^{\circ}, V=1342.31(3) \AA^{3}, Z=4, D x=1.239 \mathrm{mg} / \mathrm{m}^{3}, F(000)=$ $544, \mu(\mathrm{Cu} \mathrm{K} \alpha)=0.678 \mathrm{~mm}^{-1} .21683$ reflections were collected to $\theta_{\max }=62.73^{\circ}$, in which 2078 reflections were observed $\left[F^{2}>\right.$ $\left.4 \sigma\left(F^{2}\right)\right]$. The final refinement gave $R=0.0286, R_{\mathrm{W}}=0.0726, S$ $=1.105$, Flack $=0.07(19)$, and Hooft $=0.11(7)$. Crystal data of 6 was deposited in the Cambridge Crystallographic Data Centre (CCDC 1060374).

Crystal data for dehydrobotrydienol (7): Data were collected using a Sapphire CCD with graphite monochromated $\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation, $\lambda=1.54184 \AA$ at 173.0 K . Crystal data: $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}, M=$ 234.33, space group orthorhombic, $P 2_{1} 2_{1} 2_{1}$; unit cell dimensions were determined to be $a=8.8587$ (3) $\AA, b=$ 10.9481(4) $\AA, c=13.7817(5) \AA, \alpha=90.00^{\circ}, \beta=90.00^{\circ}, \gamma=$ $90.00^{\circ}, V=1336.62(9) \AA^{3}, Z=4, D x=1.164 \mathrm{mg} / \mathrm{m}^{3}, F(000)=$ $512, \mu(\mathrm{Cu} \mathrm{K} \alpha)=0.590 \mathrm{~mm}^{-1} .12262$ reflections were collected to $\theta_{\text {max }}=62.86^{\circ}$, in which 1869 reflections were observed [$F^{2}>$ $\left.4 \sigma\left(F^{2}\right)\right]$. The final refinement gave $R=0.0728, R_{\mathrm{W}}=0.2002, S$ $=1.032$, Flack $=-0.1(7)$, and Hooft $=-0.1(2)$. Crystal data of 7 was deposited in the Cambridge Crystallographic Data Centre (CCDC 1060375).

Acknowledgments

We are grateful to Dr. L. J. Sparvero at the University of Pittsburgh for linguistic corrections. This project was financially supported by grants from the Ministry of Science and
Technology of China (2012ZX09301002-003001006), the Natural Science Foundation of China (81422054, 81373306), the Guangdong Natural Science Funds for Distinguished Young Scholar (S2013050014287), the Science and Technology Program of Guangzhou (2013J4501037), and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (Hao Gao, 2014).

Notes and references

${ }^{a}$ College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. Email: tyaoxs@jnu.edu.cn.
${ }^{b}$ Institute of Traditional Chinese Medicine \& Natural Products, Jinan University, Guangzhou 510632, P. R. China. E-mail: tghao@jnu.edu.cn, chgdtong@163.com.Tel(Fax):+86-2085221559.
${ }^{c}$ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, P. R. China.
${ }^{d}$ State Key Laboratory of Photochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China.
\dagger Electronic Supplementary Information (ESI) available: NMR data of $\mathbf{1 - 1 0}$, the HPLC analyses of the reaction products ($\mathbf{2 a}$ and 5a), and the 1D and 2D NMR spectra of 1-10. See DOI: 10.1039/c000000x/

1 J. L. Yang, L. L. Liu, Y. P. Shi, Tetrahedron Lett. 2009, 50, 6315-6317.
2 F. Bohlmann, C. Zdero, J. Jakupovic, H. Robinson, R. M. King, Phytochemistry, 1981, 20, 2239-2244.
3 A. Y. Hong, B. M. Stoltz, Angewandte Chemie, 2014, 53, 5248-5260.
4 I. G. Collado, A. J. Sanchez, J. R. Hanson, Nat. Prod. Rep., 2007, 24, 674-686.
5 H. Fehlhaber, R. Geipel, H. Mercker, R. Tschesche, K. Welmar, Chem. Ber., 1974, 107, 1720-1730.
6 H. J. Lindner, B. Gross, Chem. Ber., 1974, 107, 3332-3336.
7 I. G. Collado, R. Hernández-Galán, V. Prieto, J. R. Hanson, L. G.
Rebordinos, Phytochemistry, 1996, 41, 513-517.
8 R. Durán-Patrón, R. Hernández-Galán, L. G. Rebordinos, J. M.
Cantoral, I. G. Collado, Tetrahedron, 1999, 55, 2389-2400.
9 R. Durán-Patrón, R. Hernández-Galán, I. G. Collado, J. Nat. Prod., 2000, 63, 182-184.
10 N. Deighton, I. Muckenschnabel, A. J. Colmenares, I. G.
Collado, B. Williamson, Phytochemistry, 2001, 57, 689-692.
11 A. J. Colmenares, R. Durán-Patrón, R. Hernández-Galán, I. G. Collado, J. Nat. Prod., 2002, 65, 1724-1726.
12 K. Krohn, J. Dai, U. Florke, H. Aust, S. Drager, B. Schulz, J. Nat. Prod., 2005, 68, 400-405.
13 T. Kimata, M. Natsume, S. Marumo, Tetrahedron Lett.1985, 26, 2097-2100.
14 X. Qin, H. Shao, Z. Dong, J. J. Liu, Antibiot., 2008, 61, 556-562.
15 T. Feng, Z. Li, Z. Dong, J. Su, Y. Li, J. Liu, Nat. Prod.
Bioprospect., 2011, 1, 29-32.
16 Y. Yuan, Y. Feng, F. X. Ren, S. B. Niu, X. Z. Liu, Y. S. Che, Org. Lett., 2013, 15, 6050 -6053.
17 J. L. Reino, R. Durán-Patrón, I. Segura, R. Hernández-Galán, H. H. Riese, I. G. Collado, J. Nat. Prod., 2003, 69, 344-349.

18 J. W. He, Z. Q. Mu, H. Gao, G. D. Chen, Q. Zhao, D. Hu, J. Z.
Sun, X. X. Li, Y. Li, X. Z. Liu, X. S. Yao, Tetrahedron, 2014, 70, 4425-4430.
19 F. Zhang, S. C. Liu, X. H. Lu, L. D. Guo, H. Zhang, Y. S. Che, J. Nat. Prod., 2009, 72, 1782-1785.
20 T. Tanaka, T. Nakashima, T. Ueda, K. Tomii, I. Kouno, Chem. Pharm. Bull., 2007, 55, 899-901.
21 T. Mosmman, J. Immunol. Methods, 1983, 65, 55-63.
22 M. C. Alley, D. A. Scudiero, A. Monks, M. L. Hursey, M. J.
Czerwinski, D. L. Fine, Cancer. Res., 1988, 48, 589-601.
23 L. J. Reed, H. Muench, Am. J. Hyg., 1938, 27, 493-497.
24 G. D. Chen, Y. Chen, H. Gao, L. Q. Shen, Y. Wu, X. X. Li, Y. Li, L. D. Guo, Y. Z. Cen, X. S. Yao, J. Nat. Prod., 2013, 76, 702-709.

25 B. Groblacher, V. Maier, O. Kunert, F. Bucar, J. Nat. Prod., 2012, 75, 1393-1399.
26 C. C. Shen, W. J. Syu, S. Y. Li, C. H. Lin, G. H. Lee, C. M. Sun, J. Nat. Prod., 2002, 65, 1857-1862.

[^0]: ${ }^{a}$ The data were recorded with a Bruker AV 400 spectrometer (${ }^{1} \mathrm{H}$ for $400 \mathrm{MHz},{ }^{15} \mathrm{C}$ for 100 MHz).
 ${ }_{*}^{b}$ The data were recorded with a Bruker AV 600 spectrometer (${ }^{1} \mathrm{H}$ for $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ for 150 MHz).

 * The indiscernible signals due to overlap or having complex multiplicity are reported without designating their multiplicity

