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Elastic models coupling the cellulose nanofibril to the 

macroscopic film level 

Gabriella Josefsson,a Gary Chinga-Carrascob and E. Kristofer Gamstedta 

The mechanical behaviour of cellulose nanofibrils is typically characterized by casting thin 
films and performing tensile tests on strips cut from these films. When comparing the stiffness 
of different films, the stiffness of the nanofibrils is only qualitatively and indirectly compared. 
This study provides some schemes based on various models of fibre networks, or laminated 
films, which can be used to assess the inherent stiffness of the nanofibrils from the stiffness of 
the films. Films of cellulose nanofibrils from different raw materials were manufactured and 
the elastic properties were measured. The expressions relating the nanofibril stiffness and the 
film stiffness were compared for the presented models. A model based on classical laminate 
theory showed the best balance between simplicity and adequacy of the underlying 
assumptions among the presented models. Using this model, the contributing nanofibril 
stiffness was found to range from 20 to 27 GPa. The nanofibril stiffness was also calculated 
from mechanical properties of nanofibril films found in the literature and compared with 
measurements from independent test methods of nanofibril stiffness. All stiffness values were 
found to be comparable and within the same order of magnitude. 

1. Introduction 

From a mechanical point of view, the cellulose microfibril 
constitutes the smallest structural building block of wood and is 
the main load-carrying constituent of wood. Wood pulp fibres 
can in principle be fibrillated into cellulose microfibrils, which 
correspond to the presently used term cellulose nanofibrils 
(CNFs).1,2 CNF consists of crystalline and amorphous cellulose 
and has high stiffness and strength along the main axis 
compared with that of wood fibres. CNF is produced by a 
mechanical fibrillation process of pulp fibres, sometimes 
together with a pretreatment of the pulp to facilitate the 
separation of the nanofibrils. Mechanical fibrillation can be 
done through refining via a high pressure homogenizing 
process.3 The refiner consists of a rotor and a stator disk where 
the pulp fibres are forced through a gap between these two 
parts. The fibres are thereby subjected to repeated stresses and 
the primary cell wall layer, P, and outer secondary cell wall 
layer, S1, are peeled off. A detrimental effect with the refining 
process is that the properties of the CNF can be impaired, e.g. 
reduction in degree of crystallinity and molar mass.4 The use of 
pretreatment facilitates the fibrillation and makes the 
mechanical treatment more efficient.5,6 It also seems to result in 
a more homogenous fibrillation of the fibres and generates 
elementary fibrils with a diameter of around 3-4 nm.7  
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The most practical way to characterize the mechanical 
properties of CNFs is tensile testing of strips cut from CNF 
films. The effect of wood species, chemical pretreatment and 
fibrillation process can then be compared. To relate the inherent 
CNF stiffness to that of the film, a suitable model must be used. 
The model should necessarily account for the structure of the 
material, i.e., among other factors, the nanofibril orientation 
distribution and the density of the material. Casting of CNF 
films typically means that the nanofibrils are deposited on a 
fine wire or a Petri dish, and the excess water is evaporated. If 
the suspension is well mixed and there is no flow, it can be 
assumed that the nanofibrils are deposited with a two-
dimensional in-plane random orientation distribution. X-ray 
diffraction can be used to confirm that the out-of-plane 
orientation of fibrils is negligible.8 The CNF film can then be 
regarded as a two-dimensional network of nanofibrils or a 
laminate depending on the density of the material. Most 
network models emanate from paper mechanics, where the 
assembly of the larger pulp fibres form a similar microstructure 
in paper sheets as what is expected of nanofibrils forming a 
CNF film. One of the first theories for modelling fibre networks 
was developed by Cox9. The model has been used to relate the 
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paper stiffness with the fibre stiffness but is also used for CNF 
films.10-12 In the model by Cox, the fibres are assumed to be 
infinitely long and subjected to the same strain in their axial 
direction as that of the sheet in the same direction. Effects of 
fibre bending and fibre-fibre bonding are neglected. Page et 
al.13-15 have suggested several modified models based on Cox’ 
theory where finite fibre length and relative bonded areas in the 
sheet have been taken into account. Other models based on 
Cox’ theory include influences from additional fibre features 
such as fibre curl, internal stresses, shear stress etc. One of 
those models was derived by van den Akker16 where he 
assumes that even unbonded fibres can carry bending moments 
and shear stresses. Many of the more general models, however, 
include empirical parameters which cannot directly be 
determined independently. Krenchel17 developed a model for 
fibre reinforced composite materials by defining an efficiency 
factor that depends on the orientation of the reinforcement 
fibres. The model can also be used for fibre networks and has 
been used by many authors to connect the elastic properties 
between CNFs and films.12,18-20 Another widely used model for 
calculation of composite, or network21, stiffness is classical 
laminate theory (CLT), e.g. Tsai22. In CLT, the reduced 
stiffness matrix for an in-plane stress state of unidirectional 
plies is used to calculate the effective stiffness of a composite 
or a network. The composite or network is regarded as a 
laminate composed of these unidirectional plies with various 
orientations. The effective stiffness of the laminate is derived 
by averaging the plane-stress stiffness of the unidirectional 
plies.22 The stiffness matrix of a ply with an off-axis orientation 
can be calculated through coordinate transformation. For quasi-
isotropic composites, CLT has been further simplified by Tsai 
and Pagano23. The model is derived using several 
simplifications, where the final expression gives a simple 
relation between the composite stiffness and the in-plane 
Young’s moduli of the unidirectional plies in the longitudinal 
and transverse directions, respectively.  
 
To investigate the elastic properties of the nanofibrils, CNF 
films were produced from the pulp of Radiata pine and 
Eucalyptus, of which the former was also pretreated by 
TEMPO-mediated oxidation to facilitate the fibrillation. By 
measuring the tensile properties of the films, the elastic 
properties of the CNF can be calculated using a suitable 
micromechanical model. In this paper, the most commonly used 
micromechanical models connecting the film stiffness with the 
CNF stiffness are presented. Key differences in the assumptions 
of these models and their applicability to CNF films are 
discussed, such as the influence of the transverse elastic 
properties of the CNF to that of CNF film. The term 
‘micromechanical’ should here be understood in a broader 
sense as a material model based on heterogeneous structure of 
the material, which may or may not be in the micrometre range. 
The stiffness of the CNFs is calculated from the stiffness of the 
produced films and compared with stiffness values found in the 
literature.  

2. Modelling 

Four common models have been investigated, namely (i) 
classical laminate theory (e.g. Tsai22), (ii) the Tsai-Pagano 
model22, (iii) the Cox model9 and (iv) the Krenchel model17. 
They all have the advantage of being relatively simple, i.e. 
convenient analytical expressions without too many parameters 
which need to be experimentally quantified or estimated. Given 
the experimental scatter in stiffness measurements and input 
parameters, it is not motivated to use more complex and 
accurate numerical models for the purpose of screening the 
CNF stiffness. Finite element modelling can, however, be very 
useful for benchmarking different analytical models and to 
investigate effects of intrinsic features such as overlapping 
nanofibrils.24 A too simple analytical model, which does not 
capture the main deformation mechanisms, would also not be a 
suitable choice. This balance between accuracy and simplicity 
is addressed with regard to the mentioned elastic models. The 
models have been developed for fibre network or composite 
materials with random orientated fibres, but could also be used 
for CNF films. The different models will give different values 
of the contributing stiffness of the CNFs, which can be 
compared with the stiffness estimated by other methods. In 
order to assess the reasons for these differences between the 
models, it is useful to understand the difference in assumptions 
in the various models. The predictive capability of various 
models can then be compared in relation to the underlying 
assumptions. The aim is to identify which assumptions are 
over-simplifying, and which are necessary to capture the 
mechanics of elastic deformation of nanofibril films. Abridged 
derivations of the various models, based on the original 
references, are therefore presented in the following, with the 
simplifying assumptions highlighted.    
 
2.1 Classical laminate theory 

 
Classical laminate theory (CLT) predicts the in-plane stiffness 
of a composite laminate composed of anisotropic two-
dimensional layers or plies. CLT analogies are also used to 
describe the in-plane elasticity of non-layered  materials, such 
as short-fibre composites25, paper sheets21, liquid crystals26 and 
nanocomposites.27 Each ply represents one specific orientation 
of the fibres and the off-axis stiffness matrix can be calculated 
through coordinate transformation. The relative thickness of the 
ply is related to the probability of the fibres within the specific 
orientation interval. The effective stiffness of the composite 
material or network is derived from the average plane-stress 
stiffness of unidirectional plies with various orientations. The 
plies can deform elastically in the longitudinal, transverse and 
shear directions in the plane. For a dense film of fibres with a 
random in-plane orientation distribution, the probability for 
each fibre direction is equal and the effective Young’s modulus 	�� becomes (e.g. Tsai 22) 
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 �� = ���� − �
����� , 
 

 
(1) 

where ���  and �
� are invariants of the reduced stiffness matrix 

of the hypothetical unidirectional plies from which the laminate 
is being constructed The invariants can be expressed by 

 
 ��� = 38���� + 38���� + 14���� + 12���� , 

 

(2) 
 

and 
 
 �
� = 18���� + 18���� + 34���� − 12���� . (3) 

 
 

Here ����  are the reduced stiffness matrix elements of the 

unidirectional plies, which can be expressed as 

 
 ���� = ���1 − ���� ���� , 

 

(4) 
 

 ���� = ���� ���1 − ���� ���� , 
 

(5) 
 

 ���� = ���� , 
 

(6) 
 

 ���� = ���1 − ���� ���� , 
 

(7) 
 

and 
 

 ���� = ���� , (8) 
 

where  ��� is the longitudinal Young’s modulus of the plies, ��� 

is the transverse Young’s modulus, ����  and ����  are the in-plane 

Poisson ratios and ����  is the shear modulus.  

 
For films of fibres, without a surrounding matrix, Eq. (4-8) will 
be functions of the fibre properties alone and the ply properties 
will be replaced by the fibre properties. The porosity of the film 
needs to be taken into account which could be done by scaling 
the isotropic Young’s modulus, given in Eq. (1), with the ratio 
of the density of the porous film, and the density of the fibres. 
The effective Young’s modulus becomes 
 
 ����� = ������� ���� − �
� ���� .  

(9) 

 

2.2 The Tsai-Pagano model 

The model developed by Tsai and Pagano23 is used for 
estimation of the stiffness of composites or films with a quasi-
isotropic lay-up and in-plane randomly oriented fibres.28-30 The 

model expresses the in-plane Young’s modulus of layered 
composites in terms of the longitudinal and transverse Young’s 
moduli of the constitutive unidirectional plies. However, the 
expression has been derived from CLT by making several 
simplifying assumptions. These assumptions will be outlined in 
the following in order to interpret the differences between the 
various models in predicting CNF stiffness from CNF film 
stiffness. The first simplification in the model is done by 
assuming that the Young’s modulus of the random orientated 
composite material is equal to the invariant ��, neglecting the 
fourth invariant �
 in Eq. (1). This assumption means that the 
Poisson ratio for the in plane isotropic composite is considered 
as zero and that no deformation takes place in other direction 
than the direction of the far-field applied load. That 
approximation leads to the expression 
 
 �� = 38���� + 38���� + 14���� + 12���� . 

 

 
(10) 

The idea with the model is then to express all components ����  

in the reduced stiffness matrix as a function of the longitudinal 
and transverse Young’s moduli of the unidirectional plies. For 

the components ����  and ���� , the same approximation is done 

as in Eq. (10), i.e. all deformations in other directions than an 

applied load are neglected, and the components ����  and ����  are 

approximated by 

 
 ���� ≅ ��� 

 
(11) 

and 
 
 ���� ≅ ���. (12) 

 
This approximation is however more justified for the plies with 
a high degree of anisotropy, i.e. the 1 direction (fibre direction) 
is substantially stiffer than the 2 direction (transverse direction), 
where one of the Poisson ratios is close to zero. To obtain an 

expression for ���� , Tsai and Pagano23 used the elasticity 

solutions of longitudinal shear and transverse loading of a 
unidirectional composite ply developed by Adams and 
Doner,31,32 given by 

 
 ������ = ������ =  � ! ���� , ��" 

(13) 

 
and 
 
 ������ = ����� =  � ! ���� , ��	".	 (14) 

 
It is also assumed that the function  � and  � are related to each 
other as 
 
  � = # �, (15) 
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where # is a function of the fibre volume fraction and the 
constituents stiffness ratio. By using the well-known elastic 
relation for the isotropic matrix 
 
 �� = ��2(1 + ��), 

 

(16) 

together with equations (13-15), a relation between ����  and ��� 

can be made as 

 ���� = #���2(1 + ��). 
 

(17) 

For most polymer matrix materials the Poisson ratio �� is 
around 0.333 and by using a Poisson ratio of 1/3, Eq. (17) can be 
simplified and written 
 
 ���� = 38#���. 

 

(18) 

The off-axis component ����  can be expressed by the transverse 

Young’s modulus and the Poisson ratio ����  of the unidirectional 

composite plies by  

 
 ���� = ���� ���, 

 

(19) 

where this approximation is based on the assumption that the 

smaller Poisson ratio ����  is close to zero. 

 
By the steps described above, all reduced components ����  are 

now described as functions of the longitudinal Young’s 
modulus and the transverse Young’s modulus of the composite 
plies. These expressions can now be inserted in Eq. (10), which 
describes the average Young’s modulus of a composite of 
random orientated fibres as 

 
 �� = 38��� + 38��� + 14���� ��� + 12#���. (20) 

 
By using a Poisson ratio ����  of 1/4 and a # of 1, Eq. (20) can 

we written as23 

 
 �� = 38��� + 58��� . (21) 

 
The Young’s modulus of a film, or network, will be a function 
of the two fibre moduli alone, and can be scaled in the same 
way as the CLT model in Eq. (9) to account for the porosity of 
the film. The Young’s modulus of a film, or network of fibres, 
will then be given by 
 
 ����� = ������� '38��� + 58���(. (22) 

 
2.3 The Cox model 

The model by Cox9 is derived directly for a network of fibres or 
a fibrous material where the fibres are assumed to be infinitely 
long and extend from one side of the sample to the other. It is 
also assumed that the fibres are not connected, and can carry 
loads only in the fibre ends. Furthermore, the flexural stiffness 
of the fibres is neglected so that the fibres can carry load only 
in tension. If the sheet is subjected to axial strains in two 

directions, )*���� and )+����, and a shear strain ,����, the axial 

strain in a fibre that lies at a certain angle φ from the x-axis, 

would be ε�� = )*���� cos� 1 + )+���� sin� 1 + ,���� cos 1 sin 1. 

The load in the fibre is proportional to the axial strain and the 
contribution of the fibre to the loads in the x and y direction is 
the product with cos 1 and sin 1, respectively. The probability 
of a fibre having the specific orientation 1 from the x-axis is 
given by the distribution function	4(1). For that specific 
orientation, the number of fibres which intersect a line of a unit 
length perpendicular to the x-axis is 4(1) cos 1, and the 
number of fibres which intersect a line of a unit length 
perpendicular to the y-axis is 4(1) sin 1.  The loads per unit 
width can then be defined as 

 

5*���� = 6��7 8)*���� cos� 1 + )+���� sin� 1…:
; + ,���� cos 1 sin 1< cos� 1 4(1)=1, 

 

(23) 
 

5+���� = 6��7 8)*���� cos� 1 + )+���� sin� 1:
; + ,���� cos 1 sin 1< sin� 1 4(1)=1, 

 

(24) 
 

and 
 

			>���� = 6��7 ()*���� cos� 1 + )+���� sin� 1:
;  

+,���� cos 1 sin 1) cos 1 sin 1 4(1)=1, 
 

(25) 
 

where 6�� is the product of the fibre Young’s modulus and the 
ratio of the density of the film and the density of a fibre. 

After determining the integrals, the forces can be rewritten as 
 
 5*���� = ?��� )*���� + ?��� )+���� + ?��� ,���� , (26) 

 5*���� = ?��� )*���� + ?��� )+���� + ?��� ,���� 	, (27) 

and 
 
 >���� = ?��� )*���� + ?��� )+���� + ?��� ,���� . (28) 

The orientation distribution function must be periodic and can 
thereby be written as the sum 
 

4(1) = 1@ (1 + A� cos 21 +A� cos 41 +A� cos 61 +…	
C� sin 21 + C� sin 41 + C� sin 61 +⋯. (29) 
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Terms of higher order than 2 will not affect the elastic 
constants. The stiffness parameters can then be expressed as 
 
 ?��� = 6��16 (6 + 4A� + A�), 

 

(30) 

 ?��� = 6��16 (6 − 4A� + A�), 
 

(31) 

 ?��� = ?��� = 6��16 (2 − A�), 
 

(32) 

 ?��� = 6��16 (2C� + 4C�), 
 

(33) 

and 
 
 ?��� = 6��16 (2C� − 4C�). 

 

(34) 

 
For a random in-plane orientation, all constants a1, a2, b1, a2, 
are zero, and the Young’s modulus of the fibre sheet becomes   
 
 ����� = 6��/3, (35) 

 
or 
 
 ����� = 13�

����
�� ��� . (36) 

 
2.4 The Krenchel model 

Krenchel17 assumed, as Cox, that the fibres cannot carry load in 
the transverse direction and that the flexural stiffness is 
negligible. He derived an efficiency factor of reinforcement, 
which is determined by summation of the reinforcement of 
pairs of parallel fibres in an angle-ply lay-up. In the derivation 
by Krenchel, it is assumed that a rectangular plane of a 
composite material consists of a balanced symmetric 
configuration of layers with the same amount of fibres with an 
orientation of ±	1 from the x-axis. The composite is subjected 
to an external force in the x-direction. The Poisson ratio is 
assumed to be zero for both the fibres and the matrix, such that 
no deformation takes place in other directions than the direction 
of an applied load. A fibre oriented at an angle 1 from the x-
axis, extending from one side of a rectangular composite plate 
to the opposite one, is assumed to initially have unit length. The 
composite has then an initial length of cosφ. For an elongation )��  of the unit length fibre along the fibre direction, an applied 

force 5�� is required. This force can be divided in two 

components, 5*� = 5�� cos 1 and 5+� = 5�� sin 1, where the 

component in the y-direction will be cancelled by the 
corresponding component from a fibre with the orientation −1. 
From the external force, the composite will be subjected to a 
strain, )*�, and the elongation of the composite, with an original 

length of cos 1, will be )*� cos 1. Thereby, the elongation of the 
fibre can be written as a function of the elongation of the 
composite as 

 
 )�� = )*� cos� 1. (37) 

 
With Hooke’s law, the fibre force can be written 
 
 5�� = ���)��∆H;� = ���)*�cos� 1∆H;� , (38) 

 
where ∆H;�  is the area of the fibre perpendicular to the fibre 
length which can be expressed by the fibre area perpendicular 
to the x-axis by  
 
 ∆H;� =	∆H*� cos 1. (39) 

 
Eq. (38) can be rewritten as a function of the x-components of 
the force and the cross section area of the fibre by 
 
 5*� cos 1⁄ = ���)*� cos� 1∆H*� cos 1, (40) 

 
or  
 
 5*� = ���)*�∆H*� cos
 1. (41) 

 
For a force in the x-direction, the effective area of a fibre is ∆H*� J = ∆H*� cos
 1. By summation over all fibres in the cross 
section, the total effective area becomes 
 
 H*� J =K∆H*	L� J

L
=K∆H*	L� cos
 1LL

. (42) 

 
With this expression of the effective area of the fibres, the 
efficiency factor of reinforcement of arbitrary orientation can 
be expressed by 
 
 M = H*� JH*� =

∑ ∆H*	L� cos
 1LL H*� , (43) 

 

where H*�  is the total area of the fibres in  a cross section 
perpendicular to the x-axis. It can be shown that the ratio 

between ∆H*	L�  for a group of parallel fibres and H*�  is the 
particular proportion, an, of that group with respect to total 
reinforcement, i.e. the probability of the fibres having the 
specific orientation 1L . The efficiency factor can then be 
written 

 
 M =KAL cos
 1LL

. (44) 

 
For a continuous distribution of the fibre orientation, the sum is 
replaced by integration. For the case of a random in-plane 
distribution, the efficiency factor becomes 
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 M = 7 1@ cos

OP
QOP

1=1 = 38. (45) 

 
With the expression of the efficiency factor, the effective 
Young’s modulus for a composite consisting of fibres with 
longitudinal Young’s modulus, ��� , and a matrix with a Young’s 
modulus, ��, is then given by 
 
 �� = #M��� + (1 − #)�� , (46) 

 
where # is the volume fraction of the inclusion. For a fibre 
network, i.e. without matrix, or the Young’s modulus of the 
matrix can be considered zero, # can be regarded as a 
measurement of how dense the fibre network is relative to the 
amount of pores. In other words, for fibre network can # be 
described as the relation between the network density and the 
density of the fibres as 
 
 # = ������� . (47) 

 
Eq. (46) then becomes  
 
 ����� = ������� M��� , (48) 

 
where M is 3/8 for a film with randomly oriented fibres. 

3. Experimental procedures 

3.1 Materials 

Three series of CNF suspensions were produced from 
hardwood Eucalyptus and softwood Pinus radiata kraft pulp 
fibres, as described by Syverud et al.34. Some of the softwood 

pulp was pretreated with TEMPO mediated oxidation according 
to Saito et al.5. 

3.2 Preparation of CNF films 

The CNF suspensions were diluted to 0.1 wt% fibril 
consistency and stirred well. The suspensions were poured into 
funnels, with bottoms consisting of a filter paper on a fine 
copper grid, and subsequently dewatered. The diameter of the 
funnels was 60 mm. A total of 10 films, with the dry basis 
weight of 20 g/m2, were produced from each type of CNF. 
After dewatering, the films were placed in an oven, 100 °C for 
1 hour, to completely remove the moisture.  

3.3 Tensile testing 

The films were cut in stripes with 10 mm in width and 35-
60 mm in length and placed in a climate room at 23 °C and 
55% relative humidity for 24 hours of conditioning. The elastic 
properties were measured with Zwick material tester, model 
2005. The gauge length for the strain measurements was 20 
mm. Since only the elastic properties and not the strength was 

characterised, rectangular strips were tested rather than dog-
bone shaped specimens.  

4. Results and discussion 

CLT describes the elastic properties of a film, or a layered 
composite, from the anisotropic elastic properties of the 
constituent layers. It takes into account all in-plane elastic 
constants, and accounts for axial, transverse and shear stresses 
in a ply with a given orientation. In comparison to CLT, Cox, 
as well as Krenchel, assumes that the fibres can only carry load 
in tension, and all other load cases are neglected. The 
assumption that the film stiffness is a function of only the axial 
stiffness of the fibres would be the same as to assume that all 
other elastic moduli are equal to zero. The model by Tsai and 
Pagano is originally derived for composite materials but the 
final expression can be used for fibre films or CNF films. 
Although it takes into account all types of in-plane loading, a 
lot of approximations are done in the derivations. To 
graphically show the influence of the assumptions in the 
various models, the Young’s modulus of a dense film of CNF, 
in the models regarded as a network of fibres, has been 
calculated as a function of the transverse Young’s modulus ���  
of the CNF. A plausible value of the axial Young’s modulus ���  
= 50 GPa was chosen. In CLT, three different shear moduli 
were used, 	���� = ��� /5, 	���� = ��� /10 and ���� = 0. The 
longitudinal Poisson ratio, ���� , was chosen to 0.25 and the 
transverse Poisson ratio can be calculated with the other elastic 
constants by 
 
 ���� = ������ ���� . (49) 

 
 The Young’s modulus of a film, calculated with the different 
models, is shown in Fig. 1.  
 

 
Fig. 1. Young’s modulus of a CNF film, as a function of the transverse Young’s 

modulus of the CNF, calculated with different models.  

 
The plot in Fig. 1 shows that for small transverse Young’s 
moduli and shear moduli of the CNF, the models give similar 
results. As the transverse modulus and shear modulus increase, 
the difference between the models increases. For a high 
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transverse and shear modulus, both the Cox model and the 
Krenchel model predict a stiffness that is less the half of the 
stiffness predicted by CLT. For dense films, where transverse 
and shear loading of the CFN is probable, CLT is preferable 
since it accounts for these loading modes separately. The Cox 
and Krenchel models, however, are more suitable for low-
density unconsolidated paper materials, which can be regarded 
as a loose network, where only axial forces are considered in 
the reinforcing units. The Tsai-Pagano model falls somewhere 
between CLT and the network models as shear loading is 
indirect taken into account by the assumption that the shear 
modulus is related to the transverse Young’s modulus. For a 
more accurate estimation of CNF stiffness or its contribution to 
film stiffness, finite element modelling could be used. 
Kulachenko et al.24 found thorough numerical simulations that 
for thin CNF sheets, the relative stored elastic energy in 
bending is most considerable. They also found that strain field 
is not uniform under uniform and uniaxial loading. Bending 
arise in the fibrils that are draped over the underlying fibrils and 
from the non-uniform strain field due to the structural 
heterogeneity. The analytical models used in the present work 
do not include bending deformation in the nanofibrils and 
assume iso-strain conditions in the film, which limits their 
applicability to dense and thick CNF films. The basis weight of 
the present material is 20 g/m2 and the thickness 14-21 µm. 
This would form a homogeneous material with up to three 
orders of magnitudes of CNF layers, based on a CNF or 
microfibril diameter of 20 nm.35 
 
During the last decade, there has been a significant increase in 
research aiming to develop CNF materials. Many studies focus 
on the preparation of CNF films, which is usually technically 
more straightforward than to produce CNF-based foams36 and 
bulk composites37. Published works on CNF films typically 
investigate the tensile behaviour of the film rather than 
addressing the mechanical properties of the nanofibrils 
themselves. By applying CLT, an estimation of the elastic 
properties of the CNF can however be obtained. Considering 
the most popular network models outlined above, CLT is most 
likely the model that best captures the mechanical behaviour of 
the films since it includes the in-plane anisotropic behaviour of 
the nanofibrils. In order to back-calculate the CNF stiffness 
with CLT, the stiffness and the porosity of the films have to be 
measured. For the films in this study, the film thicknesses have 
been documented by Chinga-Carrasco et al.35 by scanning 
electron microscopy (SEM). By using a CNF density of 1.5 
g/cm3, the porosity of the films was calculated from the 
thickness and the dry base weight. Measurements with a 
conventional micrometre screw gauge are known to 
overestimate the thickness, and quantification of film thickness 
is preferably done by SEM of polished cross-sections.35 The 
thicknesses of the different films are presented in Table 1. The 
degree of polymerisation, chemical composition and a rough 
size distribution of the CNFs have been characterised by 
Syverud et al.34   
 

Table 1  Thickness values of the films measured with SEM35 

Fibril raw material Pretreatment Thickness (µm) 
Eucalyptus None 20.65±1.17 
Pinus radiata None 18.20±1.18 
Pinus radiata, TEMPO mediated oxidation 14.97±0.45 

 

From the initial linear part of the stress-strain curve, the 
Young’s modulus of the films was determined. CLT was used 
to back-calculate the effective Young’s modulus of the fibrils. 
The orientation distribution of the CNFs was assumed to be 
random in the plane, since the nanofibrils were slowly 
deposited on the wire during dewatering without any stirring or 
flow.38 The SEM image in Fig. 2 shows a film made of Pinus 

Radiata CNFs and does not indicate any preferential fibril 
orientation in the plane.  
 

 
Fig. 2 A SEM image of the in-plane random orientated fibrils in a film made from 

Pinus Radiata. 

 
Table 2 summarizes the identified fibril stiffness values of the 
experimentally investigated films, as well as of various CNF 
films presented in literature. The ratios of the Young’s moduli 
of the nanofibrils, used in the CLT, were based on self-
consistent Mori-Tanaka calculations of nanofibril stiffness 
described by Josefsson et al39. From the calculation described in 
paper, the stiffness matrix of the fibril becomes 
 

? =
S
TTU
69 8.8 8.8 0 0 08.8 27 9.4 0 0 08.8 9.4 27 0 0 00 0 0 8.8 0 00 0 0 0 3.5 00 0 0 0 0 3.5X

YYZ [GPa]. 

 
Based on this stiffness matrix, the transverse Young’s modulus 
of the fibrils was taken to be 1/3 of the longitudinal Young’s 
modulus and the shear modulus was taken to be 1/20 of the 
longitudinal Young’s modulus. The Poisson ratios were set to 
νLT = 0.24 and νTL = 0.09, directly taken from the stiffness 
matrix. With these assumptions, the stiffness of the films will 
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be a function of only the axial Young’s modulus of the fibrils 
and the film porosity in the CLT model in Eq. (9). For the 
present materials, it can be noticed in Table 2, that hardwood 
Eucalyptus CNFs are effectively stiffer than the ones from the 
softwood Pinus radiata. This is also consistent with the 
effective stiffness of pulp fibres determined from tensile tests of 
pulp composites, where the Eucalyptus fibres are stiffer than 
those from pine.25 It can also be noted in Table 2 that TEMPO 
pretreatment of the softwood results in stiffer CNFs, which is 
expected since the treatment facilitate the fibrillation while 

limiting mechanical damage of the nanofibrils40. The stiffness 
of the present CNFs, 20-27 GPa, were found to be lower than 
nanofibril stiffness values obtained from literature values of 
softwood pulp CNF films, ranging between 33 and 39 GPa, 
with an exceptional value of 61 GPa, as presented in Table 2. 
At this stage, we cannot explain why the present CNFs are less 
stiff than values obtained in other studies, but the table serve to 
show that quantitative stiffness comparisons of different types 
of CNFs can be made from macroscopic tensile testing of films.  
 

Table 2 Fibril stiffness back-calculated from film stiffness using the CLT model. The films are made of fibrils extracted from different kinds of wood pulp 
using different kinds of pretreatment and processing methods. In some papers, the porosity or the density are not given. These values have then been calculated 
from other given quantities, including the specific modulus and the assumption that CNF density is 1.5 g/cm2. The calculated values are given in italic. 

Fibril type / pretreatment  Film Young’s 
modulus [GPa] 

Thickness 
[µm] 

Density 
[g/cm3] 

Porosity [%] Fibril Young’s 
modulus [GPa] 

Reference 

Softwood / 
 no pretreatment 

9.7 18.2±1.18 1.14 24 20 This work 

Hardwood /  
no pretreatment 

8.5 20.7±1.17 1.06 29 25 This work 

Softwood /  
TEMPO pretreatment 

12.7 15.0±0.45 1.56 0 27 This work 

Softwood /  
enzymatic pretreatment 

14 70 1.34 10.5  33 Henriksson and Berglund 41 

Softwood /  
no pretreatment 

16 1500-2000 1.48 1.33 34 Yano and Nakahara 42 

Softwood / 
 enzymatic pretreatment 

14.7 60-80 1.22 19 38 Henriksson et al.43 

Softwood / 
 N/A 

13.5 50 1.08 28 39 Sehaqui et al.44 

Softwood / 
 no pretreatment 

15.7 21 0.81 45.9 61 Syverud and Stenius 11 

 
In principle, the stiffness of fibrils extracted from different raw 
materials, using different pretreatments and fibrillation 
processes could be investigated from films of various 
porosities, thicknesses and orientation distributions, provided 
that the underlying assumptions of the model are acceptable. 
This could potentially be a helpful characterization method to 
be used in development of load-carrying CNF materials. 
 
To compare the effective fibril stiffness obtained by inverse 
modelling, CNF stiffness values measured by other independent 
methods are compiled in Table 3. The values obtained by the 
present method are consistently lower than those obtained by 
other methods, i.e. directly (bending in an atomic force 
microscope45), indirectly (back-calculation from composite 
stiffness46) or predicted (finite elements model and assumed 
elastic properties of the polymer constituents47). A contributing 
factor could be that the CNFs are considered to be infinitely 
long with perfect stress transfer in all directions in the plane. 
Also, the scatter could be affected by differences in moisture 
content. The ambient conditions affecting the moisture 
absorption was not uniform and sometimes not even 
documented in the cited studies. More work is needed to 
validate and compare different methods to estimate the fibril 
stiffness, preferably with the same type of material and same 
testing conditions. Those methods, such as the present, which 
rely on a simplified analytical model to identify the fibril 
stiffness, should be compared with more exact numerical 
models, where detailed features of the nanostructure and a full 

description of the properties of the fibrils are considered24. 
Nevertheless, the present approach gives stiffness values in the  
 
right order of magnitude and could probably be used to rank the 
stiffness of the constitutive fibrils in a wide variety of films.   

Table 3  Comparison of fibril stiffness estimated with different methods 

Method Fibril Young’s 
modulus [GPa] 

Reference 

Back-calculation from 
films 

20-61 This work. See Table 2 

for references 
AFM bending 61-107 Cheng et al. 45  
Finite element method 63-82 Persson 47  
Back-calculation from 
composite material 

65 Josefsson et al.46 

5. Conclusions 

The contributing stiffness of the CNFs can be determined from 
the measured macroscopic in-plane stiffness of CNF films. A 
number of established analytical models were compared with 
respect to the relation between CNF and film stiffness. It was 
found that CLT was the only model among the tested ones to 
directly account for the effect of transverse and shear stiffness 
of the CNFs. The models by Cox and Krenchel only included 
the axial fibril stiffness. The Tsai-Pagano model includes the 
effect of transverse fibril stiffness, but assumes that the shear 
stiffness is proportional to transverse stiffness. For a dense CNF 
film, all in-plane loading modes are expected, and the analogy 
with CLT was chosen as the best option, in terms of simplicity 
and physicality.  
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The back-calculated Young’s modulus of the CNFs extracted 
from hardwood and softwood pulp (with and without TEMPO 
oxidation pretreatment) ranged from 20 to 27 GPa. This is 
somewhat lower than values for other CNFs obtained from film 
stiffness values found in the literature. Pretreatment resulted in 
higher stiffness values, and hardwood CNFs were found to be 
stiffer than the softwood ones.  
 
The presented back-calculation scheme can be used to estimate 
the Young’s modulus of the CNFs making up the thin dense 
fibrillar films. In absolute terms, more work is required to 
validate the method, e.g. by comparison with independent test 
methods and more accurate numerical models. For ranking 
CNF stiffness for materials development purposes, the 
proposed method shows the advantage of a combination of 
experimental simplicity and straightforward calculations. 
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