RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Journal Name

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Facile Synthesis of Bismuth Oxide/Bismuth Vanadate Heterostructures for Efficient Photoelectrochemical Cells

Received 00th January 2012, Accepted 00th January 2012 Kai-Hang Ye, "Xiang Yu, "
 Zhiguang Qiu, "Yi Zhu, "Xihong Lu" and Yuan
ming Zhang " a,*

DOI: 10.1039/x0xx00000x

www.rsc.org/

Herein, we report a facile approach to synthesize the $Bi_2O_3/BiVO_4$ heterostructures for photoelectrochemical (PEC) cells. Due to the fast separation of the electron-hole pairs as a result of the p-n junction, the $Bi_2O_3/BiVO_4$ heterostructures achieved a remarkable photocurrent of 2.58 mA cm⁻² at 1.2 V vs. Ag/AgCl, which is about 5 times than the pristine BiVO₄.

Due to ever-growing environmental concerns and increasing energy demands, hydrogen is considered as a key energy of the future because of its clean, renewable, carbon-free, and high energy density properties.1-6 Inspired by natural photosynthesis, artificial photoelectrochemical (PEC) water splitting is a promising pathway to produce economically hydrogen. ⁷⁻¹⁰ The efficiency of PEC water splitting is largely determined by the properties of the photoelectrode, and considerable efforts have been devoted to exploring the highly active photoelectrode materials. Semiconductor metal oxides such TiO_2 ,¹¹ ZnO, ¹²⁻¹⁴ Fe₂O₃, ¹⁵ In₂O₃, ¹⁶ and WO₃ ¹⁷ have been extensively studied as photoanodes for PEC water splitting and numerous successes have achieved. Among various metal oxides, binary metal oxide BiVO₄ hold great promise for its significant advantages of the photoactive phase i.e. the monoclinic scheelite phase with a band gap of ~2.36 eV and high theoretical efficiency of 9.1%, which is capable of harvesting visible light. 9, 18, 19 Nevertheless, the efficiency of the BiVO₄ is still low as a result of its relatively poor light-harvesting ability and rapid recombination of photo-generated carriers. $^{20\text{-}22}$ Therefore, it is highly desirable and important to improve the photoactivity and of BiVO₄ by increasing the efficiency of absorption of the BiVO₄ and the separation of the electron-hole pairs.

To improve the PEC activity of BiVO₄ photoanodes, some strategies including element-doping, hydrogenation and composites have been proposed. Another effective strategy is to develop BiVO₄-based heterostructures. For example, various heterostructures such as $WO_3/BiVO_4$, ²³ CaFe₂O₄/BiVO₄, ²⁴ TiO₂/BiVO₄ ²⁵ and BiVO₄/Bi₂S₃ ²⁶ have been reported and enhanced PEC activity of these photoanodes haven been achieved as a result of the increased carrier density, reduced electron-hole recombination and the narrow band

gap of the semiconductor. However, the present PEC performance of these heterostructures is still unsatisfactory. ³ Therefore, the development of new BiVO₄-based heterostructure photoanodes with high PEC activity and excellent stability is very desirable.

In this work, we firstly reported the design and synthesis of the $Bi_2O_3/BiVO_4$ p-n heterostructures for efficient PEC cells. α -Bi_2O_3 is an intrinsic p-type semiconductor with good PEC water splitting and photocatalytic activity 27 . When the p-type Bi₂O₃ and n-type BiVO₄ are integrated together, a number of p-n junctions will be formed. Then, the holes in the valence band (VB) of the p-type Bi₂O₃ will combine with the electrons in the conduction band (CB) of the ntype BiVO₄ due to the p-n junctions. As a consequence, the photoexcited electron-hole pairs are effectively separated by this novel n-p junction structure, which is crucial for the enhancement of PEC activity. Our results show that the Bi₂O₃/BiVO₄ p-n heterostructures achieved a remarkable photocurrent density of 2.58 mA cm⁻² at 1.2 V vs. Ag/AgCl, which is about 5 folds that of pristine of BiVO₄. The Incident-photon-to-current-conversion efficiency (IPCE) of Bi₂O₃/BiVO₄ reaches 35.6% at 440 nm, which is much higher than that of the pristine $BiVO_4$ (about 10% at 440 nm). The Mott-Schottky analysis supports that the Bi₂O₃/BiVO₄ electrode possesses one order of magnitude improvement on donor density compared to the bare BiVO₄ electrode. This high photocatalytic activity makes Bi₂O₃/BiVO₄ a promising and an active photoanode.

The Bi₂O₃/BiVO₄ heterostructure nanospheres were prepared on FTO substrates *via* a two-step process, as schematically illustrated in Figure 1. Metallic Bi nanobelts were firstly grown on FTO substrates by electrodeposition (experimental section). As shown in Figure 1b, the deposited film is black in colour and consisting of nanobelts with a 300 nm wide dendritical structure. XRD spectrum confirms that the deposited film is rhombohedral Bi (Figure S4a and Figure S5). To obtain the Bi₂O₃/BiVO₄ heterostructures, the as-prepared Bi nanobelts were impregnated in the solution of 0.1 mol L⁻¹ NH₄VO₃ for 6 h and then annealed at 550 °C in air (experimental section). Interestingly, the colour of the film has been changed from black to yellow (inset in Figure 1c), and XRD studies clearly demonstrate the successful

Figure 1. (a) Schematic diagrams for the growth process of $Bi_2O_3/BiVO_4$ heterostructures, SEM images of (b) Bi, (c) $Bi_2O_3/BiVO_4$ heterostructures.

transformation from metallic Bi to Bi₂O₃/BiVO₄ (Figure S4d). As shown in Figure 1c, the dendritical structure is basically retained after formed the Bi2O3/BiVO4 heterostructures. Additionally, it should be noted that the Bi nanobelts have been transformed into some connected nanospheres with a dendritical structure. Furthermore, the composition of the Bi₂O₃/BiVO₄ heterostructures can be readily adjusting the immersion time in the NH₄VO₃ solution. For example, Bi₂O₃/BiVO₄ heterostructures was obtained when the immersion time was fixed to 6 h, as shown in Figure S1. When the immersion time increased to 12 h, pure BiVO₄ nanospheres were obtained (Figure S2 and Figure S4c). In addition, pure Bi₂O₃ nanobelts could be formed by directly annealed the as-prepared Bi nanobelts in air (Figure S3 and Figure S4b). All these results clearly show that our present method is an effective method to synthesize the heterostructures with controllable composition. More XRD details of Bi₂O₃, BiVO₄, and composite were shown in Figure S4.

Figure 2. (a) Survey XPS spectra and high-resolution XPS spectra of Bi_2O_3 , $Bi_2O_3/BiVO_4$ heterostructures and $BiVO_4$. XPS spectra of (b) $Bi_{4/f}$ (c) V_{2p} . (d) Enlarged Room temperature Raman-scattering spectrum in range 50-800 cm⁻¹ of Bi_2O_3 , $Bi_2O_3/BiVO_4$ heterostructures and $BiVO_4$.

In order to further investigate the chemical composition and defect state of the products, X-ray photoelectron spectroscopy (XPS) analysis was performed. The XPS survey spectra collected for the pristine Bi_2O_3 , $BiVO_4$ and $Bi_2O_3/BiVO_4$ heterostructures were

shown in Figure 2a. Besides Sn, Si signals originating from the FTO substrate and C signals originating from the adventitious carbon, only Bi, V and O are detected on the sample surface. Figure 2b shows the Bi 4f XPS spectra of the samples. The doublet broad peaks with higher binding energy of 159.4 eV and 164.6 eV are observed for all the samples, which are consistent with the characteristic Bi $4f_{7/2}$ and Bi $4f_{5/2}$ of Bi³⁺ peaks²⁸. This reveals that the Bi has been successfully converted into Bi³⁺. Moreover, the V 2p spectra confirm the presence of V⁵⁺ in the Bi₂O₃/BiVO₄ and BiVO₄ samples (Figure 2c). The binding energies of the synthetic peaks centred at 516.3 eV are consistent with the reported values for \overline{V}^{5+29} . Figure 2d displays the Raman spectra of Bi₂O₃, Bi₂O₃/BiVO₄ and BiVO₄. The peaks located at 329 cm⁻¹ and 447 cm⁻¹ are the characteristic peaks for $Bi_2O_3^{30}$, while the peaks at 826 and 128 cm⁻¹ are assigned to the V-O vibration of BiVO₄ structure units ³⁰. For the $Bi_2O_3/BiVO_4$ sample, the peak at 826 cm⁻¹ is assigned to $BiVO_4$ and the peak at 329 cm⁻¹ is assigned to Bi₂O₃, respectively. Therefore, the Bi₂O₃/BiVO₄ sample consists of Bi₂O₃ and BiVO₄, which also affirmed the successful formation of the heterostructure.

In order to better understand the microstructure of Bi₂O₃/BiVO₄ heterostructures, transmission electron microscopy (TEM) analysis was carried out. Figure 3a is a typical TEM image of the as-prepared Bi₂O₂/BiVO₄ heterostructures, showing that a lot of nanoparticles of 5 nm in diameter are uniformly covered onto the surface of the spheres. Figure 3b shows the high-resolution TEM (HRTEM) image of the sample, suggesting the Bi₂O₃/BiVO₄ heterostructure nanospheres are well crystalline. The well-resolved lattice fringes of 0.32 nm that corresponding to the (120) plane of monoclinic Bi_2O_3 are well observed. The lattice fringes of 0.29 nm that corresponding to the (040) plane of monoclinic BiVO₄ are also observed. Therefore, the Bi₂O₃/BiVO₄ heterostructures are successfully prepared. As shown in Figure 3c-f, distributions of Bi, V and O are clearly presented by the STEM EDS elemental maps, which indicate that the Bi, V and O are uniformly embedded in the nanospheres, and high combining degree of each other.

Figure 3. (a, b) TEM bright field images of the $Bi_2O_3/BiVO_4$ heterostructures. (c) HAADF-STEM image of the $Bi_2O_3/BiVO_4$ heterostructures. (d-f) STEM-EDS elemental mappings of Bi, V and O, respectively.

Journal Name

To study the effect of the p-n heterojunction on the PEC activity of BiVO₄ photoanode, PEC measurements were performed on the pristine BiVO₄, Bi₂O₃/BiVO₄ and Bi₂O₃ samples in a three-electrode electrochemical cell with 0.1 mol L⁻¹ Na₂SO₄ solution as the electrolyte. Figure 4a compares the current vs. potential (i-E) curves for the pristine BiVO₄, Bi₂O₃/BiVO₄ heterostructures and Bi₂O₃ photoelectrodes in the dark and under visible light ($\lambda > 420$ nm) irradiation. As expected, the Bi₂O₃/BiVO₄ electrode exhibited the best photocurrent density compared to the BiVO₄ and Bi₂O₃. The

Figure 4. (a) I-E curves recorded with a scan rate of 25 mV s⁻¹ under a full-arc xenon lamp irradiation, (b) IPCE spectra collected at the incident wavelength range from 300 to 700 nm at 0.6 V vs. Ag/AgCl of the Bi₂O₃, BiVO₄, and Bi₂O₃/BiVO₄ heterostructures, (c) Chronoamperometry (*i*–*t*) of Bi₂O₃/BiVO₄ heterostructures.

photocurrent density of Bi2O3/BiVO4 achieved a current density of 2.58 mA cm⁻² at the potential of 1.2 V vs. Ag/AgCl, which is about 5 times higher than those of pristine $BiVO_4$ (0.47 mA cm⁻²). This present value is also higher than recent reported BiVO₄-based photoanodes, such as Co-Pi Modified BiVO₄/ZnO (2.0 mA cm⁻² at 1.2V vs. Ag/AgCl) 31 , WO₃/BiVO₄ (0.55 mA cm⁻² at 1.23V vs. Ag/AgCl) ³², BiVO₄-TiO₂ (0.53 mA cm⁻² at 1.2V vs. Ag/AgCl) ²⁵, macro-mesoporous Mo:BiVO₄ (2.0 mA cm⁻² at 1.0 V vs. Ag/AgCl) ³³. Furthermore, the current vs. potential (i-E) curves for the pure ptype Bi₂O₃ is shown in Figure S6. Incident-photon-to-currentconversion efficiency (IPCE) measurements were further performed to investigate the PEC performances of the as-prepared photoelectrodes. Figure 4b shows the IPCE spectra of the pristine Bi₂O₃, BiVO₄ and Bi₂O₃/BiVO₄ photoelectrodes measured at 0.6 V vs. Ag/AgCl as a function of incident light wavelength. Obviously, the Bi₂O₃/BiVO₄ photoanode showed substantially enhanced IPCE values compared to the pristine Bi₂O₃ and BiVO₄ at all measured wavelengths, which agree well with their J-V characteristics. The maximum IPCE value of the Bi2O3/BiVO4 reaches 35% at 440 nm, which is much higher than that of pristine BiVO₄ (about 10% at 440 nm) and pure Bi₂O₃ (about 0.16% at 440 nm). This result conveniently supports our hypothesis that the PEC performance of $BiVO_4$ can be greatly improved by forming $Bi_2O_3/BiVO_4$ p-n type heterostructures.

The PEC stability of a photoelectrode is another crucial point for a PEC cell to produce hydrogen. The stability of the Bi₂O₃/BiVO₄ photoanode was also evaluated, and the photocurrenttime (i-t) curves of Bi₂O₃/BiVO₄ photoanode collected at 1.2 V vs. Ag/AgCl are shown in Figure 4c. The photocurrent of Bi₂O₃/BiVO₄ is initially about 2.58 mA cm⁻² and the photocurrent only decreases to 2.28 mA cm⁻² within the initial 20 minutes and then photocurrent decreases slowly to 1.91 mA cm⁻² within 120 min of illumination. This demonstrates that the Bi₂O₃/BiVO₄ heterostructures are very stable during the long time irradiation and extreme voltage, which is due to the separation of electron-hole pairs in the p-n heterostructures.

Figure 5. (a) UV-Vis diffuses absorption spectra and (b) Mott-Schottky curves of $BiVO_4$ and $Bi_2O_3/BiVO_4$ heterostructures.

It is known that both the light absorption and separation efficiency of photoexcited electron-hole pairs have important influences on the PEC property of the photoelectrode. Diffuse reflectance UV-visible spectra of the Bi₂O₃, BiVO₄ and Bi₂O₃/BiVO₄ heterostructures were collected to understand the influence of p-n heterojunction on the light harvesting capability. As shown in Figure 5a, the band edges of the Bi₂O₃ and BiVO₄ samples were at about 400 nm and 512 nm, respectively, which are consistent with the recent reports ^{34, 35}. There is only one absorption band edge as the Bi₂O₃ and BiVO₄, distribute so uniformly in the heterostructures, which is consistent with the recent reports, such as BiOI/TiO₂ heterostructures,³⁶ BiVO₄/TiO₂ heterostructures ³⁷. Additionally, the band edge of Bi₂O₃(400 nm) and BiVO₄ (512 nm). As an indirect semiconductor, the band gap of

To elucidate the influence of heterostructure on photoelectrical properties of BiVO₄, the electrochemical impedance measurements were carried out. Figure 5b shows the Mott-Schottky plots of the

Journal Name

BiVO₄ electrodes at a frequency of 1 kHz in the dark, which were generated based on capacitances that were derived from the electrochemical impedance. Both the BiVO₄ and Bi₂O₃/BiVO₄ electrodes show positive slopes, as expected for *n*-type semiconductors. Notably, Bi₂O₃/BiVO₄ shows substantially smaller slope of Mott-Schottky plot compared to bare BiVO₄, suggesting significantly increased donor densities based on the following equation: From the Figure $N_d = (2/e_0 \varepsilon \varepsilon_0)[d(1/C^2)/dV]^{-1}$,

where N_d is the donor density, e_0 the electron charge, ε the dielectric constant of BiVO₄ (ε =86),²⁰ ε_0 the permittivity of vacuum, and *V* the applied bias at the electrode. The carrier densities of the BiVO₄ and Bi₂O₃/BiVO₄ electrodes are calculated to be 1.85×10^{16} and 3.80×10^{17} cm⁻³, respectively. Notably, Bi₂O₃/BiVO₄ electrode possesses one order of magnitude improvement on donor density compared to the bare BiVO₄ electrode. The drastically increasing donor density of Bi₂O₃/BiVO₄ clearly indicated the enhancement of the conductivity. On the other hand, the Mott-Schottky curve of p-type Bi₂O₃ is shown in Figure S9. All the results clearly verified the assumption that the heterostructures influence the PEC performance

Conclusions

deeply.

In summary, the Bi₂O₃/BiVO₄ heterostructures were successfully prepared by a simple electrodeposition method and followed calcination. Raman, TEM and XPS analyses confirm the formation of the p-n heterostructures, which can facilitate the transportation and separation of the photo-generated electron-hole pairs. The Bi₂O₃/BiVO₄ heterostructures exhibited significantly enhanced PEC activity under visible light irradiation. The photocurrent density of Bi₂O₃/BiVO₄ heterostructure photoanode achieved a high photocurrent of 2.58 mA cm⁻² at 1.2 V vs. Ag/AgCl, which is about 5 times than that of pristine BiVO₄. These finding indicates the Bi₂O₃/BiVO₄ heterostructures are very promising candidates for PEC cells.

Y.M.Z acknowledges the financial support of this work received by the Natural Science Foundation of China (No. 21276104). K.H.Y acknowledges the Jinan University Scientific Research Innovation Cultivation Project of Excellent Postgraduate Candidates Exempt from Admission Exam (No.33220131114).

Notes and references

^b Analytic and Testing Centre, Jinan University, Guangzhou, China 510632.

^c MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/c000000x/

$$Bi_2O_3$$
, $BiVO_4$ and $Bi_2O_3/BiVO_4$ heterostructures could be determined with the formula:

$$\alpha h \nu = A (h \nu - E_o)^{n/2}$$

where α , h, v, A, E_a , and n are the absorption coefficient, Planck's constant, the incident light frequency, a constant, the band-gap energy, and an integer, respectively. Among them, n depends on the characteristics of the optical transition in a semiconductor, i.e., direct transition (n = 1) or indirect transition (n = 4). For BiVO₄ and Bi₂O₃, both of them pertain to direct transition and the values of n are 1³⁸. The band-gap energy (E_g value) of BiVO₄ can be thus estimated from a plot of (αhv)² versus the photon energy (hv). From the Figure S7, the estimated band gap of Bi₂O₃ sample is about 2.32 eV, which is much smaller than those of untreated BiVO₄ (2.36 eV) and Bi₂O₃ (2.85 eV) samples. The conduction band edge of a semiconductor at the point of zero charge can be calculated by the empirical equation:

$$E_{VB} = X - E^e + 0.5E_g^{39}$$

where E_{VB} is the valence band-edge potential, X is the electronegativity of the semiconductor, expressed as the geometric mean of the absolute electronegativity of the constituent atoms, E^e is the energy of free electrons on the hydrogen scale (about 4.5 eV), E_{g} is the band-gap energy of the semiconductor, and E_{CB} can be determined by $E_{CB} = E_{VB} - E_g$. The X values for BiVO₄ and Bi₂O₃ are ca. 6.04 and 5.95 eV. The band-gap energies of BiVO₄ and Bi₂O₃ adopt 2.36 and 2.85 eV, respectively, which are consistent with the recent reports. ^{34, 35} Given the equation above, the CB and the bottom of the VB of BiVO₄ are calculated to be 0.36 and 2.72 eV, the CB and VB of Bi₂O₃ are calculated to be 0.03 and 2.88 eV, respectively. According to the above results, Scheme 1 was proposed to illustrate a possible charge-separation process. The p-type Bi₂O₃ is with Fermi energy level close to the valence band while the n-type BiVO₄ is with Fermi energy level close to the conduction band (XPS VBM was shown in Figure S8). When the two semiconductors are in contact, the CB potential of Bi_2O_3 is more negative than that of BiVO₄. As shown in Scheme 1, electron-hole pairs will be generated on Bi₂O₃ and BiVO₄ under the irradiation of visible-light. The excited holes on the VB of Bi2O3 transfer to the CB of BiVO4 and combine together. Then, the electrons produced on the CB of Bi_2O_3 will transfer to Pt electrode to reduce H⁺ to form H₂, while the excited holes on the VB of $BiVO_4$ will oxide H_2O to O_2 . Furthermore, the migration of photogenerated electrons and holes could be promoted by the internal electric field. Therefore, the formation of Bi₂O₃/BiVO₄ p-n heterojunction on the surface could effectively separate the photoexcited electron-hole pairs and could greatly reduce the recombination of the photogenerated charge carries.

Scheme 1. Schematic diagram of the band energy of Bi_2O_3 and $BiVO_4$ before contact and the formation of a p-n heterojunction and the proposed charge transfer and separation process of $Bi_2O_3/BiVO_4$ p-n heterostructu under visible-light irradiation.

Page 5 of 6

- 1. J. Gan, X. Lu and Y. Tong, Nanoscale, 2014, 6, 7142-7164.
- X. Lu, S. Xie, H. Yang, Y. Tong and H. Ji, *Chem. Soc. Rev.*, 2014, 43, 7581-7593.
- H. G. Kim, P. H. Borse, W. Y. Choi and J. S. Lee, *Angew. Chem. Int.* Ed., 2005, 44, 4585-4589.
- J. Shi, Y. Hara, C. Sun, M. A. Anderson and X. Wang, *Nano Lett.*, 2011, **11**, 3413-3419.
- X. Lu, G. Wang, S. Xie, J. Shi, W. Li, Y. Tong and Y. Li, *Chem. Commun.*, 2012, 48, 7717-7719.
- S. Yang, L. Fan and S. Yang, J. Phys. Chem. B, 2004, 108, 4394-4404.
- S. Xie, T. Zhai, W. Li, M. Yu, C. Liang, J. Gan, X. Lu and Y. Tong, Green Chem., 2013, 15, 2434-2440.
- G. Wang, Y. Ling, H. Wang, X. Lu and Y. Li, J. Photochem. Photobiology C: Photochem. Rev., 2014, 19, 35-51.
- S. Xie, T. Zhai, Y. Zhu, W. Li, R. Qiu, Y. Tong and X. Lu, *Int. J. Hydrogen Energy*, 2014, **39**, 4820-4827.
- C.-H. Zeng, S. Xie, M. Yu, Y. Yang, X. Lu and Y. Tong, J. Power Sources, 2014, 247, 545-550.
- J. Luo, L. Ma, T. He, C. F. Ng, S. Wang, H. Sun and H. J. Fan, J. Phys. Chem. C, 2012, 116, 11956-11963.
- 12. K.-H. Ye, J.-Y. Wang, N. Li, Z.-Q. Liu, S.-H. Guo, Y.-P. Guo and Y.-Z. Su, *Inorg. Chem. Commun.*, 2014, **45**, 116-119.
- H. Li, Y. Fu, H. Liu, M. Zhu, Z. Peng, J. Yang, J. Li, X. Huang, Y. Jiang and Q. Liu, *Inorg. Chem. Commun.*, 2013, **30**, 182-186.
- C. Yao, B. Wei, H. Ma, L. Meng, X. Zhang and Q. Gong, J. Power Sources, 2013, 237, 295-299.
- A. Ikram, S. Sahai, S. Rai, S. Dass, R. Shrivastav and V. R. Satsangi, *J. Power Sources*, 2014, 267, 664-672.
- H. Li, C. Chen, X. Huang, Y. Leng, M. Hou, X. Xiao, J. Bao, J. You, W. Zhang and Y. Wang, *J. Power Sources*, 2014, 247, 915-919.
- T. Wang, J. Tang, S. Wu, X. Fan and J. He, J. Power Sources, 2014, 248, 510-516.
- M.-L. Guan, D.-K. Ma, S.-W. Hu, Y.-J. Chen and S.-M. Huang, *Inorg. Chem.*, 2011, 50, 800-805.
- Y. Liang, T. Tsubota, L. P. A. Mooij and R. van de Krol, J. Phys. Chem. C, 2011, 115, 17594-17598.
- D. K. Zhong, S. Choi and D. R. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370-18377.
- 21. F. F. Abdi and R. van de Krol, J. Phys. Chem. C, 2012, 116, 9398-9404.
- S. P. Berglund, A. J. E. Rettie, S. Hoang and C. B. Mullins, *Phys. Chem. Chem. Phys.*, 2012, 14, 7065-7075.
- Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, *Small*, 10, 3692-3699.
- E. Kim, H. Kang, G. Magesh, J. Kim, J. Jang, J. Lee, ACS Appl. Mater. Interfaces, 2014, 6,17762-17769
- S. Ho-Kimura, S. J. A. Moniz, A. D. Handoko and J. Tang, *J. Mater. Chem. A*, 2014, **2**, 3948-3953.
- 26. S. Moniz, J. Zhu, J. Tang, Adv. Energy Mater., 2014, 4, 1301590.
- 27. L. Li and B. Yan, J. Alloys Compounds, 2009, 476, 624-628.
- S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, *Energy Environ. Sci.*, 2011, 4, 5028-5034.

- L. Zhang, D. R. Chen and X. L. Jiao, J. Phys. Chem. B, 2006, 110, 2668-2673.
- 30. Y. Jianqiang and A. Kudo, Adv. Funct. Mater., 2006, 16, 2163-2169.
- S. J. A. Moniz, J. Zhu and J. Tang, Adv. Energy Mater., 2014, 4, 1301590.
- Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen and T. Kitamori, *Small*, 2014, **10**, 3692-3699.
- 33. M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie, M. Guan, C. Wang, L. Wen, Y. Lei and Y. Xie, ACS Nano, 2014, 8, 7088-7098.
- 34. L. S. Zhang, W. Z. Wang, J. O. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou and S. W. Liu, *Appl. Catal. A-General*, 2006, **308**, 105-110.
- L. Zhou, W. Wang, L. Zhang, H. Xu and W. Zhu, J. Phys. Chem. C, 2007, 111, 13659-13664.
- X. Zhang, L. Zhang, T. Xie and D. Wang, J. Phys. Chem. C, 2009, 113, 7371-7378.
- 37. Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu and G. Xiao, *Appl. Catal. B: Environ.*, 2011, **104**, 30-36.
- 38. L. Zhou, W. Z. Wang, S. W. Liu, L. S. Zhang, H. L. Xu and W. Zhu, J. Molecular Catal. A-Chem.l, 2006, 252, 120-124.
- D. Hou, X. Hu, P. Hu, W. Zhang, M. Zhang and Y. Huang, Nanoscale, 2013, 5, 9764-9772.

Graphical Abstract

 $Bi_2O_3/BiVO_4$ heterostructures with a p-n junction have been successfully synthesized and exhibited enhanced photoelectrochemical activity.