RSC Advances

Concumisivi

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Synthesis, in vitro anticancer activity and SAR studies of arylated imidazo[1,2-a]pyrazine-coumarin hybrids

Richa Goel, Vijay Luxami and Kamaldeep Paul*

Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX
${ }_{5}$ DOI: 10.1039/b000000x

A new series of imidazo[1,2-a]pyrazine-coumarin hybrid has been synthesized by combination of two biological active moieties imidazo[1,2-a]pyrazine and coumarin followed by Suzuki-Miyaura cross coupling reaction for monoarylation at ${ }_{10} \mathbf{C} 6$ position and symmetrical/unsymmetrical diarylation at C3 and C6 positions. These compounds were further screened for their in vitro antitumor activities.

Heterocyclic moieties play an important role in pharmaceutical, veterinary and agrochemicals. ${ }^{1}$ Among various heterocycles, 15 imidazo $[1,2-a$]pyrazine, a well known privileged fused heterocyclic motif, has attracted its importance in search for anticancer agents by implication of various modifications at different positions of the core. ${ }^{2}$ The imidazo $[1,2-a]$ pyrazine exhibited prominent anticancer activity with the inhibition of ${ }_{20}$ Aurora kinase, ${ }^{3}$ phosphoinositide-3-kinase, ${ }^{4}$ breast tumor kinase/protein tyrosine kinase $6,{ }^{5}$ check point kinase, ${ }^{6}$ spleen tyrosine kinase, ${ }^{7}$ topoisomerase- II^{8} and cyclin dependent kinase ${ }^{9}$ (Figure 1). Coumarin is also a biologically active heterocyclic moiety possessing anticancer, ${ }^{10}$ anti HIV, ${ }^{11}$ antituberculosis, ${ }^{12}$
25 antihypercholestrolemic activities ${ }^{13}$ etc. It is a decade of molecular hybridization to obtain a more active pharmacophore in a single biological molecule by joining two heterocyclic pharmacophores. ${ }^{14}$ Concept of hybridization leads to a revolution in field of drug design and development to obtain a hybrid drug ${ }_{30}$ with improved characteristics and minimize side effects as compared to parent molecules. Therefore, hybrids of coumarin with various heterocyclic moieties viz., coumarinbenzimidazole, ${ }^{15}$ coumarin-benzothiazole ${ }^{16}$ and coumarinchalcone ${ }^{17}$ (Figure 2) have been reported in the literature, having ${ }_{35}$ great biological significance as anticancer agents.

To the best of my knowledge, no reports for anticancer activity of imidazo[1,2-a]pyrazine with biologically active coumarin moiety have been known in literature till now. In view of the previous rationale and in continuation of an ongoing
40
$\overline{\text { School of Chemistry and Biochemistry, Thapar University, Patiala- }}$ 147001, India.
E-mail:kpaul@thapar.edu; Fax: 91175236 4498; Tel: 919465670595 ;
\dagger Electronic Supplementary Information (ESI) available: experimental
45 section, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of all new compounds $\mathbf{6}, 7 \mathbf{a}-8 \mathbf{a}$, $\mathbf{7 b} \mathbf{- 1 9 b}, \mathbf{2 0 - 3 0}$, antitumor methodology and activities of all selected compounds 6, 7a, 9b, 10b, 11b, 16b, 28 and $\mathbf{3 0}$ DOI: 10.1039/b000000x/

50

Figure 2. Coumarin based hybrids as anticancer agents
program to find new structural leads with potential chemotherapeutic activities using molecular hybridization, in the ${ }_{55}$ present study, a new series of hybrids using imidazo[1,2a]pyrazine and coumarin have been synthesized. These compounds have further been approached for Suzuki-Miyaura cross coupling reaction for monoarylation at C6 position, and symmetrical/unsymmetrical diarylation at C3 and C6 positions.
${ }_{60}$ These compounds were further screened for their in vitro anticancer activity on a panel of 60 human cancer cell lines viz., leukaemia, non small cell lung, colon, CNS, melanoma, ovarian, renal, prostate and breast. Molecular docking study has also been performed to support the effective binding of compound at the ${ }_{65}$ active site of the enzyme.

2-Aminopyrazine 1 was treated with N -bromosuccinimide (NBS) in DMSO and water (9:1) at room temperature for 6 h to give 2 -amino- 3,5 -dibromopyrazine 2 in 90% yield 18 followed by cyclization with 50% aq. chloroacetaldehyde in isopropyl alcohol 70 at $110^{\circ} \mathrm{C}$ for 12 h to obtain 6,8 -dibromoimidazo[1,2- a]pyrazine $\mathbf{3}^{5}$ in 80% yield. Compound $\mathbf{3}$ was again brominated with NBS in acetonitrile (ACN) at room temperature for 2 h to afford 3,6,8tribromoimidazo $[1,2-a]$ pyrazine $\mathbf{4}^{19}$ in 90% yield. 3,6,8-Tribromoimidazo[1,2-a]pyrazine $\mathbf{4}$ was then stirred with 7-

Scheme 1 Synthesis of imidazo[1,2-a]pyrazine-coumarin hybrid
hydroxy-4-methylcoumarin 5 in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and DMF 5 at room temperature for 12 h to afford 7^{\prime} - $(3,6-$ dibromoimidazo[1,2-a]pyrazin-8-yloxy)-4'-methyl-2H-chromen2 '-one 6 in 85% yield (Scheme 1).
Palladium catalyzed Suzuki-Miyaura cross coupling of compound 6 with 2-methoxyphenyl boronic acid (1 eq.) in the ${ }_{10}$ presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{eq}$.$) and 5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ in DME: $\mathrm{H}_{2} \mathrm{O}$ (9:1) under inert atmosphere afforded C6-monoarylated 7a and C3, C6 diarylated 7b products in 61% and 33% yields respectively (Table 1, entry 1). Similarly, compound $\mathbf{6}$ was also treated with 2 -furan boronic acid under same reaction conditions 15 to give compounds 8a and 8b in 48% and 25% yields respectively (Table 1, entry 2). Reaction of compound $\mathbf{6}$ with 4chlorophenyl boronic acid afforded C6 monoarylated product 9a and C3, C6 diarylated product $\mathbf{9 b}$ in 40% and 42% GCMS yields respectively. These two compounds could not be separated 20 through column chromatography and used as such without purification (Table 1, entry 3). However, reactions of $\mathbf{6}$ with other aryl boronic acids under the same reaction conditions gave only C3, C6 diarylated products $\mathbf{1 0 b} \mathbf{- 1 9 b}$ with $54-74 \%$ yields (Table 1, entries 4-13). Monoarylated products with these boronic acids ${ }_{25}$ could not be separated as these were formed only in traces $<5 \%$ (determined by GC-MS). Reaction of compound 6 with naphthalene-1-boronic acid could not give a successful attempt. This might be due to steric crowding of the bulky naphthyl ring.

Subsequently use of monoarylated product has been ${ }_{30}$ implemented for unsymmetrical diarylation via cross coupling reaction at C3 position. C6 Monoarylated imidazo[1,2a]pyrazine-coumarin hybrid $7 \mathbf{7 a}$ was further refluxed with variety of aryl boronic acids (1.0 eq.) in the presence of $5 \mathrm{~mol} \%$ of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}$ (1.1 eq.) in DME: $\mathrm{H}_{2} \mathrm{O}(9: 1)$ for $6-8 \mathrm{~h}$ to give
${ }_{35} \mathrm{C} 3$, C6 unsymmetrical diarylated imidazo[1,2-a]pyrazinecoumarin hybrids $\mathbf{2 0 - 2 9}$ in $52-75 \%$ yields (Table 2). However, Suzuki reaction of mixture of monoarylated and symmetrical diarylated compounds ($\mathbf{9 a}$ and $\mathbf{9 b}$) with 2-thiophene boronic acid under the same reaction conditions and after column 40 chromatography afforded C3, C6 symmetrical and unsymmetrical disubstituted imidazo [1,2-a]pyrazine-coumarin hybrids $9 \mathbf{9}$ and $\mathbf{3 0}$ in 42% and 61% isolated yields respectively (Scheme 2). All the synthesized compounds have been well characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR as well as mass spectrometry (Supporting Information).

The assigned regiochemistry of monoarylation at C6 position and unsymmetrical diarylation at C3 and C6 positions of imidazo[1,2-a]pyrazine-coumarin hybrid was confirmed by considering 2D NOE difference experiments (SI, Figure S7 and S77). Singlet of C5H of imidazo[1,2- a]pyrazine 7a showed
${ }_{50}$ Table 1 Reactions of 3,6-dibromoimidazo[1,2-a]pyrazine-coumarin hybrid 6 with aryl boronic acids
(2)

[^0]Table 2 Reactions of monoarylated-3-bromoimidazo[1,2-a]pyrazine-coumarin hybrids $7 \mathbf{a}$ and $\mathbf{9 a}$ with different aryl boronic acids

\#isolated yields

${ }_{5}$ Figure 3. 2D NOEs ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ correlations used for structural assignment of compound 7a.
positive NOE signal with protons of methoxy group of 2methoxyphenyl ring while negative NOE signal of singlet of C 2 H

Figure 4. 2D NOEs ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ correlations used for structural assignment of compound 28.

15 of imidazo[1,2-a]pyrazine with protons of methoxy group of 2methoxyphenyl ring was observed, indicating the monoarylation
primarily at C6 position (Figure 3). On the other hand, singlets of C 2 H and C 5 H of imidazo[1,2-a]pyrazine ring in compound 28 showed positive NOE signals with protons of C2"' and C6"' of 4methoxyphenyl ring present at C3 position. Due to negative NOE 5 signal of singlet of C2H at imidazo[1,2-a]pyrazine with methoxy protons of 2-methoxy phenyl ring (at C6 position) and positive NOE signal with 4-methoxy phenyl ring (at C3 position) confirmed the second arylation at C3 position of imidazo[1,2a]pyrazine 28 (Figure 4).

Compounds 6, 7a, 9b, 10b, 11b, 16b, 28 and $\mathbf{3 0}$ were submitted to NCI, USA for in vitro anticancer activities against panel of 60 human cancer cell lines at single dose concentration of $10 \mu \mathrm{M}^{20-}$
${ }^{23}$ Compound 6 with bromo at C3 and C6 positions showed growth inhibition against renal cancer cell line 786-0 with GI 15 value of 71.02% and breast cancer cell lines MCF-7 and MDA-MB-231/ATCC with respective GI values of 77.75% and 70.43%. But monoarylation with 2-methoxy phenyl at C6 position 7a displayed poor anticancer activity. Amongst symmetrical diarylated compounds, 4-chlorophenyl ring at both
${ }_{20}$ C3 and C6 positions 9b showed no significant growth inhibition against cancer cell lines while 2-thiophene moieties at C3 and C6 positions 10b showed excellent inhibition against non small lung cancer cell line HOP-92 with GI value of 92.29%. Replacement with six membered phenyl rings at C3 and C6 positions 11b
25 exhibited excellent anticancer activity to renal cancer cell line A498 with GI value of 90.12% while moderate activity against renal cancer RXF-393 and non small lung cancer cell line HOP92 with respective GI values of 71.67% and 77.65% was observed. Substitution with 4-methoxy group at phenyl rings at
${ }_{30} \mathrm{C} 3$ and C6 positions of imidazo[1,2-a]pyrazine 16b displayed broad spectrum of anticancer activity towards various cancer cell lines viz., breast cancer cell line MDA-MB-231/ATCC, melanoma cell line LOX IMVI, CNS cancer cell line SNB-75, non small lung cancer cell line A549/ATCC and prostate cancer cell line PC-3 with GI values of $93.71 \%, 91.98 \%$, 85.69%, 83.52% and 82.27% respectively. It also displayed good inhibition with other cancer cell lines viz., non small lung cancer cell line NCI-H460 (GI: 73.64\%), colon cancer cell line HT29 (GI: 74.56\%), CNS cancer cell lines U251 (GI: 77.45\%) and SF${ }_{40} 295$ (GI: 76.68\%), melanoma cancer cell lines MALME-3M (GI: 73.25%), SK-MEL-5 (GI: 71.37%) and UACC-257 (GI: 70.84\%). ovarian cancer cell lines OVCAR-8 (GI: 73.68\%) and NCI/ADRRES (GI: 70.09\%), renal cancer cell line SN12C (GI: 75.49\%), prostate cancer cell line DU-145 (GI: 70.53%) and breast cancer
${ }_{45}$ cell line BT-549 (GI: 70.80\%) (Figure 5). Compound 16b exhibited more than 70% growth inhibition for most of the tumor cell lines and much better than 5-fluorouracil (positive control) in tested derivatives. It showed higher activity than 5 -fluorouracil (5-FU) in non-small lung cancer cells (A549/ATCC, HOP-62, ${ }_{50}$ NCI-H23 and NCI-H460), colon cancer cells (HCT-116 and HT29), melanoma (LOX IMVI, MALME-3M, MDA-MB-435, SK-MEL-5 and UACC-257), prostate cancer (PC-3 and DU-145) and breast cancer cells (MCF-7, MDA-MB-231/ATCC and BT-549). In the series of unsymmetrical compounds, imidazo[1,2${ }_{55} a$]pyrazine with 4-methoxy phenyl at C 3 and 2-methoxy phenyl 110
at C6 positions $\mathbf{2 8}$ displayed poor anticancer activity while substitution with 2-thiophene at C3 position and 4-chlorophenyl at C6 position 30, increases the activity with more selectivity towards melanoma cancer cell line MALME-3M with GI value of 6077.82% (Table 3).

Compound 16b was also evaluated for toxicity to Hek293 (human embryonic kidney) cell lines using MTT assay. ${ }^{24}$ It has been observed that compound $\mathbf{1 6 b}$ showed only $17 \%, 15 \%, 9 \%$, 5% and 3% cytotoxicity to Hek293 cells at $10^{-4}, 10^{-5}, 10^{-6}, 10^{-7}$ 65 and $10^{-8} \mathrm{M}$ concentrations respectively (Figure S84, Supporting Information). The compound showed only 17% of toxicity to Hek293 cells even at $100 \mu \mathrm{M}$ concentration. These data indicated that compound 16b showed potent anticancer activity and low toxicity to normal cells.
70 The partition coefficient of compounds was also studied in octanol/water system for the determination of $\log \mathrm{P}$ values by shake-flask method ${ }^{25}$ (Supporting information). It has been observed that compounds 11b and 16b showed higher $\log \mathrm{P}$ values (Table 4) that supported the dependency of lipophilicity 75 with higher activity of these compounds towards antitumor activity. Thus, lipophilicity is a crucial factor for the activity amongst the synthesized compounds.

Structure-activity correlation, based on the number of cancer cell lines revealed that the nature of the substituents at C3- and ${ }_{80}$ C6-positions of imidazo[1,2-a]pyrazine affected the biological activity. Compounds 10b, 11b and 16b showed comparatively higher activity than $\mathbf{6}, \mathbf{7 a}, \mathbf{9 b}, 28$ and $\mathbf{3 0}$, suggested that there is much difference in antitumor activity with different substitution of phenyl rings. The antitumor results indicated that compound 6 85 with coumarin moiety at C8 position and bromo at C3 and C6 positions displayed only moderate anticancer activity. The anticancer activity has been slightly increased with substitution of 2-thiophene rings at C3 and C6 positions, as in the case of compound 10b. Higher activity has been achieved with ${ }_{0}$ substitution of phenyl rings 11b and 4-methoxyphenyl rings 16b at C3 and C6 positions. On the other hand, substitution with 4chlorophenyl at C6 position and 2-thiophene at C3 position as in case of compound 30, decreased the activity. It has been revealed that symmetrical diarylated imidazo[1,2-a]pyrazine-coumarin ${ }_{95}$ hybrids $\mathbf{1 1 b}$ and $\mathbf{1 6 b}$ showed higher activity than unsymmetrical diarylated hybrids 28 and 30. These studies indicated that substitution of coumarin heterocycle with various phenyl derivatives on imidazo[1,2- a]pyrazine gave highly potent anticancer activities towards 60 human cancer cell lines. Overall,
100 16b has been found to be the most effective member amongst these series of compounds and showed broad spectrum of activity against melanoma cancer cell lines.

Table 3 Percentage (\%) growth inhibition (GI) of compounds $\mathbf{6}, \mathbf{7 a}, \mathbf{9 b}, \mathbf{1 0 b}, \mathbf{1 1 b}, \mathbf{1 6 b}, \mathbf{2 8}, \mathbf{3 0}$ and $\mathbf{5}$-FUover the full panel of 60 tumor cell lines at concentration of $10 \mu \mathrm{M}$.

Cell line type	Cell line name	6	7 a	9b	10b	11b	16b	28	30	5-FU
Leukemia	CCRF-CEM	-	-	19.41	-	22.39	-	-	14.72	57.13
	HL-60(TB)	69.19	-	13.22	32.40	14.82	NT	-	32.62	47.90
	K-562	-	-	14.92	18.35	38.24	NT	-	47.06	42.38
	MOLT-4	12.54	-	25.52	21.25	41.55	NT	-	20.34	43.13
	RPMI-8226	-	-	-	29.69	48.96	36.31	-	17.02	41.41
	SR	30.60	-	49.13	54.39	45.46	NT	-	27.81	24.82
Non-Small Cell Lung Cancer	A549/ATCC	22.21	13.25	-	41.45	43.86	83.52	-	-	34.25
	EKVX	24.43	24.04	-	35.95	33.20	49.84	-	-	58.40
	HOP-62	48.29	22.74	-	40.98	31.25	59.14	-	-	47.89
	HOP-92	62.81	-	-	92.29	77.65	-13.56	11.79	15.61	50.64
	NCI-H226	46.40	27.46	-	16.99	55.35	29.28	-	-	69.55
	NCI-H23	36.05	25.40	21.91	43.37	37.56	66.97	-	28.24	39.01
	NCI-H322M	23.24	18.07	-	10.57	14.03	18.02	-	11.91	59.50
	NCI-H460	26.12	-	-	49.53	36.05	73.64	-	-	13.07
	NCI-H522	45.23	36.87	-	25.35	52.85	60.39	-	-	58.02
Colon Cancer	COLO 205	-	-	-	25.05	29.50	43.89	-	11.30	40.22
	HCC-2998	-	11.61	-	21.86	18.95	22.91	-	-	L
	HCT-116	44.49	20.47	-	41.34	60.66	66.14	-	18.23	17.83
	HCT-15	-	-	36.21	27.11	31.38	36.61	-	29.83	26.56
	HT29	-	-	52.34	53.36	46.79	74.56	-	49.09	27.19
	KM12	21.08	-	18.81	40.37	24.49	57.01	-	23.63	40.70
	SW-620	-	-	33.27	43.33	11.72	60.98	-	13.73	50.12
CNS Cancer	SF-268	43.44	22.13	-	23.75	35.64	34.29	-	14.33	59.05
	SF-295	-	11.75	-	52.52	45.77	76.68	-	-	69.16
	SF-539	52.78	18.31	-	40.04	45.41	-21.15	-	-	L
	SNB-19	25.37	-	NT	NT	35.56	NT	NT	-	65.96
	SNB-75	-2.07	68.32	-	64.44	-1.39	85.69	15.18	-	65.93
	U251	52.35	17.29	11.95	52.46	32.65	77.45	-	19.30	50.35
Melanoma	LOX IMVI	25.67	24.60	15.63	61.63	43.60	91.98	-	21.46	30.40
	MALME-3M	53.11	24.30	56.42	60.88	-9.77	73.25	-	77.82	58.21
	M14	17.22	-	35.77	32.45	32.28	61.41	-	61.10	NT
	MDA-MB-435	12.82	-	24.52	38.65	27.95	62.77	-	20.55	36.66
	SK-MEL-2	22.00	-	-	31.03	48.10	50.58	-	-	95.52
	SK-MEL-28	-	-	61.69	76.09	32.37	-17.37	-	40.28	NT
	SK-MEL-5	59.65	13.41	15.59	57.50	61.69	71.37	-	30.47	33.75
	UACC-257	10.94	-	11.68	51.80	34.28	70.84	-	-	19.56
	UACC-62	14.79	-	-	28.89	18.62	49.89	-	-	39.77
Ovarian Cancer	IGROV1	22.57	26.28	-	20.77	16.32	29.38	-	-	51.29
	OVCAR-3	43.29	13.76	-	32.04	23.36	53.41	-	-	47.41
	OVCAR-4	54.55	-	14.41	45.94	39.32	-18.64	-	25.03	59.40
	OVCAR-5	-	-	-	-	---	12.00	-	-	44.34
	OVCAR-8	35.35	-	-	47.45	38.43	73.68	-	-	NT
	NCI/ADR-RES	42.47	22.95	21.20	46.63	54.62	70.09	-	12.56	47.65
	SK-OV-3	14.52	13.64	-	-	36.88	-	-	-	77.56
Renal Cancer	786-0	71.02	-	NT	NT	32.72	NT	-	-	48.79
	A498	-	-	-	35.60	90.12	29.38	-	-	L
	ACHN	34.24	22.25	-	42.72	51.39	53.41	-	-	39.31
	CAKI-1	-	10.67	-	32.18	14.82	28.33	-	-	39.40
	RXF 393	55.79	11.01	29.51	36.41	71.67	-20.76	-	12.23	34.33
	SN12C	24.19	-	-	26.17	32.41	75.49	-	-	54.04
	TK-10	-	-	-	46.11	19.47	64.26	-	-	66.98
	UO-31	41.18	37.92	14.45	39.73	59.18	25.03	18.30	31.13	41.30
Prostate Cancer	PC-3	17.90	23.95	12.06	47.04	60.82	82.27	-	19.78	58.26
	DU-145	24.95	12.94	30.37	44.61	31.96	70.53	-	18.46	35.52
Breast Cancer	MCF7	77.75	24.89	26.92	40.08	49.54	55.81	-	44.11	11.55
	MDA-MB-231/ATCC	70.43	31.76	26.69	36.78	49.62	93.71	24.30	-	78.17
	HS 578T	30.14	15.90	12.25	32.35	41.43	42.41	-	-	L
	BT-549	-	-	10.59	75.01	17.35	70.80	-	-	37.81
	T-47D	46.34	22.05	-	45.27	61.52	54.65	-	15.70	56.78
	MDA-MB-468	58.60	30.06	15.17	45.34	55.77	56.11	-	17.46	NT

[^1]

Figure 5. The percentages growth inhibition of compound $\mathbf{1 6 b}$ over the full panel of tumor cell lines.
${ }_{5}$ Table 4 Experimental determined lipophilicity

Compounds	P	$\log \mathrm{P}$
$\mathbf{6}$	239.88	2.38
$\mathbf{7 a}$	489.77	2.69
$\mathbf{9 b}$	371.53	2.57
$\mathbf{1 0 b}$	467.73	2.67
$\mathbf{1 1 b}$	2511.88	3.40
$\mathbf{1 6 b}$	758.57	2.88
$\mathbf{2 8}$	257.03	2.41
$\mathbf{3 0}$	380.19	2.58

P -partition coefficient; $\log \mathrm{P}$-logarithm of the partition coefficient.
Preliminary anticancer screening showed that compound 16b has 10 been found to be the most active member of imidazo[1,2-a]pyrazine-coumarin hybrids and showed excellent inhibition against melanoma than other cancer cell lines. So, in order to observe the molecular interactions of compound in the active site of enzyme for melanoma cancer, docking experiment was ${ }_{15}$ performed. The crystal coordinates of enzyme used in melanoma was downloaded from protein data bank (www.rcsb.org) ${ }^{26}$ (PDB code: 3OG7). ${ }^{27}$ Compound $\mathbf{1 6 b}$ showed H -bonding interaction of $\mathrm{N} 1(d=2.93 \AA), \mathrm{N} 4(d=2.72 \AA)$ and $\mathrm{N} 7(d=1.75 \AA)$ atoms of imidazo[1,2-a]pyrazine with G518 amino acid residue of the coil 20 of enzyme. N7 atom of the pyrazine ring of imidazo[1,2a]pyrazine also showed H -bonding interaction with M517 ($d=$ $2.17 \AA$) amino acid residue of enzyme. Oxygen atom of the 4methoxy phenyl at C6 position of imidazo[1,2-a]pyrazine showed H-bonding interaction with R781 amino acid residue of enzyme ${ }_{25}(d=2.85 \AA)$. Carbonyl group of coumarin ring interacts with W531 amino acid residue of β-strand of enzyme with $d=2.56 \AA$. Oxygen atom and carbonyl group of coumarin ring also showed H-bonding interactions with Q530 amino acid residues of β strand of enzyme $(d=1.77 \AA$ and $d=2.31 \AA)$. Therefore, ${ }_{30}$ docking of compound $\mathbf{1 6 b}$ in the active site of this enzyme
indicated the probable mode of action for anticancer activities (Figure 6).

Figure 6 Docking of compound 16b in the active site of 3OG7. H-bonds 35 of compound $\mathbf{1 6} \mathbf{b}$ with different amino acid residues are visible. Carbon atoms are given in green colour.

Conclusion

In summary, imidazo[1,2-a]pyrazine-coumarin hybrid has been synthesized by nucleophilic substitution approach at C 8 position 40 from easily accessible $3,6,8$-tribromoimidazo[1,2-a]pyrazine and 7-hydroxy-4-methyl coumarin. This compound was further functionalized at C 6 position for monoarylation and C 3 , C6 positions for symmetrical diarylations using palladium catalyzed C-C coupling. Subsequent use of monoarylated products has been ${ }_{45}$ implemented for synthesis of unsymmetrical diarylated imidazo[1,2- a]pyrazine-coumarin hybrids in moderate to good yields. Evaluation of selected compounds for anticancer activity revealed that symmetrical diarylated hybrids $\mathbf{1 1 b}$ and $\mathbf{1 6 b}$ showed broad spectrum of anticancer activity towards most of the cancer ${ }_{50}$ cell lines. These compounds also have good lipophilicity that qualifies them to have good pharmacokinetic and drug
bioavailability. Molecular docking study has also further supported the inhibitory activity of $\mathbf{1 6 b}$ that helped in understanding the interactions between the ligand and enzyme active sites. Further optimizations of anticancer activity and pharmacokinetic profiling of these series of compounds are currently ongoing.

Acknowledgements

KP wish to thank CSIR, New Delhi (02(0034)/11/EMR-II) for providing funds. RG is indebted to CSIR for SRF 10 (09/677(0020)/2013.EMR-I). We wish to thank SAI Labs, Thapar University and Punjab University, Chandigarh for carrying out NMR and Mass analysis respectively. National Cancer Institute, USA and Institute for Industrial Research and Toxicology, India are greatly acknowledged for activities.

${ }^{15}$

References and Notes

1 A. Czarnik, Acc. Chem. Res., 1996, 29, 112.
2 a) S. Myadaraboina, M. Alla, V. Saddanapu, V. R. Bommena and A. 20 Addlagatta, Eur. J. Med. Chem., 2010, 45, 5208; b) R. Goel, V. Luxami and K. Paul, RSC Adv., 2014, 4, 9885; c) R. Goel, V. Luxami and K. Paul, Org. Biomol. Chem., 2015, 13, 3525.
3 a) N. Bouloc, J. M. Large, M. Kosmopoulou, C. Sun, A. Faisal, M. Matteucci, J. Reynisson, N. Brown, B. Atrash, J. Blagg, E.
25 McDonald, S. Linardopoulos, R. Bayliss and V. Bavetsias, Bioorg. Med. Chem. Lett., 2010, 20, 5988; b) T. Yu, J. R. Tagat, A. D. Kerekes, R. J. Doll, Y. Zhang, Y. Xiao, S. Esposite, D. B. Belanger, P. J. Curran, A. K. Mandal, M. A. Siddiqui, N.-Y. Shih, A. D. Basso, M. Liu, K. Gray, S. Tevar, J. Jones, S. Lee, L. Liang, S. Ponery, E. B. Smith, A. Hruza, J. Voigt, L. Ramanathan, W. Prosise and M. Hu, ACS Med. Chem. Lett., 2010, 1, 214.
4 S. M. Gonzalez, A. I. Hernandez, C. Varela, S. Rodriguez-Aristegui, R. M. Alvarez, A. B. Garcia, M. Lorenzo, V. Rivero, J. Oyarzabal, O, Rabal, J. R. Bischoff, M. Albarran, A. Cebria, P. Alfonso, W. Link, J. Fominaya and J. Pastor, Bioorg. Med. Chem. Lett., 2012, 22, 1874.
5 H. Zeng, D. B. Belanger, P. J. Curran, G. W. Shipps Jr., H. Miao, J. B. Bracken, M. A. Siddiqui, M. Malkowski and Y. Wang, Bioorg. Med. Chem. Lett., 2011, 21, 5870.
6 T. P. Matthews, T. McHardy, S. Klair, K. Boxall, M. Fisher, M. Cherry, C. E. Allen, G. J. Addison, J. Ellard, G. W. Aherne, I. M. Westwood, R. van Montfort, M. D. Garrett, J. C. Reader and I. Collins, Bioorg. Med. Chem. Lett., 2010, 20, 4045.
7 K. S. Currie, J. E. Kropf, T. Lee, P. Blomgren, J. Xu, Z. Zhao, S. Gallion, J. A. Whitney, D. Maclin, E. B. Lansdon, P. Maciejewski,
45 A. M. Rossi, H. Rong, J. Macaluso, J. Barbosa, J. A. Di Paolo and S. A. Mitchell, J. Med. Chem., 2014, 57, 3856.

8 A. T. Baviskar, C. Madaan, R. Preet, P. Mohapatra, V. Jain, A. Agarwal, S. K. Guchhait, C. N. Kundu, U. C. Banerjee and P. V. Bharatam, J. Med. Chem., 2011, 54, 5013.
509 M. P. Dwyer, K. Paruch, C. Alvarez, R. J. Doll, K. Keertikar, J. Duca, T. O. Fischmann, A. Hruza, V. Madison, E. Lees, D. Parry, W. Seghezzi, N. Sgambellone, F. Shanahan, D. Wiswell and T. J. Guzi, Bioorg. Med. Chem. Lett., 2007, 17, 6216.
10 Y. Chen, H.-R. Liu, H.-S. Liu, M. Cheng, P. Xia, K. Qian, P.-C. Wu, C.-Y. Lai, Y. Xia, Z.-Yu. Yang, S. L. Morris-Natschke and K.-H. Lee, Eur. J. Med. Chem., 2012, 49, 74.
11 H. Xue, X. Lu, P. Zheng, L. Liu, C. Han, J. Hu, Z. Liu, T. Ma, Y. Li, L. Wang, Z. Chen and G. Liu, J. Med. Chem., 2010, 53, 1397.

12 A. Manvar, A. Bavishi, A. Radadiya, J. Patel, V. Vora, N. Dodia, K. Rawal and A. Shah, Bioorg. Med. Chem. Lett., 2011, 21, 4728.
13 G. R. Madhavan, V. Balraju, B. Mallesham, R. Chakrabarti and V. B. Lohray, Bioorg. Med. Chem. Lett., 2003, 13, 2547.
14 K. Nepali, S. Sharma, M. Sharma, P. M. S. Bedi and K. L. Dhar, Eur. J. Med. Chem., 2014, 77, 422.

6515 K. Paul, S. Bindal and V. Luxami, Bioorg. Med. Chem. Lett., 2013,

23, 3667.
16 S. G. Kini, S. Choudhary and M. Mubeen, J. Comput. Methods Mol. Des., 2012, 2, 51.
17 K. V. Sashidhara, A. Kumar, M. Kumar, J. Sarkar and S. Sinha, Bioorg. Med. Chem. Lett., 2010, 20, 7205.
18B. Jiang, C.-G. Yang, W.-N. Xiong and J. Wang, Bioorg. Med. Chem., 2001, 9, 1149.
19 J. Bradac, Z. Furek, D. Janezic, S. Molan, I. Smerkolj, B. Stanovnik, M. Tisler and B. Vercek J. Org. Chem., 1977, 42, 4197.

1992, 19, 622.

21 A. Monks, D. Schudiero, P. Skehan, R. Shoemaker, K. Paull, D.Vistica, C. Hose, J. Langley, P. Cronise, A. Vaigro-Wolff, M. Gray-Goodrich, H. Campbell, J. Mayo and M. Boyd, J. Natl. Cancer Inst., 1991, 83, 757.
22 M. R. Boyd and K. D. Paull, Drug Dev. Res., 1995, 34, 91.
23. Antitumor methodology: The human tumor cell lines of the cancer screening panel were grown in RPMI 1640 medium containing 5\% fetal bovine serum and 2.0 mM L-glutamine. For a typical screening experiment, cells were inoculated into 96 well microtiter plates in 100 $\mu 1$ at plating densities ranging from 5000 to 40,000 cells/well depending on the doubling time of individual cell lines. After cell inoculation, the microtiter plates were incubated at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$, 95% air and 100% relative humidity for 24 h prior to addition of experimental drugs. After 24 h , two plates of each cell line were fixed in situ with TCA, to represent a measurement of the cell population for each cell line at the time of drug addition (Tz). Experimental drugs were solubilized in dimethyl sulfoxide at 400 -fold the desired final maximum test concentration and stored frozen prior to use. At the time of drug addition, an aliquot of frozen concentrate was thawed and diluted to twice the desired final maximum test concentration with complete medium containing $50 \mu \mathrm{~g} / \mathrm{ml}$ gentamicin. Aliquot of $100 \mu \mathrm{l}$ of this drug dilution was added to the appropriate microtiter wells already containing $100 \mu \mathrm{l}$ of medium, resulting in the required final drug concentrations. Following drug addition, the plates were incubated for an additional 48 h at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}, 95 \%$ air, and 100% relative humidity. For adherent cells, the assay was terminated by the addition of cold TCA. Cells were fixed in situ by the gentle addition of $50 \mu \mathrm{l}$ of cold 50% (w/v) TCA (final concentration, $10 \% \mathrm{TCA}$) and incubated for 60 min at $4{ }^{\circ} \mathrm{C}$. The supernatant was discarded, and the plates were washed five times with tap water and air dried. Sulforhodamine B (SRB) solution (100 $\mu \mathrm{l})$ at $0.4 \%(\mathrm{w} / \mathrm{v})$ in 1% acetic acid was added to each well, and plates were incubated for 10 min at room temperature. After staining, unbound dye was removed by washing 5 times with 1% acetic acid and the plates were air dried. Bound stain was subsequently solubilized with 10 mM trizma base, and the absorbance is read on an automated plate reader at a wavelength of 515 nm . For suspension cells, the methodology is the same except that the assay is terminated by fixing settled cells at the bottom of the wells by gently adding 50 $\mu \mathrm{l}$ of 80% TCA (final concentration, 16% TCA). Using the seven absorbance measurements [time zero, (Tz), control growth, (C), and test growth in the presence of drug at the five concentration levels (Ti)], the percentage growth is calculated at each of the drug concentrations levels. Percentage growth inhibition is calculated as:
$[(\mathrm{Ti}-\mathrm{Tz}) /(\mathrm{C}-\mathrm{Tz})] \times 100$ for concentrations for which $\mathrm{Ti}>/=\mathrm{Tz}$
$[(\mathrm{Ti}-\mathrm{Tz}) / \mathrm{Tz}] \times 100$ for concentrations for which $\mathrm{Ti}<\mathrm{Tz}$
125 24. MTT assay: Hek293 (Human embryonic kidney) cells, DMEM with 50 mM glutamine, 10% FBS, $100 \mathrm{u} / \mathrm{ml}$ pencillin and $100 \mathrm{mg} / \mathrm{ml}$ streptomycin. The test was performed against Hek293 (Human embryonic kidney) cells. Cells were seeded in 96 well plates at the density of 1×10^{-5} cells/well in DMEM media supplemented with 10% FBS cells. Cells were incubated at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ incubator. Cells were treated with compound $\mathbf{1 6 b}$ at five concentrations $\left(10^{-4}, 10^{-5}, 10^{-}\right.$ ${ }^{6}, 10^{-7}, 10^{-8}$) in duplicate for 24 h at $37^{\circ} \mathrm{C} .10 \mu \mathrm{l}$ of MTT (prepared in 1* PBS buffer) from $5 \mathrm{mg} / \mathrm{ml}$ stock was added in each well and incubated at $37{ }^{\circ} \mathrm{C}$ for 4 hrs in dark. The formazan crystals were dissolved using $100 \mu \mathrm{l}$ of DMSO. Further, the amount of formazan crystal formation was measured as difference in absorbance by Bio-

Red ELISA plate reader at 570 nm and 690 nm reference wavelength. The relative cell toxicity (\%) related to control wells containing culture medium without test material was calculated by using formula:

$$
\% \text { Cell Toxicity }=100-\frac{\text { OD (Compound treated wells) }}{\text { OD (Untreated Wells) }} \times 100
$$

25 A. I. Caço, L. C. Tome, R. Dohrn and I. M. Marrucho, J. Chem. Eng. Data, 2010, 55, 3160.
26 Compounds were constructed and docked with builder tool kit of software package ArgusLab 4.0.1 (www.arguslab.com).
27 W.-K. Choi, M. I. El-Gamal, H. S. Choi, D. Baek and C.-H. Oh, Eur. J. Med. Chem., 2011, 46, 5754.

Synthesis, in vitro anticancer activity and SAR studies of arylated imidazo[1,2-a]pyrazine-coumarin hybrids

Richa Goel, Vijay Luxami and Kamaldeep Paul*
School of Chemistry and Biochemistry, Thapar University, Patiala- 147 001, India E-mail:kpaul@thapar.edu

A diverse array of arylated imidazo[1,2-a]pyrazine-coumain hybrids have been synthesized for in vitro anticancer activities.

[^0]: 55 \# isolated yields, --,*GC-MS yields ($<5 \%$)

[^1]: $5<50 \%$ inhibition, $\mathbf{5 0 - 6 0 \%}$ inhibition, $\mathbf{6 0 - 7 0 \%}$ inhibition, $\mathbf{7 0 - 9 0} \%$ inhibition, $\mathbf{9 0 - 1 0 0 \%}$ growth inhibition, highly potent compounds, NT: not tested

