Organic \& Biomolecular Chemistry

Accepted Manuscript

Organic \& Biomolecular Chemistry

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Synthesis of 1,4-dihydrophosphinoline 1-oxides by acid-promoted cyclization of 1-(diphenylphosphoryl)allenes

Alexander S. Bogachenkov, ${ }^{\text {a }}$ Albina V. Dogadina, ${ }^{\text {b }}$ Irina A. Boyarskaya, ${ }^{\text {a }}$ Vadim P. Boyarskiy, ${ }^{\text {a }}$ Aleksander V. Vasilyev*a,c

${ }^{\text {a }}$ Department of Organic Chemistry, Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7/9, Saint Petersburg, 199034, Russia.
${ }^{b}$ Department of Organic Chemistry, Saint Petersburg Institute of Technology (Technical University), Moskovskiy pr. 26, 190013, Saint Petersburg, Russia
${ }^{\mathrm{c}}$ Department of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia. E-mail: aleksvasi1@mail.ru.
*Corresponding author: A.V. Vasilyev

Keywords: allenes, 1,4-dihydrophosphinoline 1-oxides, 3-hydroxyalk-2-en-1-yl-diphenylphosphine oxides, phosphaheterocycles, Brønsted and Lewis acids

Abstract

Diphenylphosphoryl)alka-1,2-dienes (phosphonoallenes) in Brønsted (super)acids (TfOH, $\mathrm{FSO}_{3} \mathrm{H}, \mathrm{H}_{2} \mathrm{SO}_{4}$) gave corresponding 1,2-oxaphosphol-3-enium ions, that were studied by means of NMR and DFT calculations. Upon hydrolysis of reaction solution, these cations afforded 3-hydroxyalk-2-en-1-yl-diphenylphosphine oxides (phosphonoallyl alcohols). But in (super)acids the cations were slowly transformed into O-protonated forms of 1-phenyl-1,4-dihydrophosphinoline 1-oxides, which were monitored by NMR. The latter phosphaheterocycles can be directly obtained from phosphonoallenes under the action of Lewis acid AlCl_{3}.

Graphical Abstract:

Introduction

Allenes are useful and interesting building blocks and targets in organic chemistry. ${ }^{1}$ The synthetic potential of allenes has been explored extensively in recent years, and this has led to development of novel methods for construction of a variety of carbo- and hetero-cycles. ${ }^{2}$ One of the most important reactions of allenes is electrophilic addition. The interactions of electrophiles, including the hydrohalogenic acids, with dialkyl allenephosphonates ${ }^{3}$ or allenylphosphine oxides ${ }^{4}$ give 2,5-dihydro-1,2-oxaphosphole derivatives or expected 2,1- and 2,3-adducts, depending on substituents at the allene triad. Recently various phosphonoallenes have been widely explored in intra- and inter-molecular synthesis of cyclobutenes, indenes, indenones, naphthalenes, phenanthrenes, furans, indols, (iso)chromenes, isocoumarins, thiochromanes. ${ }^{5}$

In our preliminary short communication ${ }^{6}$ we have shown that 1-(diphenylphosphoryl)alka-1,2-dienes (phosphonoallenes) $\mathbf{1}$ in Brønsted or Lewis acids afforded 1-phenyl-1,4dihydrophosphinoline 1-oxides 2 and/or 3-hydroxyalk-2-en-1-yl-diphenylphosphine oxides $\mathbf{3}$ (Scheme 1).

Scheme 1. Synthesis of compounds 2 and $\mathbf{3}$ from phosphonoallenes 1.

To the best of our knowledge, at the moment there are only a few methods for synthesis of such rare phosphaheterocycles $\mathbf{2}$. They are based on reactions of 1 -chloro-1,2,3,4tetrahydrophosphinoline 1 -oxide ${ }^{7}$ and benzophosphole ring expansion. ${ }^{8}$ The compounds $\mathbf{2}$ may be in great demand as corresponding new phosphine precursors in coordination chemistry of transition metals.

This work is a continuation of our initial study. ${ }^{6}$ Herein we have involved more phosphonoallenes 1 in this reaction, and have investigated intermediate species and mechanism of the reaction by means of NMR and DFT calculations.

Results and discussion

Table 1 contains the data on transformations of allenes $\mathbf{1 a - h}$ into phosphinoline oxides $\mathbf{2 a - g}$ and/or allyl alcohols 3a-g under action of various Brønsted (super)acids (TfOH, $\mathrm{FSO}_{3} \mathrm{H}, \mathrm{H}_{2} \mathrm{SO}_{4}$) and strong Lewis acid AlCl_{3}. Acid-promoted transformations of allenes $\mathbf{1 a}$-h give two kinds of reaction products, phosphinoline oxides $\mathbf{2 a - g}$ and alcohols 3a-g, depending on the structure of starting allene, acid (Brønsted or Lewis), and reaction conditions (time, temperature) (Table 1). This
reaction does not proceed in weaker Brønsted acid $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, in which starting allenes 1a-h remain unreacted.

Table 1. Acid promoted transformations of allenes 1a-h into compounds 2a-g and/or 3a-g.

Entry	Substituents in 1, 2, 3		$\begin{gathered} \text { Allene } \\ \mathbf{1} \end{gathered}$	Reaction conditions			Reaction products (yield, \%)	
	R ${ }^{1}$	R^{2}		Acid	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	2	3
$1^{\text {a }}$	H	Me	1 a	AlCl_{3}	r.t.	0.17	2a (98)	-
$2^{\text {a }}$				$\mathrm{H}_{2} \mathrm{SO}_{4}$	r.t.	0.5	2a (14)	3a (84)
$3^{\text {a }}$				TfOH	r.t.	0.5	2a (5)	3a (94)
$4^{\text {a }}$				TfOH	120	4	2a (88)	-
$5^{\text {a }}$	H	$\left(\mathrm{CH}_{2}\right)_{4}$	1b	AlCl_{3}	r.t.	0.17	2b (57)	-
$6^{\text {a }}$				$\mathrm{H}_{2} \mathrm{SO}_{4}$	r.t.	0.5	-	3b (47)
$7^{\text {a }}$				$\mathrm{FSO}_{3} \mathrm{H}$	-70	1	-	3b (70)
$8^{\text {a }}$	H	$\left(\mathrm{CH}_{2}\right)_{5}$	1c	AlCl_{3}	r.t.	0.17	2c (50)	-
$9^{\text {a }}$				$\mathrm{H}_{2} \mathrm{SO}_{4}$	r.t.	0.5	c	3c (52)
$10^{\text {a }}$				TfOH	-40	3	-	3c (51)
$11^{\text {a }}$				$\mathrm{FSO}_{3} \mathrm{H}$	-40	3	-	3c (90)
$12^{\text {a }}$	Br	Me	1d	AlCl_{3}	r.t.	0.17	2d (80)	-
$13^{\text {a }}$				$\mathrm{H}_{2} \mathrm{SO}_{4}$	r.t.	0.5	2d (14)	3d (85)
$14^{\text {a }}$				TfOH	r.t.	0.5	2d (17)	3d (81)
$15^{\text {a }}$				TfOH	120	1	2d (91)	-
$16^{\text {a }}$				$\mathrm{FSO}_{3} \mathrm{H}$	-40	3	2d (31)	3d (67)
$17^{\text {a }}$	Ph	Me	1e	AlCl_{3}	r.t.	2	2e (62)	-
$18^{\text {a }}$				$\mathrm{H}_{2} \mathrm{SO}_{4}$	r.t.	0.5	2e (26)	3e (72)
$19^{\text {a }}$				TfOH	r.t.	0.5	2e (14)	3e (80)
$20^{\text {a }}$				TfOH	120	1	2e (34)	-
$21^{\text {a }}$				$\mathrm{FSO}_{3} \mathrm{H}$	-40	3	2e (18)	3e (80)
22	$\mathrm{n}-\mathrm{Pr}$	Me	1f	AlCl_{3}	r.t.	0.17	2 f (93)	-
23				$\mathrm{H}_{2} \mathrm{SO}_{4}$	r.t.	0.5	2f (27)	3f (70)
24				TfOH	120	4	2f (95)	-
25	t-Bu	Me	19	AlCl_{3}	r.t.	0.5	2g (17)	-
26				TfOH	120	1	2g (68)	-
27	$\mathrm{n}-\mathrm{C}_{6} \mathrm{~F}_{13}$	Me	1h	AlCl_{3}	r.t.	0.5	oligome	
28				TfOH	120	4	-	3g (80)

Structures of reaction products were determined by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$ NMR, IR spectroscopy, HRMS (see Experimental and Supplementary information) and X-ray analysis for compounds $\mathbf{2 a}, \mathbf{c}, \mathbf{d}^{6}$ and $\mathbf{2 f}$ (see Figure 1). Compounds 3a-g were exclusively formed as Z-isomers, that was
proved by values of coupling constants ${ }^{3} J \sim 12 \mathrm{~Hz}$ for vinyl protons at $\mathrm{C}=\mathrm{C}$ bond (see Experimental and Supplementary information).

Figure 1. X-ray crystal structure of compound $2 f$ (ORTEP diagram, ellipsoid contour of probability levels is 50%, CCDC reference number - 1426281).

The data obtained allow to note some regularities and features of the reaction. Transformations in Brønsted (super)acids (TfOH, $\mathrm{FSO}_{3} \mathrm{H}, \mathrm{H}_{2} \mathrm{SO}_{4}$) at low temperature ($-70,-40{ }^{\circ} \mathrm{C}$) for 1-3 h (entries $7,10,11,16,21$) or at room temperature for short time 0.5 h (entries $2,3,6,9,13$, $14,18,19,23$) yielded only alcohols $\mathbf{3}$, with small amount of phosphinoline oxides 2 in some cases. The increase of reaction temperature to $120^{\circ} \mathrm{C}$ along with time to 4 h in TfOH afforded only compounds 2 (entries 4, 15, 20, 24). Moreover, individually isolated alcohols 3 upon heating in TfOH at $120^{\circ} \mathrm{C}$ for 4 h were completely converted into compounds 2 . These data revealed that formation of alcohols $\mathbf{3}$ was kinetically favorable and reversible, and it went to more thermodynamically stable phosphinoline oxides 2.

Contrary to that, reactions under the action of AlCl_{3} at room temperature for 10 min resulted in the formation of compounds 2 only (entries $1,5,8,12,17,22,25$). Effect of AlCl_{3} may be explained by strong coordination of this Lewis acid at oxygen atom of the $\mathrm{P}=\mathrm{O}$ group, that deactivates this oxygen for further electrophilic attack on it.

One may propose the following acid-promoted transformations of allene $\mathbf{1}$ under action of Brønsted or Lewis acids (Scheme 2). Protonation of oxygen atom of the $\mathrm{P}=\mathrm{O}$ group and central carbon of allene triad results in the formation of cation \mathbf{A}, which may react in two different ways: a) cyclization into phenyl ring, leading to cation \mathbf{D} and then to phosphinoline oxide $2 ; b$) interaction with oxygen atom of the $\mathrm{P}=\mathrm{O}$ group, giving 1,2-oxaphosphol-3-enium ion \mathbf{B} (it is a reversible stage), hydrolytic cleavage of the latter forms alcohol 3. It should be noted that dications \mathbf{A} belong to superelectrophiles ${ }^{9}$ which are very reactive species in miscellaneous Friedel-Crafts reactions. In
weaker acid $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ only O-protonation of $\mathrm{P}=\mathrm{O}$ group of compounds 1 takes place with no further protonation of allene system and no reaction occurs (vide supra).

Coordination of AlCl_{3} at oxygen atom and allene system gives species \mathbf{C} (Scheme 2). Such a strong coordination with oxygen atom of the $\mathrm{P}=\mathrm{O}$ group occurs, leading to substantial deactivation of nucleophilic properties of this oxygen. As a result, formation of cation \mathbf{B} and alcohol $\mathbf{3}$ is fully suppressed, and phospinoline oxide $\mathbf{2}$ is formed as the only reaction product.

Scheme 2. Acid-promoted transformations of allenes 1.

It is important to trace effect of substituent R^{1} to ratio of reaction products $\mathbf{2}: \mathbf{3}$. Thus, allenes
 phosphinoline oxides 2a,d,e,f and alcohols 3a,d,e,f at the same reaction conditions in $\mathrm{H}_{2} \mathrm{SO}_{4}$ at r.t. for 0.5 h (see Table 1, entries 2, 13, 18, 23). For the compounds $\mathbf{1 a}\left(\mathrm{R}^{1}=\mathrm{H}\right)$ and $\mathbf{1 d}\left(\mathrm{R}^{1}=\mathrm{Br}\right)$ the ratio of $\mathbf{2 : 3}$ is $1: 6$ (entries 2,13). But in case of better cation stabilizing groups $\mathrm{R}^{1}=\mathrm{Ph}$ for allene $\mathbf{1 e}$ and $\mathrm{R}^{1}=\operatorname{Pr}$ for allene $\mathbf{1 f}$ amounts of the corresponding alcohols are reduced, and the ratio of $\mathbf{2 e}$: $\mathbf{3 e}$ is $1: 2.7$ (entry 18) and for $\mathbf{2 f}: \mathbf{3 f}$ is $1: 2.6$ (entry 23). In terms of the intermediate cations \mathbf{A} (Scheme 2), positive charge may be partially delocalized into substituent R^{1} in these species. When $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Pr}$ this delocalization may play a big role, leading to a substantial decrease of charge on reactive carbocationic center, that hampers nucleophilic attack from oxygen to cation \mathbf{B} (Scheme 1). That finally results in the decrease of amount of the corresponding alcohol 3. On the other hand, introduction of powerful electron withdrawing group $\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{~F}_{13}$ in allene $\mathbf{1 h}$ led to the solely formation of alcohol $\mathbf{3 g}$, which is not transformed into the corresponding phosphinoline oxides $\mathbf{2}$
even at $120^{\circ} \mathrm{C}$ for 4 h in TfOH (entry 28). Moreover, this allene $\mathbf{1 h}$ did not give compound $\mathbf{2}$ with AlCl_{3} (entry 27).

To investigate this reaction deeper we undertook NMR study of intermediate species of this transformation. Upon dissolving of allene 1d or alcohol 3d in TfOH directly in NMR tube, an immediate formation of one and the same species, having chemical shift at 78.01 ppm in ${ }^{31} \mathrm{P}$ NMR spectrum, was observed. We suspected that this species was triflate of 1,2-oxaphosphol-3-enium B1 (see Scheme 3 and Figure 2). To prove that we specially prepared another cation of this type by bromination of allene $\mathbf{1 d}$, leading to bromide $\mathbf{B 2}$ (according to literature procedure ${ }^{10}$), which then was converted in TfOH into triflate B3, having signal at 75.79 ppm in ${ }^{31} \mathrm{P}$ NMR, that is very close to cation B1 (Scheme 3). The species B1 and B3 have very similar ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectra in TfOH (compare spectra in Figure 2, Experimental, and Supplementary information). Thus, one may conclude that compounds $\mathbf{1 d}$ and $\mathbf{3 d}$ in TfOH do form cation B1. That also means that there are equilibriums between 1, A, B, and $\mathbf{3}$ (Scheme 2). It should be noted that there are not so many data in literature ${ }^{10-12}$ on such oxaphospholenium ions \mathbf{B}.

Scheme 3. Generating of cations B1-B5 and D1-D3 in TfOH.

C

Figure 2. ${ }^{1} \mathrm{H}(\boldsymbol{a}),{ }^{13} \mathrm{C}(\boldsymbol{b})$, and ${ }^{31} \mathrm{P}(\boldsymbol{c}) \mathrm{NMR}$ spectra of cation B1, generated from allene 1d or alcohol 3d in TfOH at r.t. (see Scheme 3), $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ internal standard.

Then the monitoring of the behavior of cation $\mathbf{B 1}$ in TfOH in time and at elevated temperature by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR was done (see Figure 3). At room temperature new signals increasing on time (till to 14 days) appeared in spectra. Thus, in ${ }^{31} \mathrm{P}$ NMR this new species had signal in completely different region at 31.5 ppm . The same was observed with increase of temperature, but much faster, heating of the solution of $\mathbf{B 1}$ in TfOH at $100^{\circ} \mathrm{C}$ for 5 h led to quantitative formation of this new species. And this ion was O-protonated form D1 of phospinoline oxide 2d (see Scheme 3 and Figure 3). D1 was also independently generated from 2d in TfOH and detected by NMR (Scheme 3). That again proves that formation of compounds $\mathbf{2}$ is thermodynamically favorable.

We additionally generated 1,2-oxaphosphol-3-enium ions B4, B5 from allenes 1a, 1f, and cations D2, D3 from phosphinoline oxides 2a, 2c respectively (Scheme 3). In ${ }^{31}$ P NMR both types of these species have specific absorbance, B1-B5 at $\sim 75-87 \mathrm{ppm}$, and D1-D3 at $\sim 30-32 \mathrm{ppm}$ (see Scheme 3, and full spectral data in Experimental and Supporting Information).

To go deeper in the reaction mechanism we carried out reaction of allene $\mathbf{1 d}$ in deuterated sulfuric acid $\mathrm{D}_{2} \mathrm{SO}_{4}$, that afforded $3-{ }^{2} \mathrm{H}$ alcohol $\mathbf{3 d}-d$ proving addition of deuteron in central carbon atom of allene triad with no deuteron-proton exchange upon quenching with $\mathrm{H}_{2} \mathrm{O}$ (Scheme 4). Concerning cleavage of five-membered ring in species \mathbf{B}, using hydrolysis of these species with ${ }^{18} \mathrm{O}$ - labeled water it was shown recently, that $\mathrm{P}-\mathrm{O}$ bond was cleaved rather than $\mathrm{C}-\mathrm{O}$ one. ${ }^{12}$

Scheme 4. Reaction of allene 1 d with $\mathrm{D}_{2} \mathrm{SO}_{4}$.

Figure 3. ${ }^{31} \mathrm{P}$ NMR monitoring of the progress of the transformation of B1 into D1 in TfOH: (a) r.t., 5 min ; (b) r.t., $28 \mathrm{~h} ;(\boldsymbol{c})$ r.t., 5 days; (d) r.t., 14 days; (e) $50^{\circ} \mathrm{C}, 5 \mathrm{~h} ;(f) 100^{\circ} \mathrm{C}, 5 \mathrm{~h}$.

We performed DFT calculations of intermediate species and thermodynamics of this reaction. Selected electronic characteristics of species A1 and C1 derived from allene 1a at the protonation or coordination with AlCl_{3} respectively (see Scheme 2) are given in Table 2. Calculations have shown that carbon C^{3} bears large positive charge in both species A1 and $\mathbf{C 1}$ that makes it electrophilic reactive center. But, in dication $\mathbf{A 1}$ the charge is bigger that makes atom C^{3} "harder" electrophilic center, which interacts more preferably with "hard" oxygen atom of the $\mathrm{P}=\mathrm{O}$ group, giving cations B. That is contrary to species $\mathbf{C} \mathbf{1}$, bearing less charge on this atom, that leads to more favorite interaction with "softer" π-nucleophilic phenyl ring, resulting in formation compounds 2. Apart from that, ortho-carbons in phenyl rings have negative charge, that facilitates cyclization in these positions.

Calculations predict that positive charge is substantially localized on phosphorus atom of the $\mathrm{P}=\mathrm{O}$ group, and oxygen atom of this group possesses negative charge, that also explains its interaction with electrophilic center \mathbf{C}^{3}. The species A1 and $\mathbf{C} 1$ have been characterized in terms of HOMO and LUMO energies and global electrophilicity index $\omega{ }^{13}$ The high ω values reveal that these species are strong electrophiles, especially dication A1.

Table 2. Selected electronic characteristics of species A1 and C1 obtained by DFT calculations.

Species	E $_{\text {номо }}, \mathrm{eV}$	$\mathrm{E}_{\text {LUмо, }} \mathrm{eV}$	$\omega^{\mathbf{a}}{ }^{\mathbf{a}} \mathrm{eV}$	$\mathrm{q}\left(\mathrm{C}^{\mathbf{l}}\right),{ }^{\mathbf{b}} \mathrm{e}$	$\mathrm{q}\left(\mathrm{C}^{3}\right),{ }^{\mathbf{b}} \mathrm{e}$	$\mathrm{q}\left(\mathrm{C}_{o-}\right),{ }^{\mathbf{b}} \mathrm{e}^{\mathrm{e}}$	$\mathrm{q}(\mathrm{P}),{ }^{\mathbf{b}} \mathrm{e}$	$\mathrm{q}(\mathrm{O}),{ }^{\mathbf{b}} \mathrm{e}$
$\mathbf{A 1}$	-7.92	-5.17	7.8	-0.35	0.46	-0.16	1.91	-0.97
$\mathbf{C 1}$	-7.65	-3.08	3.1	-0.56	0.23	-0.16	1.97	-1.19

${ }^{\mathrm{a}}$ Global electrophilicity index $\left.\omega=\left(\mathrm{E}_{\text {Номо }}+\mathrm{E}_{\text {LUмо }}\right)^{2 / 8(} \mathrm{E}_{\text {LUмо }}-\mathrm{E}_{\text {Номо }}\right) .{ }^{\mathrm{b}}$ Natural charges.

Then, we estimated charge distribution in intermediate cations B1, B4, D1, D2, generated from allenes 1a and 1d (see Scheme 3), by DFT calculations (Table 3). Positive charge in these species is mainly localized on phosphorus atom. That is reflected in changes in NMR spectra of cations D and their neutral precursors 2. Thus, in ${ }^{31} \mathrm{P}$ NMR the signal of phosphorus in cation D1 is $\sim 20-30 \mathrm{ppm}$ down-field shifted compare to the same signals of compounds 2 . Despite the triad $\mathrm{P}-$
$C^{1}=C^{2}$ in species B1, B4, D1, D2 is pseudo-allyl type, delocalization of the positive charge on carbon C^{2} is very weak. Positive charge is also very slightly delocalized into phenyl rings (Table 3).

Table 3. Selected electronic characteristics of cations B1, B4, D1, D2 obtained by DFT calculations.

B1

B4

D1

Cation	$\mathrm{q}(\mathrm{P}),{ }^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}^{\mathrm{l}}\right),{ }^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}^{2}\right),{ }^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}^{3}\right),{ }^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}_{i-}\right),{ }^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}_{o-}\right),{ }^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}_{m-}\right),,^{\mathbf{a}}$ e	$\mathrm{q}\left(\mathrm{C}_{p-}\right),{ }^{\mathbf{a}}$ e
B1	1.89	-0.51	-0.16	0.27	-0.45	-0.16	-0.18	-0.14
B4	1.91	-0.56	-0.10	0.26	-0.44	-0.16	-0.19	-0.16
D1	1.89	-0.53	-0.07	-0.13	-0.43	-0.17	-0.18	-0.15
D2	1.91	-0.60	-0.03	-0.14	-0.43	-0.17	-0.19	-0.16

${ }^{\mathrm{a}}$ Natural charges.

Calculations on thermodynamic parameters of transformation of allene $\mathbf{1 a}$ into compounds $\mathbf{2 a}$ and 3a involving key intermediate species A1, B4, C1, D2 are given in Scheme 5. Reaction Gibb's energies reveal that coordination of $\mathbf{1 a}$ with two molecules of AlCl_{3} affording species $\mathbf{C 1}$ is extremely energetically favorable ($\Delta \mathrm{G}-108 \mathrm{~kJ} / \mathrm{mol}$). Reaction pathway from $\mathbf{1 a}$ through $\mathbf{A 1}$ into $\mathbf{B 4}$ has a gain in energy as well. But formation of D2 and 3a from A1 and B4 respectively is not favorable, especially the last reaction with $\Delta \mathrm{G} 124 \mathrm{~kJ} / \mathrm{mol}$ (Scheme 5). In general, $\Delta \mathrm{G}$ values for conversions of 1a into $\mathbf{2 a}$ and $\mathbf{3 a}$ are negative showing energy benefit in these processes.

Apart from that, calculations show that $\mathbf{D} \mathbf{2}$ is $19 \mathrm{~kJ} / \mathrm{mol}$ thermodynamically more stable than B4. This is an additional prove of the shift of equilibrium (see Scheme 2) to the formation of D2 (compare with NMR data in Figure 3).

Scheme 5. Calculated Gibb's energies of reactions.

Conclusions

In conclusion, novel and efficient syntheses of 1-phenyl-1,4-dihydrophosphinoline 1-oxides and 3-hydroxyalk-2-en-1-yl-diphenyl phosphine oxides based on Brønsted or Lewis acid-promoted transformations of 1-(diphenylphosphoryl)alka-1,2-dienes have been developed. Mechanism and intermediate species of this reaction have been investigated by means of NMR and DFT calculations.

Experimental

General Remarks. The NMR spectra of solutions of compounds in CDCl_{3} were recorded on Bruker AVANCE III 400 spectrometers at $25{ }^{\circ} \mathrm{C}$ (at $400,100,376$ and 162 MHz for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra respectively). Chemical shifts are given in δ-values [ppm] referenced to the residual signals of non-deuterated solvent $\left(\mathrm{CHCl}_{3}\right): \delta 7.26\left({ }^{1} \mathrm{H}\right), 77.2\left({ }^{13} \mathrm{C}\right)$, or to the signals of $\mathrm{CFCl}_{3} \delta 0.0 \mathrm{ppm}\left({ }^{13} \mathrm{~F}\right)$ and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4} \delta 0.0 \mathrm{ppm}\left({ }^{31} \mathrm{P}\right)$. NMR experiments in the superacid TfOH at room temperature were performed on Bruker AVANCE III 400 spectrometer (at 400, 100 and 162 MHz for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra respectively). NMR spectra in TfOH were referenced to the signal of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added as internal standard: $\delta 5.32 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$, and $\delta 53.84 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$. Highresolution mass spectra were recorded on Bruker Micro-TOF mass spectrometer (ESI-MS) and Varian 902-MS Mass Spectrometer (MALDI-MS). IR spectra of compounds in KBr were taken with Bruker spectrometer. Melting points were measured on a Kofler hot-stage (VEB Wägetechnik Rapido, PHMK 81/2969). The reactions were monitored by thin-layer chromatography carried out on silica gel plates (Alugram SIL G/UV-254), using UV light for detection. Preparative column chromatography was performed on silica gel Fluka 40-63 with eluation by petroleum ether-ethyl acetate or dichloromethane-methanol mixtures.

X-ray crystallography. Single crystal X-ray analysis was performed at single crystal diffractometer Agilent Technologies (Oxford Diffraction) «Supernova». A suitable crystal was selected and studied on the diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex $2,{ }^{14}$ the structure was solved with the ShelXS ${ }^{15}$ structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization.

CCDC 1426281 ($\mathbf{2 f}$) contains the supplementary crystallographic data, which can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) + 44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk.

DFT calculations. All computations has been carried out at the DFT/HF hybrid level of theory using Becke's three-parameter hybrid exchange functional in combination with the gradient-
corrected correlation functional of Lee, Yang, and Parr (B3LYP) by using GAUSSIAN 09 program packages. ${ }^{16}$ Solvation effect was taken into account within the frameworks of Polarizable Continuum Model. The geometries optimization were performed using the $6-311+\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p})$ basis set. The Hessian matrix was calculated analytically for the optimized structures in order to prove the location of correct minima (no imaginary frequencies) and to estimate the thermodynamic parameters. Enthalpies and Gibbs free energies were calculated for $25^{\circ} \mathrm{C}$.

Synthesis of starting allenes. The necessary allenes 1a-h were obtained in reaction of the corresponding propargyl alcohols with chloro diphenyl phosphine PClPh_{2} in yields of 55-65\% as it was described by us previously, ${ }^{5 \mathrm{ffg}}$ allenes 1a-e are known compounds. ${ }^{5 \mathrm{ffg}}$

2-Methyl-4-(diphenylphosphoryl)hepta-2,3-diene (1f).
Colorless oil; IR (KBr), $\mathrm{cm}^{-1}: 688,720,758,875,952,1020,1076,1116,1144,1190,1260$, 1365, 1426, 1479, 1638, 1825, 1862, 1900, 1942, 1975, 2012, 2928, 2943, 3058; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta$, ppm: $0.87 \mathrm{t}\left(3 \mathrm{H}, \mathrm{C}^{7} \mathrm{H}_{3},{ }^{3} \mathrm{JHH}_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 1.40 \mathrm{~d}\left(6 \mathrm{H}, \mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{8} \mathrm{H}_{3},{ }^{5} J_{\mathrm{HP}} 8.0 \mathrm{~Hz}\right), 1.48$ sext $\left(2 \mathrm{H}, \mathrm{C}^{6} \mathrm{H}_{2},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 2.17 \mathrm{dt}\left(2 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{2},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}} 8.0 \mathrm{~Hz}\right), 7.38-7.48 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.65-7.70 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 13.7 \mathrm{~s}\left(\mathrm{C}^{7}\right), 19.3 \mathrm{~d}\left(\mathrm{C}^{1}, \mathrm{C}^{8},{ }^{4} J_{\mathrm{CP}} 6.0\right.$ $\mathrm{Hz}), 21.8 \mathrm{~d}\left(\mathrm{C}^{6},{ }^{3} J_{\mathrm{CP}} 5.0 \mathrm{~Hz}\right), 29.7 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{2} J_{\mathrm{CP}} 8.0 \mathrm{~Hz}\right), 96.4 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{1} J_{\mathrm{CP}} 102.6 \mathrm{~Hz}\right), 98.5 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{3} J_{\mathrm{CP}}\right.$ $15.1 \mathrm{~Hz}), 128.2 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 131.6 \mathrm{~s}\left(\mathrm{C}^{4}\right), 131.6 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6^{\prime}},{ }^{2} J_{\mathrm{CP}} 10.1 \mathrm{~Hz}\right), 132.7 \mathrm{~d}$ $\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 103.6 \mathrm{~Hz}\right), 207.7 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 6.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 31.7$; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OPH}[\mathrm{M}+\mathrm{H}]^{+} 311.1559$, found $311.1563 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OPNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 333.1373$, found 333.1385 .

2,5,5-Trimethyl-4-(diphenylphosphoryl)hexa-2,3-diene (1g).

Colorless solid; mp $87-88^{\circ} \mathrm{C}$; IR (KBr), $\mathrm{cm}^{-1}: 660$, 693, 718, 763, 878, 948, 1018, 1080, $1115,1140,1192,1258,1369,1428,1485,1599,1635,1822,1860,1899,1940,1973,2010,2921$, 2948, 3060; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 1.21 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{C}^{6} \mathrm{H}_{3}, \mathrm{C}^{7} \mathrm{H}_{3}, \mathrm{C}^{8} \mathrm{H}_{3}\right), 1.37 \mathrm{~d}(6 \mathrm{H}$, $\left.\mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{9} \mathrm{H}_{3},{ }^{5} J_{\mathrm{HP}} 4.0 \mathrm{~Hz}\right), 7.39-7.49 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.65-7.71 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta$, ppm: $19.3 \mathrm{~d}\left(\mathrm{C}^{1}, \mathrm{C}^{9},{ }^{4} J_{\mathrm{CP}} 6.0 \mathrm{~Hz}\right), 31.0 \mathrm{~d}\left(\mathrm{C}^{6}, \mathrm{C}^{7}, \mathrm{C}^{8},{ }^{3} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 36.4 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{2} J_{\mathrm{CP}} 7.0\right.$ $\mathrm{Hz}), 98.4 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{3} J_{\mathrm{CP}} 15.1 \mathrm{~Hz}\right), 105.6 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{1} J_{\mathrm{CP}} 99.6 \mathrm{~Hz}\right), 128.1 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 131.2$ $\left(\mathrm{C}^{4},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 131.5 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6^{\prime}},{ }^{2} J_{\mathrm{CP}} 9.1 \mathrm{~Hz}\right), 134.9 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 103.6 \mathrm{~Hz}\right), 207.4 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 8.0\right.$ Hz); ${ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$, ppm: 31.5; HRMS (ESI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{OPH}[\mathrm{M}+\mathrm{H}]^{+}$ 325.1716, found $325.1720 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{OPNa}[\mathrm{M}+\mathrm{Na}]^{+} 347.1530$, found 347.1543.

2-Methyl-4-(diphenylphosphoryl)-5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodeca-2,3-diene (1h) was obtained from $5,5,6,6,7,7,8,8,9,9,10,10,10-$ tridecafluorodeca-3-yn-2-ol (4) (see below).

Colorless solid; mp $82-84^{\circ} \mathrm{C}$; IR (KBr), $\mathrm{cm}^{-1}: 662,698,723,764,868,881,945,1026,1078$, 1113, 1142, 1186, 1258, 1366, 1437, 1481, 1597, 1638, 1825, 1859, 1906, 1938, 1973, 2014, 2926, 2951, 3065; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$, ppm: $1.50 \mathrm{~d}\left(6 \mathrm{H}, \mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{11} \mathrm{H}_{3},{ }^{5} \mathrm{~J}_{\mathrm{HP}} 1.0 \mathrm{~Hz}\right), 7.45-7.56$
$\mathrm{m}\left(6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.71-7.76 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, \quad 100 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 18.4 \mathrm{~d}\left(\mathrm{C}^{1}, \mathrm{C}^{11}\right.$, $\left.{ }^{4} J_{\mathrm{CP}} 4.0 \mathrm{~Hz}\right), 92.6 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{1} J_{\mathrm{CP}} 100.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{CF}} 29.2 \mathrm{~Hz}\right), 104.2 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{3} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 128.6 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5}\right.$, $\left.{ }^{3} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 131.7 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 10.1 \mathrm{~Hz}\right), 132.0 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 109.7 \mathrm{~Hz}\right), 132.3\left(\mathrm{C}^{4},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right)$, $212.7 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$, ppm: 26.7; ${ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right)$ δ, ppm: $(-126.2)-(-126.0) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-122.9)-(-122.7) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-121.4)-(-121.2) \mathrm{m}(2 \mathrm{~F}$, $\left.\mathrm{CF}_{2}\right),(-120.9)-(-120.7) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-101.1)-(-100.9) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{C}^{5} \mathrm{~F}_{2}\right),(-80.9)-(-80.7) \mathrm{m}\left(3 \mathrm{~F}, \mathrm{C}^{10} \mathrm{~F}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{13} \mathrm{OPH}[\mathrm{M}+\mathrm{H}]^{+}$587.0804, found $587.0805 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{13} \mathrm{OPNa}[\mathrm{M}+\mathrm{Na}]^{+}$609.0618, found 609.0639.
$\mathbf{5 , 5 , 6 , 6}, 7,7, \mathbf{8 , 8}, 9,9,10,10,10-T r i d e c a f l u o r o-2-m e t h y l d e c-3-y n-2-o l(4) .{ }^{17}{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta$, ppm: $1.58 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{11} \mathrm{H}_{3}\right), 2.11 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$, ppm: $30.4 \mathrm{~s}\left(\mathrm{C}^{1}, \mathrm{C}^{11}\right), 65.3 \mathrm{~s}\left(\mathrm{C}^{2}\right), 69.0 \mathrm{t}\left(\mathrm{C}^{4},{ }^{2} J_{\text {CF }} 36.0 \mathrm{~Hz}\right), 97.4 \mathrm{t}\left(\mathrm{C}^{3},{ }^{3} J_{\text {CF }} 6.0 \mathrm{~Hz}\right), 104.5-113.5 \mathrm{~m}$ $\left(\mathrm{C}^{5}, \mathrm{C}^{6}, \mathrm{C}^{7}, \mathrm{C}^{8}, \mathrm{C}^{9}\right), 117.5 \mathrm{qt}\left(\mathrm{C}^{10} \mathrm{~F}_{3},{ }^{1} J_{\mathrm{CF}} 286.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{CF}} 33.0 \mathrm{~Hz}\right) ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta$, ppm: $(-126.4)-(-126.3) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-123.0)-(-122.9) \mathrm{m}\left(4 \mathrm{~F}, 2 \mathrm{CF}_{2}\right)$, (-121.6)-(-121.5) m (2F, $\left.\mathrm{CF}_{2}\right),(-98.3)-(-98.2) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{C}^{5} \mathrm{~F}_{2}\right),(-81.3)-(-81.1) \mathrm{m}\left(3 \mathrm{~F}, \mathrm{C}^{10} \mathrm{~F}_{3}\right)$.

General procedure for transformation of allenes 1a-h in Brønsted acids (TfOH, $\mathrm{FSO}_{3} \mathbf{H}$, $\mathbf{H}_{2} \mathrm{SO}_{4}$). Synthesis of compounds $\mathbf{2 a - g}$, 3a-g.

A solution of allene $\mathbf{1}(0.3 \mathrm{mmol})$ in $\mathrm{TfOH}(1 \mathrm{~mL})$ was stirred at temperature for the time as indicated in Table 1. The mixture was poured into ice water $(30 \mathrm{~mL})$ and extracted with chloroform $(3 \times 30 \mathrm{~mL})$. The extracts were combined, washed with water, a saturated aqueous solution of NaHCO_{3}, and water again, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was distilled off under reduced pressure, and the residue was subjected to chromatographic separation on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2-}$ MeOH (up to 5%) as an eluent.

Analogously the reactions were carried out in $\mathrm{H}_{2} \mathrm{SO}_{4}$ (see Table 1). Reaction mixture in $\mathrm{FSO}_{3} \mathrm{H}$ was quenched with frozen hydrochloric acid at $-80^{\circ} \mathrm{C}$ and worked-up as described above.

General procedure for transformation of compounds $\mathbf{1 a - h}$ under the action of $\mathbf{A l C l}_{3}$. Synthesis of compounds $\mathbf{2 a - g}$.
$\mathrm{AlCl}_{3}(2.5 \mathrm{mmol})$ was added to solution of allene $1(0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Reaction mixture was stirred at room temperature for $10-120 \mathrm{~min}$ as indicated in Table 1. The mixture was quenched with ice water (50 mL), extracted, and worked-up as described above.

Physical-chemical characteristics of compounds 2a-e and 3a-e were reported by us previously. ${ }^{6}$

1-Phenyl-2-propyl-4,4-dimethyl-1,4-dihydrophosphinoline 1-oxide (2f).
Colorless solid; $\mathrm{mp} 170-171^{\circ} \mathrm{C}$; IR (KBr), $\mathrm{cm}^{-1}: 656,695,724,744,779,860,918,962$, 1082, 1115, 1248, 1295, 1366, 1442, 1487, 1590, 1624, 2878, 2929, 2967, 2980, 3054; ${ }^{1}$ H NMR
$\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$, ppm: $0.83 \mathrm{t}\left(3 \mathrm{H}, \mathrm{C}^{13} \mathrm{H}_{3},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 1.39-1.54 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{C}^{12} \mathrm{H}_{2}\right), 1.53 \mathrm{~d}(6 \mathrm{H}$, $\left.\mathrm{C}^{14} \mathrm{H}_{3}, \mathrm{C}^{15} \mathrm{H}_{3},{ }^{5} J_{\mathrm{HP}} 8.0 \mathrm{~Hz}\right), 2.08-2.19 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{C}^{11} \mathrm{H}_{2}\right), 2.27-2.39 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{C}^{11} \mathrm{H}_{2}\right), 6.36 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H}\right.$, $\left.{ }^{3} J_{\mathrm{HP}} 32.0 \mathrm{~Hz}\right), 7.22-7.26 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.37-7.50 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.59-7.67 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, \quad 100 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 13.7 \mathrm{~s}\left(\mathrm{C}^{13}\right), 21.8 \mathrm{~d}\left(\mathrm{C}^{12},{ }^{3} J_{\mathrm{CP}} 4.0 \mathrm{~Hz}\right), 31.9 \mathrm{~d}\left(\mathrm{C}^{14},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right)$, $32.5 \mathrm{~d}\left(\mathrm{C}^{15},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 33.1 \mathrm{~d}\left(\mathrm{C}^{11},{ }^{2} J_{\mathrm{CP}} 8.0 \mathrm{~Hz}\right), 38.8 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{3} J_{\mathrm{CP}} 12.0 \mathrm{~Hz}\right), 126.8 \mathrm{~d}\left(\mathrm{C}^{7},{ }^{3} J_{\mathrm{CP}} 9.1\right.$ $\mathrm{Hz}), 127.0 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 127.9 \mathrm{~d}\left(\mathrm{C}^{9},{ }^{1} J_{\mathrm{CP}} 101.6 \mathrm{~Hz}\right), 128.1 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{1} J_{\mathrm{CP}} 94.6 \mathrm{~Hz}\right), 128.5 \mathrm{~d}$ $\left(\mathrm{C}^{3} \mathrm{C}^{5^{\prime}},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 131.3-131.6 \mathrm{~m}\left(\mathrm{C}^{6}, \mathrm{C}^{8}, \mathrm{C}^{4}\right), 131.4 \mathrm{~d}\left(\mathrm{C}^{2^{\prime}}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 10.1 \mathrm{~Hz}\right), 134.4 \mathrm{~d}\left(\mathrm{C}^{1}{ }^{\prime}\right.$, $\left.{ }^{1} J_{\mathrm{CP}} 104.6 \mathrm{~Hz}\right), 149.0 \mathrm{~d}\left(\mathrm{C}^{10},{ }^{2} J_{\mathrm{CP}} 8.0 \mathrm{~Hz}\right), 150.9 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 8.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right)$ δ, ppm: 9.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OPH}[\mathrm{M}+\mathrm{H}]^{+} 311.1559$, found $311.1565 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{OPNa}[\mathrm{M}+\mathrm{Na}]^{+} 333.1373$, found 333.1381.

1-Phenyl-2-tert-butyl-4,4-dimethyl-1,4-dihydrophosphinoline 1-oxide (2g).

Colorless solid; mp $167-168{ }^{\circ} \mathrm{C}$; IR (KBr), $\mathrm{cm}^{-1}: 650,700,718,740,775,856,918,962$, 1076, 1116, 1248, 1298, 1369, 1443, 1480, 1595, 1620, 2878, 2940, 2965, 2980, 3048; ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$, ppm: $1.20 \mathrm{~s}\left(9 \mathrm{H}, \mathrm{C}^{12} \mathrm{H}_{3}, \mathrm{C}^{13} \mathrm{H}_{3}, \mathrm{C}^{14} \mathrm{H}_{3}\right), 1.54 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{15} \mathrm{H}_{3}, \mathrm{C}^{16} \mathrm{H}_{3}\right), 6.56 \mathrm{~d}$ $\left(1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H},{ }^{3} J_{\mathrm{HP}} 36.0 \mathrm{~Hz}\right), 7.22-7.26 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.37-7.45 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.67-7.72 \mathrm{~m}(3 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, \quad 100 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 31.3 \mathrm{~d}\left(\mathrm{C}^{12}, \mathrm{C}^{13}, \mathrm{C}^{14}, J_{\mathrm{CP}} 4.0 \mathrm{~Hz}\right), 32.1 \mathrm{~d}\left(\mathrm{C}^{15},{ }^{4} J_{\mathrm{CP}}\right.$ $2.0 \mathrm{~Hz}), 32.1 \mathrm{~d}\left(\mathrm{C}^{15},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 32.5 \mathrm{~d}\left(\mathrm{C}^{16},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 37.2 \mathrm{~d}\left(\mathrm{C}^{11},{ }^{2} J_{\mathrm{CP}} 7.0 \mathrm{~Hz}\right), 38.9 \mathrm{~d}\left(\mathrm{C}^{4}\right.$, $\left.{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 126.4 \mathrm{~d}\left(\mathrm{C}^{7},{ }^{3} J_{\mathrm{CP}} 8.1 \mathrm{~Hz}\right), 127.0 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 128.4 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right)$, $129.9 \mathrm{~d}\left(\mathrm{C}^{9},{ }^{1} J_{\mathrm{CP}} 101.6 \mathrm{~Hz}\right), 130.8 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6^{\prime}},{ }^{2} J_{\mathrm{CP}} 10.1 \mathrm{~Hz}\right), 130.9-131.2 \mathrm{~m}\left(\mathrm{C}^{6}, \mathrm{C}^{8}, \mathrm{C}^{4}\right), 135.6 \mathrm{~d}$ $\left(\mathrm{C}^{2},{ }^{1} J_{\mathrm{CP}} 90.5 \mathrm{~Hz}\right), 137.3 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 103.6 \mathrm{~Hz}\right), 147.4 \mathrm{~d}\left(\mathrm{C}^{10},{ }^{2} J_{\mathrm{CP}} 7.0 \mathrm{~Hz}\right), 150.1 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 8.0\right.$ $\mathrm{Hz}) ;{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$, ppm: 9.1; HRMS (ESI): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{OPH}[\mathrm{M}+\mathrm{H}]^{+}$ 325.1716, found $325.1725 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{OPNa}[\mathrm{M}+\mathrm{Na}]^{+} 347.1530$, found 347.1546.

(3E)-4-Bromo-4-(diphenylphosphoryl)-2-methyl(3- ${ }^{2} \mathrm{H}$)but-3-en-2-ol (3d- d).

Colorless solid; mp $96-97^{\circ} \mathrm{C}$; IR (KBr), $\mathrm{cm}^{-1}: 691,704,748,814,970,1096,1117,1161$, $1186,1215,1315,1356,1369,1437,1566,1589,2926,2970,3057,3252 ;{ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta, \mathrm{ppm}: 1.50 \mathrm{~s}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.97 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}), 7.50-7.60 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.83-7.87 \mathrm{~m}(4 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$, ppm: $31.0 \mathrm{~s}\left(2 \mathrm{CH}_{3}\right), 71.8 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{3} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 111.7 \mathrm{~d}\left(\mathrm{C}^{4}\right.$, $\left.{ }^{1} J_{\mathrm{CP}} 76.5 \mathrm{~Hz}\right), 128.7 \mathrm{~d}\left(\mathrm{C}^{3^{\prime}}, \mathrm{C}^{5^{\prime}},{ }^{3} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 129.3 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 90.6 \mathrm{~Hz}\right), 132.8 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 8.0\right.$ $\mathrm{Hz}), 132.9 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{2} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 165 \mathrm{~m}\left(\mathrm{C}^{3}\right) ;{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 31.5$; HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{DBrO}_{2} \mathrm{PH}[\mathrm{M}+\mathrm{H}]^{+} 366.0363$, found $366.0361 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{DBrO}_{2} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$388.0177, found 388.0193.
(Z)-2-Methyl-4-(diphenylphosphoryl)hept-3-en-2-ol (3f).

Colorless oil; IR (KBr), $\mathrm{cm}^{-1}: 648,696,710,723,752,968,997,1070,1117,1169,1219$, 1356, 1377, 1437, 1464, 1609, 2870, 2932, 2965, 2978, 3057; ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$, ppm: $0.62 \mathrm{t}\left(3 \mathrm{H}, \mathrm{C}^{7} \mathrm{H}_{3},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 1.02 \operatorname{sext}\left(2 \mathrm{H}, \mathrm{C}^{6} \mathrm{H}_{2},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 1.46 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{8} \mathrm{H}_{3}\right)$,
$1.82-1.89 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{2},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 6.68 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H},{ }^{3} J_{\mathrm{HP}} 40.0 \mathrm{~Hz}\right), 6.99 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}), 7.45-7.48$ $\mathrm{m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.52-7.57 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.65-7.70 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ δ, ppm: $13.7 \mathrm{~s}\left(\mathrm{C}^{7} \mathrm{H}_{3}\right), 23.2 \mathrm{~d}\left(\mathrm{C}^{6} \mathrm{H}_{2},{ }^{3} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 31.3 \mathrm{~d}\left(\mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{8} \mathrm{H}_{3},{ }^{4} J_{\mathrm{CP}} 1.0 \mathrm{~Hz}\right), 37.3 \mathrm{~d}\left(\mathrm{C}^{5} \mathrm{H}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{CP}} 14.0 \mathrm{~Hz}\right), 70.1 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{3} J_{\mathrm{CP}} 6.0 \mathrm{~Hz}\right), 128.2 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{1} J_{\mathrm{CP}} 88.5 \mathrm{~Hz}\right), 128.7 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right)$, $131.9 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 103.6 \mathrm{~Hz}\right), 132.2 \mathrm{~d}\left(\mathrm{C}^{4}\right), 132.3 \mathrm{~d}\left(\mathrm{C}^{2^{2}}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 159.4 \mathrm{~s}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 6.0\right.$ $\mathrm{Hz}) ;{ }^{31} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta$, ppm: 34.8; HRMS (ESI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{PH}[\mathrm{M}+\mathrm{H}]^{+}$ 329.1665, found $329.1667 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+} 351.1479$, found 351.1488 .
(Z)-2-Methyl-4-(diphenylphosphoryl)-5,5,6,6,7,7,8,8,9,9,10,10,10-tridecafluorodec-3-en-2-ol (3g).

Colorless oil; IR (KBr), $\mathrm{cm}^{-1}: 652,698,708,720,750,966,998,1072,1115,1170,1217$, 1354, 1374, 1438, 1462, 1612, 2872, 2930, 2968, 2980, 3055; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$, ppm: $1.53 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{11} \mathrm{H}_{3}\right), 7.02 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH}), 7.37 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H},{ }^{3} J_{\mathrm{HP}} 36.0 \mathrm{~Hz}\right), 7.46-7.51 \mathrm{~m}(4 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom. }}\right), 7.56-7.61 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 7.68-7.73 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta, \mathrm{ppm}$: $30.5 \mathrm{~s}\left(\mathrm{C}^{1} \mathrm{H}_{3}, \mathrm{C}^{11} \mathrm{H}_{3}\right), 71.1 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{3} J_{\mathrm{CP}} 5.0 \mathrm{~Hz}\right), 128.6 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 131.3 \mathrm{~d}\left(\mathrm{C}^{1^{\prime}},{ }^{1} J_{\mathrm{CP}}\right.$ $110.7 \mathrm{~Hz}), 132.2 \mathrm{~d}\left(\mathrm{C}^{4}\right), 128.7 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5^{\prime}},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 132.6 \mathrm{~d}\left(\mathrm{C}^{2^{\prime}}, \mathrm{C}^{6^{\prime}},{ }^{2} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 132.9 \mathrm{~s}$ $\left(\mathrm{C}^{4},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 171.5 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 6.0 \mathrm{~Hz}\right) ;{ }^{\mathbf{3 1}} \mathbf{P}$ NMR $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right) \delta, \mathrm{ppm}: 31.5 ;{ }^{19} \mathbf{F}$ NMR $\left(\mathrm{CDCl}_{3}, 376.50 \mathrm{MHz}\right) \delta$, ppm: $(-126.3)-(-126.1) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-123.0)-(-122.9) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-$ $122.0)-(-121.9) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-119.7)-(-119.4) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{CF}_{2}\right),(-97.8)-(-97.6) \mathrm{m}\left(2 \mathrm{~F}, \mathrm{C}^{5} \mathrm{~F}_{2}\right),(-81.0)-$ (-80.7) $\mathrm{m}\left(3 \mathrm{~F}, \mathrm{C}^{10} \mathrm{~F}_{3}\right.$); HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{13} \mathrm{O}_{2} \mathrm{PH}[\mathrm{M}+\mathrm{H}]^{+} 605.0910$, found 605.0916; m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{13} \mathrm{O}_{2} \mathrm{PNa}[\mathrm{M}+\mathrm{Na}]^{+}$627.0724, found 627.0735.

NMR spectra of cations B1-B5, D1-D3 in superacid TfOH.

3-Bromo-5,5-dimethyl-2,2-diphenyl-1,2-oxaphosphol-3-enium (B1).
${ }^{1} \mathbf{H}$ NMR $(\mathrm{TfOH}, 400 \mathrm{MHz}) \delta, \mathrm{ppm}: 1.87 \mathrm{~s}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.78 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H},{ }^{3} J_{\mathrm{HP}} 28.0 \mathrm{~Hz}\right)$, $7.81-7.86 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.90-7.95 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right), 8.01-8.05 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathbf{C}$ NMR (TfOH, $100 \mathrm{MHz}) \delta$, ppm: $27.5 \mathrm{~s}\left(2 \mathrm{CH}_{3}\right), 102.0 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{1} J_{\mathrm{CP}} 96.6 \mathrm{~Hz}\right), 103.6 \mathrm{~s}\left(\mathrm{C}^{5}\right), 118.3 \mathrm{~d}\left(2 \mathrm{ipso}-\mathrm{C},{ }^{1} J_{\mathrm{CP}}\right.$ $107.7 \mathrm{~Hz}), 131.5 \mathrm{~d}\left(4 m-\mathrm{C},{ }^{3} J_{\mathrm{CP}} 14.1 \mathrm{~Hz}\right), 134.3 \mathrm{~d}\left(4 o-\mathrm{C},{ }^{2} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 138.5 \mathrm{~d}\left(2 p-\mathrm{C},{ }^{4} J_{\mathrm{CP}} 2.0\right.$ $\mathrm{Hz}), 161.3 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{2} J_{\mathrm{CP}} 19.1 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR (TfOH, 162 MHz$) \delta$, ppm: 78.0.

3,4-Dibromo-5,5-dimethyl-2,2-diphenyl-1,2-oxaphosphol-3-enium (B2) with bromide counter-ion was obtained according to literature procedure. ${ }^{10}$

3,4-Dibromo-5,5-dimethyl-2,2-diphenyl-1,2-oxaphosphol-3-enium (B3).

${ }^{1} \mathbf{H}$ NMR (TfOH, 400 MHz$) \delta, \mathrm{ppm}: 1.98 \mathrm{~s}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.70-8.10 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom }}\right) ;{ }^{13} \mathbf{C}$ NMR (TfOH, 100 MHz$) \delta, \mathrm{ppm}: 27.6 \mathrm{~s}\left(2 \mathrm{CH}_{3}\right), 103.3 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{1} J_{\mathrm{CP}} 99.6 \mathrm{~Hz}\right), 104.1 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 4.0\right.$ $\mathrm{Hz}), 117.9 \mathrm{~d}\left(2\right.$ ipso-C, $\left.{ }^{1} J_{\mathrm{CP}} 108.7 \mathrm{~Hz}\right), 131.5 \mathrm{~d}\left(4 m-\mathrm{C},{ }^{3} J_{\mathrm{CP}} 15.1 \mathrm{~Hz}\right), 134.3 \mathrm{~d}\left(4 o-\mathrm{C},{ }^{2} J_{\mathrm{CP}} 13.1\right.$ $\mathrm{Hz}), 138.8 \mathrm{~d}\left(2 p-\mathrm{C},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 154.7 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{2} J_{\mathrm{CP}} 34.2 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR (TfOH, 162 MHz$) \delta$, ppm: 75.8.

2,2-Diphenyl-5,5-dimethyl-1,2-oxaphosphol-3-enium (B4).

${ }^{1} \mathbf{H}$ NMR (TfOH, 400 MHz$) \delta, \mathrm{ppm}: 1.85 \mathrm{~s}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 6.78 \mathrm{dd}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}}\right.$ $40.0 \mathrm{~Hz}), 7.73-7.99 \mathrm{~m}\left(11 \mathrm{H}, 10 \mathrm{H}_{\text {arom. }}, \mathrm{C}^{3} \mathrm{H}\right) ;{ }^{13} \mathbf{C}$ NMR $(\mathrm{TfOH}, 100 \mathrm{MHz}) \delta$, ppm: $27.1 \mathrm{~s}\left(2 \mathrm{CH}_{3}\right)$, $102.6 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 111.8 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{1} J_{\mathrm{CP}} 83.0 \mathrm{~Hz}\right), 121.2 \mathrm{~d}\left(2\right.$ ipso-C, $\left.{ }^{1} J_{\mathrm{CP}} 106.0 \mathrm{~Hz}\right), 131.1 \mathrm{~d}(4$ $\left.m-\mathrm{C},{ }^{3} J_{\mathrm{CP}} 14.1 \mathrm{~Hz}\right), 133.5 \mathrm{~d}\left(4 o-\mathrm{C},{ }^{2} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 137.5 \mathrm{~d}\left(2 p-\mathrm{C},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 164.4 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{2} J_{\mathrm{CP}} 6.0\right.$ $\mathrm{Hz}) ;{ }^{31} \mathbf{P}$ NMR (TfOH, 162 MHz$) \delta, \mathrm{ppm}: 86.5$.

3-Propyl-2,2-diphenyl-5,5-dimethyl-1,2-oxaphosphol-3-enium (B5).

${ }^{1} \mathbf{H}$ NMR (TfOH, 400 MHz$) \delta$, ppm: $1.00 \mathrm{t}\left(3 \mathrm{H}, \mathrm{C}^{8} \mathrm{H}_{3},{ }^{3} J_{\mathrm{HH}} 8.0 \mathrm{~Hz}\right), 1.68 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{C}^{7} \mathrm{H}_{2}\right), 1.84$ $\mathrm{s}\left(6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 2.50 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{C}^{6} \mathrm{H}_{2}\right), 7.34 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H},{ }^{3} J_{\mathrm{HP}} 36.0 \mathrm{~Hz}\right), 7.82-8.01 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\text {arom. }}\right) ;{ }^{13} \mathbf{C}$ NMR (TfOH, 100 MHz$) \delta, \mathrm{ppm}: 13.0 \mathrm{~s}\left(\mathrm{C}^{8}\right), 21.8 \mathrm{~d}\left(\mathrm{C}^{7},{ }^{3} J_{\mathrm{CP}} 7.0 \mathrm{~Hz}\right), 27.6 \mathrm{~s}\left(2 \mathrm{CH}_{3}\right), 28.9 \mathrm{~d}\left(\mathrm{C}^{6}\right.$, $\left.{ }^{2} J_{\mathrm{CP}} 12.0 \mathrm{~Hz}\right), 101.3 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 120.4 \mathrm{~d}\left(2\right.$ ipso-C, $\left.{ }^{1} J_{\mathrm{CP}} 102.0 \mathrm{~Hz}\right), 127.2 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{1} J_{\mathrm{CP}} 74.0\right.$ $\mathrm{Hz}), 131.2 \mathrm{~d}\left(4 \mathrm{~m}-\mathrm{C},{ }^{3} J_{\mathrm{CP}} 14.1 \mathrm{~Hz}\right), 133.7 \mathrm{~d}\left(4 o-\mathrm{C},{ }^{2} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 137.6 \mathrm{~d}\left(2 p-\mathrm{C},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right)$, $156.1 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{2} J_{\mathrm{CP}} 14.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P}$ NMR (TfOH, 162 MHz$) \delta, \mathrm{ppm}: 83.1$.
(2-Bromo-4,4-dimethyl-1-phenyl-1,4-dihydro-1 λ^{5}-phosphinolin-1-ylidene)oxonium (D1).
${ }^{1} \mathbf{H}$ NMR (TfOH, 400 MHz$) \delta, \mathrm{ppm}: 1.75 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.63-8.00 \mathrm{~m}(10 \mathrm{H}$, $\left.9 \mathrm{H}_{\text {arom }}, \mathrm{C}^{3} \mathrm{H}\right) ;{ }^{13} \mathbf{C}$ NMR (TfOH, 100 MHz$) \delta$, ppm: $29.9 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 31.2 \mathrm{~s}\left(\mathrm{CH}_{3}\right), 45.0 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{3} J_{\mathrm{CP}}\right.$ $11.1 \mathrm{~Hz}), 100.8 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{1} J_{\mathrm{CP}} 102.6 \mathrm{~Hz}\right), 115.0 \mathrm{~d}\left(\mathrm{C}^{9},{ }^{1} J_{\mathrm{CP}} 102.6 \mathrm{~Hz}\right), 120.1 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}} 128.8 \mathrm{~Hz}\right)$, $129.6 \mathrm{~d}\left(\mathrm{C}^{7},{ }^{3} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 129.9 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 12.1 \mathrm{~Hz}\right), 131.0 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 15.1 \mathrm{~Hz}\right), 133.2 \mathrm{~d}\left(\mathrm{C}^{8}\right.$, $\left.{ }^{2} J_{\mathrm{CP}} 9.1 \mathrm{~Hz}\right), 133.5 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 137.2 \mathrm{~d}\left(\mathrm{C}^{6},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 137.7 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right)$, $152.7 \mathrm{~d}\left(\mathrm{C}^{10},{ }^{2} J_{\mathrm{CP}} 11.1 \mathrm{~Hz}\right), 168.0 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}(\mathrm{TfOH}, 162 \mathrm{MHz}) \delta, \mathrm{ppm}: 31.5$.

(1-Phenyl-4,4-dimethyl-1,4-dihydro-1 λ^{5}-phosphinolin-1-ylidene)oxonium (D2).

${ }^{1} \mathbf{H}$ NMR (TfOH, 400 MHz$) \delta$, ppm: $1.73 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.53 \mathrm{dd}\left(1 \mathrm{H}, \mathrm{C}^{2} \mathrm{H}\right.$, $\left.{ }^{3} J_{\mathrm{HH}} 12.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}} 12.0 \mathrm{~Hz}\right), 7.61-7.98 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.63 \mathrm{dd}\left(1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H},{ }^{3} J_{\mathrm{HH}} 12.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}} 44.0\right.$ $\mathrm{Hz}) ;{ }^{13} \mathbf{C}$ NMR (TfOH, 100 MHz$) \delta$, ppm: $30.0 \mathrm{~d}\left(\mathrm{CH}_{3},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 31.0 \mathrm{~d}\left(\mathrm{CH}_{3},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right)$, $40.9 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{3} J_{\mathrm{CP}} 14.1 \mathrm{~Hz}\right), 107.5 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{1} J_{\mathrm{CP}} 97.0 \mathrm{~Hz}\right), 115.9 \mathrm{~d}\left(\mathrm{C}^{9},{ }^{1} J_{\mathrm{CP}} 103.0 \mathrm{~Hz}\right), 122.5 \mathrm{~d}\left(\mathrm{C}^{1},{ }^{1} J_{\mathrm{CP}}\right.$ $123.0 \mathrm{~Hz}), 129.3 \mathrm{~s}\left(\mathrm{C}^{5}\right), 129.4 \mathrm{~d}\left(\mathrm{C}^{7},{ }^{3} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 130.9 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 15.0 \mathrm{~Hz}\right), 132.5 \mathrm{~d}\left(\mathrm{C}^{8},{ }^{2} J_{\mathrm{CP}}\right.$ $6.0 \mathrm{~Hz}), 132.5 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 15.0 \mathrm{~Hz}\right), 136.4 \mathrm{~d}\left(\mathrm{C}^{6},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 137.0 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 152.9$ $\mathrm{d}\left(\mathrm{C}^{10},{ }^{2} J_{\mathrm{CP}} 10.0 \mathrm{~Hz}\right), 169.8 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}(\mathrm{TfOH}, 162 \mathrm{MHz}) \delta, \mathrm{ppm}: 31.9$.
(1-Phenyl-4-hexan-1,6-diyl-1,4-dihydro-1 λ^{5}-phosphinolin-1-ylidene)oxonium (D3).
${ }^{1} \mathbf{H}$ NMR (TfOH, 400 MHz$) \delta$, ppm: $1.66-2.42 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{C}^{11-15} \mathrm{H}_{2}\right), 6.63 \mathrm{dd}\left(1 \mathrm{H}, \mathrm{C}^{2} \mathrm{H},{ }^{3} J_{\mathrm{HH}}\right.$ $\left.12.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}} 12.0 \mathrm{~Hz}\right), 7.59-8.08 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.43 \mathrm{dd}\left(1 \mathrm{H}, \mathrm{C}^{3} \mathrm{H},{ }^{3} J_{\mathrm{HH}} 12.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{HP}} 40.0 \mathrm{~Hz}\right)$; ${ }^{13} \mathbf{C}$ NMR (TfOH, 100 MHz$) \delta$, ppm: $22.5 \mathrm{~s}\left(\mathrm{C}^{12}\right), 22.6 \mathrm{~s}\left(\mathrm{C}^{14}\right), 25.7 \mathrm{~s}\left(\mathrm{C}^{13}\right), 39.6 \mathrm{~s}\left(\mathrm{C}^{15}\right), 40.5 \mathrm{~s}$ $\left(\mathrm{C}^{11}\right), 44.1 \mathrm{~d}\left(\mathrm{C}^{4},{ }^{3} J_{\mathrm{CP}} 13.1 \mathrm{~Hz}\right), 108.0 \mathrm{~d}\left(\mathrm{C}^{2},{ }^{1} J_{\mathrm{CP}} 97.0 \mathrm{~Hz}\right), 116.6 \mathrm{~d}\left(\mathrm{C}^{9},{ }^{1} J_{\mathrm{CP}} 103.0 \mathrm{~Hz}\right), 122.6 \mathrm{~d}$ $\left(\mathrm{C}^{1},,^{1} J_{\mathrm{CP}} 124.0 \mathrm{~Hz}\right), 129.2 \mathrm{~d}\left(\mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}} 13.0 \mathrm{~Hz}\right), 129.4 \mathrm{~d}\left(\mathrm{C}^{7},{ }^{3} J_{\mathrm{CP}} 10.0 \mathrm{~Hz}\right), 130.9 \mathrm{~d}\left(\mathrm{C}^{3}, \mathrm{C}^{5},{ }^{3} J_{\mathrm{CP}}\right.$ $15.0 \mathrm{~Hz}), 132.5 \mathrm{~d}\left(\mathrm{C}^{8},{ }^{2} J_{\mathrm{CP}} 9.0 \mathrm{~Hz}\right), 132.7 \mathrm{~d}\left(\mathrm{C}^{2}, \mathrm{C}^{6},{ }^{2} J_{\mathrm{CP}} 13.0 \mathrm{~Hz}\right), 136.4 \mathrm{~d}\left(\mathrm{C}^{6},{ }^{4} J_{\mathrm{CP}} 3.0 \mathrm{~Hz}\right), 136.9$
$\mathrm{d}\left(\mathrm{C}^{4},{ }^{4} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right), 154.2 \mathrm{~d}\left(\mathrm{C}^{10},{ }^{2} J_{\mathrm{CP}} 10.0 \mathrm{~Hz}\right), 166.6 \mathrm{~d}\left(\mathrm{C}^{3},{ }^{2} J_{\mathrm{CP}} 2.0 \mathrm{~Hz}\right) ;{ }^{31} \mathbf{P} \mathbf{N M R}(\mathrm{TfOH}, 162$ $\mathrm{MHz}) \delta, \mathrm{ppm}$ 30.5.

Supplementary information: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$ NMR spectra, X-ray data, DFT calculations.

Acknowledgements

This work was supported by Saint Petersburg State University (grants no. 12.50.2525.2013 and no. 12.38.195.2014). Spectral studies were performed at the Center for Magnetic Resonance, the Center for Chemical Analysis and Materials Research, and the Research Center for X-ray Diffraction Studies of Saint Petersburg State University.

References

1. a) S. R. Landor (Ed.), The Chemistry of the Allenes; Academic Press: London, 1982, Vol. 1-3; b) H. F. Schuster, G. M. Coppola, Allenes in Organic Synthesis; Wiley: New York, 1988; c) C. J. Elsevier, Methods of Organic Chemistry (Houben-Weyl); Vol. E21a, R. W. Helmchen, J. Mulzer, E., Schaumann, Eds.; Thieme: Stuttgart, Germany, 1995; pp. 537-566; d) N. Krause, A. S. K. Hashmi (Eds.), Modern Allene Chemistry; Wiley-VCH: Weinheim, Germany, 2004, Vol. 1, 2; e) K. M. Brummond, J. E. DeForrest, Synthesis, 2007, 795-818.
2. a) R. W. Bates, V. Satcharoen, Chem. Soc. Rev., 2002, 31, 12-21; b) S. Ma, Aldrichim. Acta, 2007, 40, 91-102; c) H. H. A. M. Hassan, Curr. Org. Synth., 2007, 4, 413-439; d) T. G. Back, K. N. Clary, D. Gao, Chem. Rev., 2010, 110, 4498-4553.
3. a) N. G. Khusainova, A.N. Pudovik, Russ. Chem. Rev., 1987, 56, 564-578; b) I. V.; Alabugin, V. K. Brel, Russ. Chem. Rev., 1997, 66, 205-224; c) S. Ma, Acc. Chem. Res., 2009, 42, 1679-1688.
4. a) Ch. M. Angelov, Ch. Zh. Christov, B. I. Ionin, Zh. Obshch. Khim., 1982, 52, 264-267; b) D. D. Enchev, Ch. M. Angelov, E. Krawchik, A. Skowronska, J. Michalski, Phosphorus Sulfur Silicon, 1991, 57, 249-253; c) I. K. Ivanov, I. D. Parushev, V. Ch.Christov, Heteroatom Chemistry, 2014, 25, 60-71.
5. a) G. Gangadhararao, R. Kotikalapudi, M. Nagarjuna Reddy, K.C. Kumara Swamy, Beilst. J. Org. Chem., 2014, 10, 996-1005; b) M. Phani Pavan, M. Nagarjuna Reddy, N.N. Bhuvan Kumar, K.C. Kumara Swamy, Org. Biomol. Chem., 2012, 10, 8113-8118; c) K.V. Sajna, K.C. Kumara Swamy, J. Org. Chem., 2012, 77, 5345-5356; d) V. Srinivas, K.V. Sajna, K.C. Kumara Swamy, Tetrahedron Lett., 2011, 52, 5323-5326; e) X. Jiang, W. Kong, J. Chen, S. Ma, Org. Biomol. Chem., 2008, 6, 3606-3610; f) A. S. Bogachenkov, M. M. Efremova, B. I. Ionin, Tetrahedron Lett., 2012, 53, 2100-2102; g) A. S. Bogachenkov, B. I. Ionin, G.-V. Röschenthaler, Tetrahedron Lett.,

2013, 54, 1714-1717; h) A. S. Bogachenkov, B. I. Ionin, Russ. J. Gen. Chem., 2012, 82, 2009-2010.
6. A. S. Bogachenkov, A. V. Dogadina, V. P. Boyarskiy, A. V. Vasilyev, Org. Biomol. Chem., 2015, 33, 1333-1338.
7. a) D. J. Collins, L. E. Rowley, J. M. Swan, Aust. J. Chem. 1974, 27, 815-830; b) A. Sedqui, J. Vebrel, B. Laude, N. Rodier, F. Theobald, J. Chem. Res., Miniprint 1992, 5, 1159-1187.
8. A. N. Hughes, K. Amornraksa, S. Phisithkul, V. Reutrakul, J. Heterocyclic Chem., 1976, 13, 937-943.
9. a) G.A. Olah, G.K.S. Prakash, A. Molnar, J. Sommer, Superacid Chemistry, 2nd Edition; Wiley, New Jersey, 2009; b) G.A. Olah, D.A. Klumpp, Superelectrophiles and Their Chemistry. Wiley, New-York, 2008.
10. R. W. Saalfrank, A. Welch, M. Haubner, U. Bauer, Liebigs Ann., 1996, 2, 171-181.
11. E. Krawchik, A. Skowronska, J. Michalski, Phosphorus Sulfur Silicon, 1991, 57, 249-253.
12. H. Guo, R. Qian, Y. Guo, S. Ma, J. Org. Chem., 2008, 73, 7934-7938.
13. a) R. G. Parr, L. v. Szentpaly, S. Liu, J. Am. Chem. Soc., 1999, 121, 1922-1924; b) P. K. Chattaraj, S. Giri, S. Duley, Chem. Rev., 2011, 111, PR43-PR75.
14. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
15. G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. GAUSSIAN 03, Revision B.01; Gaussian, Inc., Pittsburgh, PA, 2003.
17. B. Abou-Ghazaleh, P. Laurent, H. Blancou, A. Commeyras, J. Fluorine Chem. 1994, 68, 21-24.

