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Visible-light-promoted chloramination of olefins with N-
chlorosulfonamide as both nitrogen and chlorine sources 

Qixue Qin, Daan Ren and Shouyun Yu* 

A visible-light-promoted  chloramination of olefins is reported. N-

chlorosulfonamides serve as both nitrogen and chlorine sources. 

These reactions provide a simple, efficient, regioselective, and 

atom-economic method for the preparation of vicinal haloamine 

derivatives under mild conditions. A variety of olefins were 

tolerated, and chloroamidation products were obtained with good 

yields. 

Vicinal haloamine derivatives are versatile synthetic 

intermediates for the synthesis of functional materials and 

biologically active compounds by replacement of the halogen 

atom with multifarious nucleophiles.
1
 Among the synthetic 

routes to these 1,2-haloamines, the direct 1,2-

functionalization of olefins is a practical method, due to the 

fact that the starting materials are readily available olefins.
2
 

Particularly, highly regioselective and stereoselective 

aminohalogenation of olefins remains important, but 

challenging to organic chemists.
3,4

 In the literatures, vicinal 

haloamines is mainly achieved via nucleophilic attack to a 

halogenium intermediate with an amide nucleophile (Figure 

1a). In this step, the nucleophile is normally an externally 

added amide.
3
 The in situ generated amide anion derived from 

the N-halogenic reagents after delivering the halogenium ion 

may also participate in the nucleophilic addition, and this 

process is highly atom economic since both of the halogen and 

nitrogen moiety are preserved in the haloamination product 

(Figure 1b).
4
 A notable limitation with these processes is the 

poor yield and selectivity in terms of product 

distribution.
3b,3d,4d,4g

 

Nitrogen-centered radicals have been involved in a wide 

variety of useful organic transformations, which has received 

increasing attention from synthetic community.
5
 We

6
 and 

some other groups
7
 recently reported visible-light-induced C-H 

bond amidations of arenes and heteroarenes using different 

nitrogen sources. The key intermediates in these 

transformations are nitrogen-centered amidyl radicals 

generated from different precursors under visible light 

irradiation.
8
 Furthermore, our group

9
 also reported a visible-

light-induced remote C(sp3)-H amidation and chlorination of 

N-chlorosulfonamides. N-chlorosulfonamides could serve as 

nitrogen-centered radical precursors with the assistance of 

visible light and a photocatalyst. Inspired by these works, as 

well as recent research on photoredox catalytic 1,2-

functionalization of olefins,
10

 we envisaged that vicinal 

haloamidation of olefins could be achieved using N-

chlorosulfonamides as both nitrogen and halogen sources 

under photoredox catalysis. 

 

Figure 1. Major strategies for haloamination reaction. 

 

Our efforts toward this goal focused on the use of 1-

methoxy-4-vinylbenzene (1a) and N-chlorosulfonamide 2a as 

model substrates. When a solution of 1a and 2a in CH3CN was 

irradiated by white LED strips in the presence of photocatalyst 

Ir(ppy)3 (I) and Na2HPO4 for 6 h, the desired chloramination 

product 3a was obtained in 48% NMR yield as one regioisomer 

(Table 1, entry 1). Base was proved unnecessary (entry 2). 
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However, irradiation and the photocatalyst were crucial to this 

transformation (entries 3-4). Various solvents, such as toluene, 

DMF, CH2Cl2, DMSO, THF and CH3OH, could not give improved 

results (entries 3-7). Fortunately, the yield could be increased 

to 63% when DCE was used as the solvent (entry 8). Other 

photocatalysts, such as Ir(ppy)2(dtbbpy)PF6 (II), Ru(phen)3(PF6)2 

(III) and Ru(bpy)3(PF6)2 (IV) were then examined. To our delight, 

86% NMR yield (81% isolated yield, entry 9) was achieved 

when Ir(ppy)2(dtbbpy)PF6 (II) was used as the photocatalyst. 

The loading of photocatalyst had little impact on the outcome 

of this transformation (entries 12-13). Control experiments 

verified the necessity of the irradiation and photocatalyst 

(entries 14–15). 

 

Table 1. Reaction conditon optimization
a
 

 

 

Entry Photocatalyst Solvent Yield
b
 

1
c
 I (1.0 mol %) CH3CN 48 

2 I (1.0 mol %) CH3CN 51 

3 I (1.0 mol %) DMF 25 

4 I (1.0 mol %) CH2Cl2 54 
5 I (1.0 mol %) DMSO NR 

6 I (1.0 mol %) THF NR 

7 I (1.0 mol %) CH3OH NR 

8 I (1.0 mol %) DCE 63 

9 II (1.0 mol %) DCE 86(81
d
) 

10 III (1.0 mol %) DCE 54 

11 IV (1.0 mol%) DCE 78 

12 II (0.5 mol %) DCE 68 

13 II (2.0 mol %) DCE 81 

14 none DCE NR 

15
e
 II (1.0 mol %) DCE NR 

aReaction conditions: A solution of 1a (0.1 mmol, 1.0 equiv), 2a 

(0.15 mmol, 1.5 equiv), and photocatalyst (0.001 mmol, 1.0 mol %) 

in the indicated solvent (2.0 mL) was irradiated by white LED strips 

for 6 h. bYields were determined by 1H NMR using CH2Br2 as an 

internal standard. cNa2HPO4 used as base. dIsolated yield. eNo 

irradiation. NR = no reaction. 

 

After optimized conditions were established, we next 

explored the substrate scope of this visible-light-mediated 

aminohalogenation reaction (Table 2). The protecting groups 

of nitrogen atom were examined firstly. Relatively electron-

rich benzenesulfonamide (3c, 73% yield) gave slightly better 

result than its electron-neutral counterpart (50% yield for 3b 

and 72% yield for 3e). Relatively electron-deficient 

benzenesulfonamide gave significantly worse yield (50% yield 

for 3d). N-chlorocarbamate was ineffective under these 

conditions and the starting materials could be fully recovered. 

The alkyl groups of N-chlorosulfonamides were changable.  

Various alkyl groups, such as Et (3g, 79% yield), n-Bu (3j, 74% 

yield) and (CH2)5CN (3k, 69% yield), gave good yields. Isopropyl 

(3h, 53% yield) and cyclohexyl (3i, 49% yield) groups gave 

lower yields due to steric hinderance. A variety of styrene 

derivatives were tested with N-chlorosulfonamide 2a. All the 

substituted styrenes tested so far have worked quite well to 

give the corresponding products 3l-3s in satisfactory yields (50-

83%). Aliphatic olefins were also suitable coupling partners in 

this transformation, but with slightly less efficiency than their 

aromatic counterparts. The corresponding products 3t-3w 

were isolated in 53-74% yields. This methods were not 

applicable to electron-deficient olefins. It is worthy to note 

that all the chloramides were isolated in one regioisomer. 

 

Table 2. Substrate scope
a
 

 

 
aReaction conditions: A solution of 1 (0.1 mmol, 1.0 equiv), 2 (0.15 

mmol, 1.5 equiv), and II (0.001 mmol, 1.0 mol %) in DCE (2.0 mL) 

was irradiated by white LED strips for 6 h. The yields were isolated 

yields. 

As a demonstration of scalability, chloroamination of 4-

methylstyrene (1l) with N-chlorosulfonamide 2a was carried 

out on a gram scale in the presence of as little as 0.5 mol % of 
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the photocatalyst II. The product 3l (1.24 g) was isolated in a 

74% yield (Scheme 1). 

 

 

Scheme 1. Gram-Scale Preparation of 3l. 

To understand the mechanism of this reaction, a series of 

control reactions were conducted. First, the reaction could be 

terminated completely when TEMPO was introduced to the 

reaction mixture, which implies the single-electron-transfer 

pathway. A light off/on and time profile experiment was 

carried out to investigate the mechanism details of this 

photoredox chloramination of Olefins (For details, see ESI). It 

was observed that the reaction progressed smoothly with light 

irradiation and there was little further conversion when the 

light resource was removed. This experiment verified the 

necessity of light, which suggested that regeneration of the 

photocatalyst was necessary for the full consumption of olefins.  

Based on these observations, a possible catalytic cycle is 

proposed for this transformation (Figure 2). First, the 

photocatalyst Ir
III

 is irradiated to the excited state Ir
III*

.  The 

excited state Ir
III*

 is then oxidatively quenched by N-

chlorosulfonamide 2a with generation of Ir
IV

 and the nitrogen-

centered radical 4 respectively. The radical 4 adds to olefin 1l 

to produce the alkyl radical intermediate 5. The radical 5 is 

oxidized to carbocation 6 by Ir
IV

 with regeneration of Ir
III

. 

Cation 6 is finally trapped by chloride anion to give 

chloramination product 3l (path A).  Radical chain mechanism 

can be a competitive pathway (path B). The radical 5 can 

abstract chlorine atom from 2a to give the final product 3l and 

regenerate the nitrogen-centered radical 4. 

 

Figure 2. Proposed mechanism. 

In summary, we have described a visible-light-promoted and 

regioselective 1,2-chloramination of olefins. N-

chlorosulfonamides serve as both nitrogen and chlorine 

sources. This is a simple, efficient, and highly atom-economic 

method for the preparation of vicinal haloamine derivatives. 
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