

Organic & Biomolecular Chemistry

Organotelluriums for Mass Cytometry Reagent Development

Journal:	Organic & Biomolecular Chemistry	
Manuscript ID:	OB-ART-03-2015-000593.R1	
Article Type:	Paper	
Date Submitted by the Author:	: 21-Apr-2015	
Complete List of Authors:	Park, Hanuel; University of Toronto, Chemistry Edgar, Landon; University of Toronto, Chemistry Lumba, Matthew; University of Toronto, Chemistry Willis, Lisa; University of Toronto, Nitz, Mark; University of Toronto, Chemistry	

SCHOLARONE[™] Manuscripts

Organic & Biomolecular Chemistry

ARTICLE

Received ooth xx 2015,

Accepted ooth xx 2015

www.rsc.org/

DOI: 10.1039/x0xx00000x

Cite this: DOI: 10.1039/xoxxooooox

Organotelluriums for Mass Cytometry Reagent Development

Hanuel Park, Landon J. Edgar, Matthew Lumba, Lisa Willis and Mark Nitz

Mass cytometry (MC) is a powerful tool for studying heterogeneous cell populations. In previous work, our laboratory has developed an MC probe for hypoxia bearing a methyl telluride mass tag. The methyl telluride was unoptimized, displaying stability and toxicity limitations. Here, we investigate 3 classes of organotelluriums as MC mass tags: methyl tellurides, trifluoromethyl tellurides and 2-alkyl-tellurophenes. NMR was used to compare the stability of these compounds in aqueous and organic solutions and the compounds were analysed for toxicity in Jurkat cells. The methyl tellurides were moderately stable to aerobic oxidation in organic solution under ambient conditions. The trifluoromethyl tellurides were stable to aerobic oxidation in organic and aqueous solutions under ambient conditions and showed limited toxicity ($IC_{50} > 200 \ \mu$ M) in cell based assays. The synthetic feasibility, chemically stability and limited toxicity of the tellurophenes suggests these groups to be good choices for MC reagent development.

Introduction

Characterization of single cells in tissue samples requires a highly parameterized assay.¹ Fluorescence-based flow cytometry (FC) has been the method of choice to study heterogeneous cell populations as it allows for 5-10 parameters to be routinely analyzed.² However, FC cannot be used for highly parameterized assays (>20 parameters) due to the spectral overlap of the fluorophores used for analyte detection.³ A solution to this problem is to substitute the optical detection and fluorescently tagged antibodies in FC, for mass detection with an inductively-coupled plasma spectrometer (ICP-MS) and isotope-tagged antibodies. This technology, known as mass cytometry (MC), is capable of detecting numerous bioorthogonal isotopes (theoretically > 100) with single mass unit resolution over multiple orders of magnitude.¹ MC allows experiments analogous to flow cytometry but with significantly greater parameterization. MC has been used to detect and quantify 34 cellular parameters simultaneously to reveal the drug response across a human hematopoietic continuum.⁴

MC experiments can be done by using commercially available MaxPar[®] reagents which are composed of antibodies labeled with metal chelating polymers that bind a range of high molecular weight metal isotopes, usually lanthanides. We are interested in developing novel MC probes that can be used to assay cellular biochemistry. Figure 1 depicts the general requirements of an MC probe. Ideally, the mass tag should be accessible in a high yielding synthesis amenable to isotope incorporation, be stable under biologically-relevant conditions and have low toxicity. Recently we reported an MC-probe (Telox) for measuring cellular hypoxia.⁵ This probe used a 2-nitroimidazole as the activity group for hypoxic-specific labelling and a methyl telluroether functionality as the tag unit for

MC detection.⁵ Tellurium was chosen to be the element for detection as it is known to form stable bonds with carbon and it has 8 naturally occurring isotopes that can be accessed to generate a series of uniquely identifiable, biologically indistinguishable MC probes using the same chemistry.

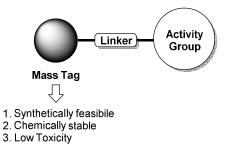
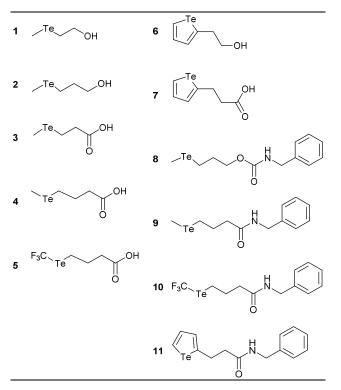


Figure 1. The general requirements and design of a mass cytometry probe.

Although Telox demonstrated an important concept, the telluroether functionality was unoptimized, having moderate stability and a metabolic LD_{50} value close to the required assay concentration. These issues have motivated our laboratory to investigate alternative organotellurium moieties as mass tags for future activity-based probes.

The first organotellurium compound was synthesized by Wöhler in 1840.⁶ Increasingly organotellurium compounds are being investigated in living systems, although this area of research remains underdeveloped.^{7,8} Tellurium has no known biological role in

prokaryotic or eukaryotic cells. In biological systems, tellurium metabolism is speculative, however it is presumed to follow the metabolic pathway of its analogue, selenium. Microorganisms have been found to methylate inorganic tellurium to volatile or ionic species for excretion. Experimental evidence of this process is scarce due to the instability of the metabolites⁷. However the number reports of cellular studies involving aryl, vinylic, alkynyl and alkyl telluroethers in biological systems are increasing.^{9–14} The majority of this research has been based upon the ability of aryl telluroethers to mimic glutathione peroxidase activity providing, in some cases, resistance to oxidative stress and in other case disregulating redox homeostatsis leading to appoptosis.^{15,16} Recent murine studies have shown diverse effects from the expect toxicity of an amino acid based aryl telluroether to increased memory in mice treated with an alkyl telluroether.^{17,18}


Here we describe the synthesis, aqueous/aerobic stability and in vitro toxicity of a series of alkyl telluroethers and tellurophene functional groups. We hypothesize that the organotellurium which exhibits the most favourable properties with respect to these three criteria would be an improved mass tag component for the next generation MC probes.

Results and Discussion

Methyl telluroether: synthesis and stability

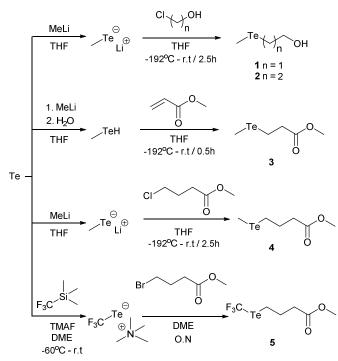

The organotellurium functionality that was initially investigated was the methyl telluroether due to its small size and ease of synthesis (Table 1, Compounds **1-4**, **8-9**). Aryl telluroethers were not investigated due to numerous reports of their redox-activity in living systems and their reported instability under ambient light.¹⁹ The methyl telluroethers were synthesized from nucleophilic lithium methyl tellurolate, using a modified procedure first established by N. Khun, followed by reaction with the desired nucleophile (Scheme 1).²⁰ The synthesis of compound **3** required quenching the methyl telluroate with water to generate the tellurol prior to the Michaelstyle addition to methyl acrylate. The yields of these additions ranged from 66 to 91%.

Table 1. Organotellurium compounds investigated

The relative chemical stability of the methyl telluroethers (1-4) were quantified using ¹H NMR by integration of the CH_3 -Te signals with respect to a residual DMSO-d₅ internal standard. Samples were prepared a solution of DMSO-d₆ and placed under a slow continuous stream of dry ambient atmosphere in a clear glass desiccator. This setup allowed the compounds stability to be monitored without interference from atmospheric water (Figure 2).

Journal Name

Scheme 1. The synthesis of compounds 1-5. The yields of the following reactions are as follows: 1 = 66%, 2 = 74%, 3 = 85%, 4 = 91% and 5 = 50%.

Compounds 1-4 all degraded significantly over course of the 24 hr incubation. Compound 4 was the most stable alkyl telluride investigated, degrading approximately 15% over 24 hours (Figure 2B). Compounds 2 (Figure 2A) and 3 (Figure 2B) showed the greatest degradation, approximately 75% and 85%, respectively. (Figure 2A).

The alkyl tellurides are presumed to undergo oxidation under the experimental conditions. During incubation the initially yellow solutions became colourless with the formation of white precipitate, at varying rates. This phenomena has been previously observed and is presumed to be the telluroxide species forming polymeric structures or the formation of TeO_2 .^{21&22} In addition, it has been observed previously that solutions of TelOx showed the appearance of ¹H NMR absorptions consistent with chalcogen oxidation.^{5,23} Alkyl telluride compounds are also known to undergo hemolytic bond cleavage and this may result in the observed small quantities of dimethyl ditelluride and dimethyl telluride.²⁴⁻²⁶ These species are volatile and are observed only in the early time points of compounds 1 and 2. The same species are observed in the 8 hour sample from compound 3. In addition, methyl acrylamide was produced during the degradation of compound 3. The remaining organic components resulting from these degradation could not be identified and may be lost due to their low molecular weight and volatility. To reduce the propensity for oxidative degradation of the telluroethers the trifluoromethyl telluroethers, 5 and 10, and the tellurophenes 6 7 and 11 were investigated.

Trifluoromethyl telluroether: synthesis and stability

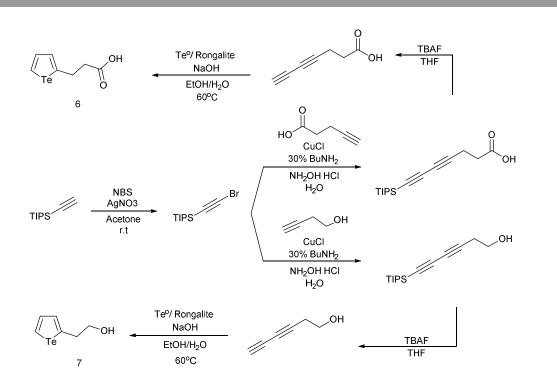
Compound **5** bearing a trifluoromethyl group will have reduced electron density at the tellurium center and thus should oxidize more slowly. Compound **5** was synthesized by the generation of tetramethylammonium trifluoromethyl tellurolate in situ by treating tellurium metal with trimethyl(trifluoromethyl)silane and tetramethyl ammonium fluoride.²⁷ Methyl-4-bromobutyrate was added to the solution to give the product **5** in 50% yield (Scheme 1).

The stability of the trifluoromethyl telluride **5** was evaluated under the same conditions as compounds **1-4** (Figure 2B). The comparison of the structurally related compounds **4** and **5**, supported our hypothesis that reducing electron density at the Te centre would stabilize the compound, as no degradation was observed over the 24 hour incubation suggesting the trifluoromethyl functionality was stabilizing the telluroether as hypothesized.

Tellurophene: synthesis and stability

Tellurophenes have not been evaluated in biological systems, and only recently has the first water soluble tellurophene been reported.²⁸ Tellurophenes possess interesting photophysical properties and have been investigated as light harvesting agents for solar cell applications and in materials chemistry.^{29,30,31} The chalcogen analogue, selenophenes, have been investigated in biological systems with promise as antioxidant molecules. Through computational analysis, ground state aromaticity of tellurophenes.³² We hypothesized that the aromatic nature of the tellurophene would provide greater chemical stability over the telluroether derivatives under the desired biological conditions.

The tellurophenes where synthesized via the addition of Te²⁻ to a mono-functionalized diacetylene in a synthesis modified from Stephens and Sweat's initial report.³³ ³⁴ In synthesizing these tellurophenes, the generation of Te²⁻ is a key step. Commonly, an aqueous suspension of Te⁰ is treated with NaBH₄. However, we found the use of a basic Rongalite (NaHOCH₂SO₂) solution reproducibly generated Te²⁻ and gave higher yields of the desired tellurophene ³⁵


The required trialkylsilyl diacetylenes can be generated in excellent yield using the Cadiot-Chodkiewicz cross-coupling reaction (Scheme 2).³⁶ Bromination of triisopropylsilyl acetylene using *N*-bromosuccinimide and silver nitrate gave the known coupling intermediate using the conditions by Wulff *et al.*³⁷ This compound was then coupled using CuCl in 30% BuNH₂ with the desired acetylene component of choice. Compound **6** required the addition of 4- pentynoic acid and compound **7** required the addition of 3-butyn-1-ol. The trialkylsilyl protected diacetylene compounds were deprotected using tetrabutylammonium fluoride and cyclized into tellurophenes **6** and **7** using a basic solution of Rongalite and tellurium metal in good yield (Scheme 2).

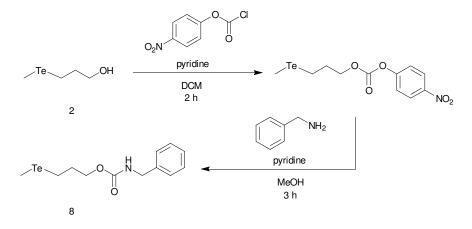
The stability of the two tellurophenes was studied using the same protocol as the alkyl telluride species (Figure 2 A and B). Compounds **6** and **7** have improved stability in comparison to the methyl alkyl telluroethers. Both tellurophene compounds degraded insignificantly over the 24 hr incubation having similar stability to the trifluoromethyltelluroether **5**.

Organic & Biomolecular Chemistry

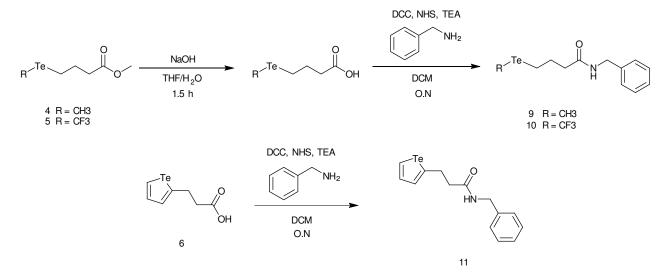
RSCPublishing

ARTICLE

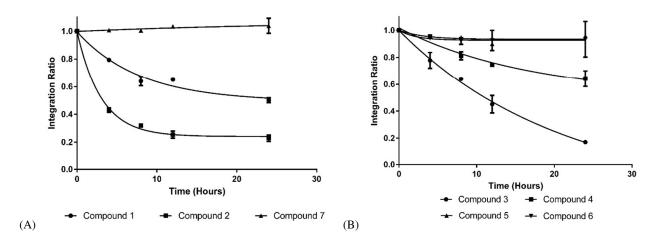
Scheme 2. The synthesis of compounds 6 & 7. The yields of the reactions: 6 = 70% & 7 = 66%.

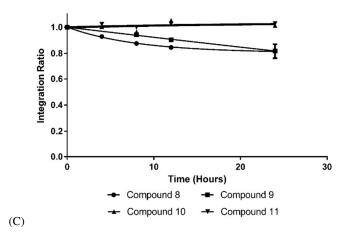

Benzylamine conjugated organotellurium derivatives: synthesis and stability

For the future generation of MC probes, the organotelluriums will be conjugated to biologically relevant functional groups. Here two conjugation reactions are considered that would provide a means to label primary amines, a carbamylation and an amidation reaction. Furthermore, forming benzylamine derivatives of the organotellurim compounds **2**, **4**, **5** and **7**, leads to compounds **(8-11)** with more comparable partition coefficients for cell toxicity studies (Schemes 3 & 4).


Compound 8 was synthesized via a p-nitrophenyl carbonate generated by the treatment of compound 2 with p-nitrophenyl chloroformate. The reactive carbonate could be purified and stored. Compounds 9 and 10 were synthesized by hydrolysis of the methyl ester and, after isolation of the carboxylic acid, coupling proceeded with DCC in the presence of NHS and benzylamine. Compound 11 was synthesized analogously to 9 and 10 but required the use of column chromatography for purification.

The stability of these benzylamine derivatives were assessed using the developed ¹H NMR assay (Figure 2C). The rate of degradation of


these compounds mirrored those of the underivatized compounds with the methyl telluride species, compounds **8** and **9**, degrading 20-25% over the incubation and compounds **10** and **11** being stable over the incubation. Interestingly the carbamate **8** was considerably more stable than the parent alcohol **2** suggesting the alcohol may directly contribute to the degradation mechanism.



Scheme 3. Carbamylation of compound 2 with benzylamine. 77% yield over 2 steps.

Scheme 4. Amidation of compounds 4-6 with with benzylamine. The yields of the reactions 9 = 81%, 10 = 30%, & 11 = 81%.

Figure 2. ¹H NMR stability experiment of compounds 1-11. (A) Compounds 1, 2 and 7. (B) Compounds 3, 4, 5 and 6. (C) Compounds 8, 9, 10 and 11. The organotellurium compounds (~150 μ M) in d-DMSO with 1,3,5 – trioxane, the secondary internal standard. The compounds were kept in clear glass 20 mL vials. The vials were kept in a moisture free environment for 24 hours with continuous supply of ambient atmosphere dried using a series of bubblers containing phosphoric acid, potassium hydroxide and calcium sulfate. Aliquots were analyzed by ¹H NMR and the organotellurium signals and the d5-H-DMSO peaks were integrated. The ratio between the DMSO and the organotellurium protons at time 0 were taken and normalized to generate a degradation plot. Experimental error was calculated by generating triplicate integration data from each individual preliminary NMR data. This error takes into consideration of integration bias and instrument fluctuations.

Stability in PBS buffer

Of the compounds evaluated, the trifluoromethyltelluroether-amide (10) and the tellurophene-amide (11) exhibited the best stabilities under aerobic conditions. To further validate these compounds as potential MC mass tags, the degradation was also studied in a buffered aqueous solution by dissolving the compounds in a 50/50 solution of d-DMSO/PBS buffer. The compounds were kept in an environment exposed to air and ambient lighting at room temperature. ¹⁹F NMR was used to study compound 10 using a trifluoroacetic acid internal standard while ¹H NMR was used to study the degradation compound 11 using the d5-DMSO internal standard. Disappointingly, as shown in Figure 3, the trifluoromethyltelluroether 10 showed a 60% degradation after 24 hours. However, under the same conditions the tellurophene 11 was stable.

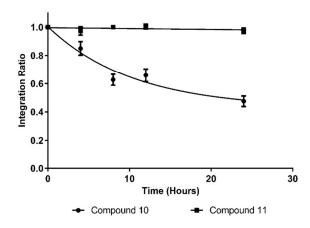


Figure 3. Degradation NMR experiment of compounds 10 and 11 in 50% d-DMSO, d-PBS buffer solutions. The ¹⁹F NMR of compound 10 and ¹H NMR of compound 11 were taken at shown time points. Compound 10 used trifluoroacetic acid as the internal standard and compound 11 used d5-DMSO.

Cellular toxicity

To finally investigate the organotellurium compounds of study as potential probe moieties for MC, the metabolic toxicity of the compounds was evaluated. Organotellurium compounds are often described as toxic, with any telluroethers showing cellular toxicity below 100 µM across a range of cell lines under different assay conditions.^{9–11,38,39} Here we investigated the toxicity of compounds 8-11 in a commonly used Jurkat cell line after a 24 hour incubation using the metabolic probe WST-1 (Roche Diagnostics, Laval, Quebec) as per manufacturer's instructions. As compounds 8, 9 and 10 are expected to show degradation over the time frame of the toxicity assay, based on our NMR stability studies, as such these experiments show the relative toxicity of the compounds and their resulting degradation products (Table 2). Compound 8 had an apparent LD₅₀ value of 610 µM, but with a large experimental error due to the lack of solubility of compound 8 at higher concentrations. Compounds 9 and 10 were more toxic with an $LD_{50} < 200 \ \mu M$, however the tellurophene 11 was less toxic with and LD_{50} of 280 µM. These data suggest that, in general, the alkyl telluroethers and the tellurophenes are less toxic than previously investigated aryl telluroethers. The LD₅₀ values of the reported organotellurium compounds provide promise as mass tags for activity based MC probes as in general the probe concentrations required in these experiments will be below ~100 µM.⁵

	Jo	urn	al N	ame
--	----	-----	------	-----

Compound	$LD_{50}\left(\mu M\right)$
8	610 ± 290*
9	180 ± 60
10	130 ± 20
11	280 ± 30

Table 2. LD_{50} values of the organotellurium compounds 8-11. *Compound 8 has a large experimental error due to the lack of solubility. All cells could not be killed at the maximal concentration acceptable for the experiment (2 mM).

Conclusion

MC is a powerful analytical tool. Tellurium has valuable characteristics as a mass tag for MC including eight stable isotopes, minimal functional group size and minimal polarity. We have synthesized and characterized various organotellurium compounds functionalized for MC probe development. The alkyl telluride species, although synthetically tractable, have limitations due to poor compound stability. For future work, alkyl telluride species lacking β -protons could be investigated to improve the poor stability. However, the tellurophene moiety is available in good yield, is chemically stable and is sufficiently non-toxic to warrant further investigation as a MC mass tag. The applications of this functionality may extend beyond MC, due to the similarity of tellurophenes and thiophenes, this moiety introduces a new building block for medicinal chemists.

Acknowledgements

NSERC (Natural Sciences and Engineering Research Council of Canada) and Fluidigm Canada are gratefully acknowledged for financial support.

Notes and references

^a Department of Chemistry, University of Toronto, Toronto 80 St. George St., Canada. E-mail: mnitz@chem.utoronto.ca; Tel: +1 416-946-0640

Electronic Supplementary Information (ESI) available: Full experimental details for all experiments and relevant compound spectra are included. See DOI: 10.1039/b000000x/

- 1 O. Ornatsky, D. Bandura, V. Baranov, M. Nitz, M. a Winnik and S. Tanner, *J. Immunol. Methods*, 2010, **361**, 1–20.
- 2 S. C. De Rosa, L. a Herzenberg and M. Roederer, *Nat. Med.*, 2001, 7, 245–8.
- 3 S. C. Bendall, G. P. Nolan, M. Roederer and P. K. Chattopadhyay, *Trends Immunol.*, 2012, **33**, 323–32.
- 4 S. C. Bendall, E. F. Simonds, P. Qiu, E. D. Amir, P. O. Krutzik, R. Finck, R. V Bruggner, R. Melamed, A. Trejo, O. I. Ornatsky, R. S. Balderas, S. K. Plevritis, K. Sachs, D. Pe'er, S. D. Tanner and G. P. Nolan, *Science*, 2011, **332**, 687–96.
- 5 L. J. Edgar, R. N. Vellanki, A. Halupa, D. Hedley, B. G. Wouters and M. Nitz, Angew. Chem. Int. Ed. Engl., 2014, 1–6.
- 6 F. Wöhler, Justus Liebigs Ann. Chem., 1840, 35, 111–112.
- 7 L. A. Ba, M. Döring, V. Jamier and C. Jacob, *Org. Biomol. Chem.*, 2010, **8**, 4203–16.
- 8 R. Cunha, I. Gouvea and L. Juliano, *An. da Acad. Bras.* ..., 2009, **81**, 393–407.

- 9 S. Shaaban, F. Sasse, T. Burkholz and C. Jacob, *Bioorg. Med. Chem.*, 2014, **22**, 3610–9.
- 10 L. Piovan, P. Milani, M. S. Silva, P. G. Moraes, M. Demasi and L. H. Andrade, *Eur. J. Med. Chem.*, 2014, 73, 280–5.
- P. Du, N. E. B. Saidu, J. Intemann, C. Jacob and M. Montenarh, Biochim. Biophys. Acta, 2014, 1840, 1808–16.
- 12 W. Cao, Y. Gu, M. Meineck, T. Li and H. Xu, J. Am. Chem. Soc., 2014, **136**, 5132–7.
- 13 S. G. N. Wollenhaupt, A. Thalita, W. G. Salgueiro, S. Noremberg, G. Reis, C. Viana, P. Gubert, F. A. Soares, R. F. Affeldt, D. S. Lüdtke, F. W. Santos, C. C. Denardin, M. Aschner and D. S. Avila, *Food Chem. Toxicol.*, 2014, 64, 192–199.
- 14 P. Du, U. M. Viswanathan, K. Khairan, T. Buric, N. E. B. Saidu, Z. Xu, B. Hanf, I. Bazukyan, A. Trchounian, F. Hannemann, I. Bernhardt, T. Burkholz, B. Diesel, A. K. Kiemer, K.-H. Schäfer, M. Montenarh, G. Kirsch and C. Jacob, *Medchemcomm*, 2014, 5, 25.
- 15 A. Müller, E. Cadenas, P. Graf and H. Sies, *Biochem. Pharmacol.*, 1984, **33**, 3235–3239.
- 16 V. Jamier, L. a Ba and C. Jacob, Chem. A Eur. J., 2010, 16, 10920-8.
- 17 D. F. Meinerz, B. Comparsi, J. Allebrandt, D. Oscar, C. Mariano, D. B. Santos, A. Paula, P. Zemolin, M. Farina, A. L. Dafre, J. B. T. Rocha, T. Posser and J. L. Franco, *Springerplus*, 2013, 2, 10920–10928.
- 18 A. Cristina, G. Souza, C. I. Acker, B. M. Gai, J. Sebastião and C. W. Nogueira, *Neurochem. Int.*, 2012, 60, 409–414.
- 19 A. Ouchi, T. Hyugano and C. Liu, Org. Lett., 2009, 11, 4870-4873.
- 20 N. Kuhn, P. Faupel and E. Zauder, J. Organomet. Chem., 1986, 302, 6–8.
- 21 G. Kirsch, M. M. Goodman and F. F. Knapp, *Organometallics*, 1983, 2, 357–363.
- 22 K. Kobayashi, K. Tanaka, H. Izawa, Y. Arai and N. Furukawa, *Chem. A Eur. J.*, 2001, **7**, 4272–4279.
- W. Nakanishi, Y. Ikeda and H. Iwamura, *Org. Magn. Reson.*, 1982, 20, 117–122.
- 24 W. Bell, D. J. Cole-hamilton, P. N. Culshaw, A. E. D. Mcqueen and J. C. Walton, J. Organomet. Chem., 1992, 430, 43–52.
- 25 R. U. Kirss and D. W. Brown, Organometallics, 1991, 10, 3597–3599.
- 26 D. W. Brown, B. K. T. Higa and R. W. Gedridge, *Organometallics*, 1991, **10**, 3589–3596.
- 27 W. Tyrra, N. V. Kirij, D. Naumann and Y. L. Yagupolskii, J. Fluor. Chem., 2004, 125, 1437–1440.
- 28 T. M. Mccormick, E. I. Carrera, T. B. Schon and D. S. Seferos, *ChemComm*, 2013, **49**, 11182–11184.
- 29 A. a Jahnke, B. Djukic, T. M. McCormick, E. Buchaca Domingo, C. Hellmann, Y. Lee and D. S. Seferos, *J. Am. Chem. Soc.*, 2013, 135, 951–4.
- 30 G. L. Gibson, T. M. Mccormick and D. S. Seferos, J. Phys. Chem., 2013, 117, 16606–16615.
- 31 M. Kaur, D. S. Yang, J. Shin, T. W. Lee, K. Choi, M. J. Cho and D. H. Choi, *Chem. Commun. (Camb).*, 2013, **49**, 5495–7.
- 32 M. M. Campos-vallette and R. E. Clavijo C., Spectrosc. Lett., 1985, 18, 759–766.
- 33 D. P. Sweat and C. E. Stephens, J. Organomet. Chem., 2008, 693, 2463–2464.
- 34 T. J. Barton and R. W. Roth, J. Organomet. Chem., 1972, 39, 66–68.
- 35 S. Kotha and P. Khedkar, Chem. Rev., 2012, 112, 1650–80.
- 36 J. P. Marino and H. N. Nguyen, J. Org. Chem., 2002, 67, 6841–6844.
- 37 M. X.-W. Jiang, M. Rawat and W. D. Wulff, J. Am. Chem. Soc., 2004, 126, 5970–5971.
- 38 L. Engman, N. Al-maharik, M. Mcnaughton and G. Powis, *Biochim. Biophys. Acta*, 2003, 11, 5091–5100.
- 39 M. McNaughton, L. Engman, A. Birmingham, G. Powis and I. a Cotgreave, J. Med. Chem., 2004, 47, 233–9.