Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

1		Synergism between Genome Sequencing, Tandem Mass
2	S]	pectrometry and Bio-Inspired Synthesis Reveals Insights into
3		Nocardioazine B Biogenesis
4		
5		
6		Norah Alqahtani ^{1, ‡} , Suheel K. Porwal ^{1,2 ‡} ,
7		Elle D. James [¶] , Dana M. Bis [¶] , Jonathan A. Karty ^T , Amy L. Lane ^{*,¶} ,
8		and Rajesh Viswanathan ^{*,‡}
9		
10		
11		
12	‡ -	Department of Chemistry, Case Western Reserve University,
13		Millis Science Center: Rm 216,
14		2074, Adelbert Road, Cleveland OH 44106-7078.
15		
16	¶ -	Department of Chemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224.
17		
18	〒-	Mass Spectrometry Facility,
19		Indiana University Department of Chemistry, 800 E. Kirkwood Ave. Bloomington, IN 47405
20	1	Authors contributed equally to this work.
21	2	Present Address: Faculty member, DIT, Univ. of Deharadun, India.
22	*	Corresponding authors: Rajesh Viswanathan and Amy L. Lane
23		E-mail: rajesh.viswanathan@case.edu
24		Email: <u>amy.lane@unf.edu</u>

Organic & Biomolecular Chemistry Accepted Manuscript

25 Abstract

Marine actinomycete-derived natural products continue to inspire chemical and biological 26 investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are 27 structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with 28 indole C3-prenyl as well as indole C3- and N-methyl groups. The logic of their assembly 29 remains cryptic. Bioinformatics analyses of the Nocardiopsis sp. CMB-M0232 draft genome 30 afforded the *noz* cluster, split across two regions of the genome, and encoding putative open 31 reading frames with roles in nocardioazine biosynthesis, including cyclodipeptide synthase 32 33 (CDPS), prenyltransferase, methyltransferase, and cytochrome P450 homologs. Heterologous expression of a twelve gene contig from the noz cluster in Streptomyces coelicolor resulted in 34 accumulation of cyclo-L-Trp-L-Trp (5). This experimentally connected the noz cluster to indole 35 36 alkaloid natural product biosynthesis. Results from bioinformatics analyses of the *noz* pathway along with challenges in actinomycete genetics prompted us to use asymmetric synthesis and 37 mass spectrometry to determine biosynthetic intermediates in the *noz* pathway. The structures of 38 hypothesized biosynthetic intermediates 5 and 12-17 were firmly established through chemical 39 synthesis. LC-MS and MS-MS comparison of these synthetic compounds with metabolites 40 present in chemical extracts from Nocardiopsis sp. CMB-M0232 revealed which of these 41 hypothesized intermediates were relevant in the nocardioazine biosynthetic pathway. 42 This established the early and mid-stages of the biosynthetic pathway, demonstrating that 43 44 Nocardiopsis performs indole C3-methylation prior to indole C3-normal prenylation and indole N1'-methylation in nocardioazine B assembly. These results highlight the utility of merging 45 bioinformatics analyses, asymmetric synthetic approaches, and mass spectrometric metabolite 46 47 profiling in probing natural product biosynthesis.

48	Introduction
49	Marine actinomycetes continue as rich sources of structurally diverse natural products
50	endowed with promising pharmacological properties. ¹ Recently, Capon and co-workers reported
51	isolation and structural characterization of nocardiopsins ² (e. g. 1 and 2) and diketopiperazine
52	(DKP) containing nocardioazine alkaloids ^{3} (3-6) from the marine-derived actinomycete
53	Nocardiopsis sp. CMB-M0232 (Scheme 1). Intriguingly, under low salinity fermentation
54	conditions, gene regulatory mechanisms predominantly favour biosynthesis of hybrid polyketide
55	and nonribosomal peptide-derived nocardiopsins, whose biosynthetic pathway we recently
56	established (path 1, Scheme 1). ⁴ Under relatively high salinity, DKPs including nocardioazines
57	A and B (3 and 4), are dominant (path 2, Scheme 1).
58	Nocardioazines A and B possess a dimerized tryptophan DKP core. The skeleton
59	comprises seven fused rings (A-B-C-D-C'-B'-A') in a 6-5-5-6-5-5-6 diannulated manner forming
60	a pyrroloindoline-DKP-pyrroloindoline assembly. Among DKP natural products, nocardioazines
61	A and B (3 and 4) stand out as the only C3-prenylated DKPs reported from a bacterial source and
62	the first indole-C3-normal prenylated DKP from any source, implicating a unique biosynthetic
63	pathway. The co-isolation of <i>Cyclo</i> -L-Trp-L-Trp DKP (5) and <i>Cyclo</i> -L-Trp-D-Trp DKP (6)
64	alongside 3 and 4 alludes to 5 or 6 (or one of their epimers, Cyclo-D-Trp-D-Trp DKP, ent-5) as
65	likely precursors for the more complex congeners 3 and 4 . ³ The first reported synthesis of
66	nocardioazine B by Wang et al. corrected the originally assigned stereochemistry of the natural
67	product, alluding to the possibility of <i>ent</i> -5 as a likely intermediate. ⁵

69 The first enantioselective synthesis of $\mathbf{3}$ (in addition to other related isoprenylated indole alkaloids), recently reported by the Reisman group constituted an ingenious strategy towards 70 synthetically assembling the macrocyclic ring E.⁶ Given the lack of any prior studies on the 71 characterization of their gene cluster, biosynthetic intermediates and enzymes, the molecular 72 logic of nocardioazine assembly remains poorly understood. Herein we report the identification 73 of the *noz* gene cluster encoding nocardioazine B biosynthesis from the draft genome sequence 74 of *Nocardiopsis* sp. CMB-M0232 and characterize pathway intermediates. Our approach of 75 employing bio-inspired synthetic molecules to elucidate the molecular logic of natural product 76 assembly represents a relatively overlooked alternative to conventional gene-knockout-guided 77 approaches. As we demonstrate herein, this strategy is particularly valuable in the many cases 78 where organisms are not amenable to genetic manipulation. 79

Pathways in *Nocardiopsis* sp. CMB M0232

Scheme 1. A. Structures of nocardiopsins A (1) and B (2), nocardioazines A (3) and B (4), *Cyclo*-L-Trp-L-Trp (5) and *Cyclo*-L-Trp-D-Trp (6).

Organic & Biomolecular Chemistry Accepted Manuscript

Page 5 of 34

Nocardiopsis sp. CMB-M0232 draft genome sequence and bioinformatics-based prediction of the noz gene cluster

Sequencing and assembly of the *Nocardiopsis* sp. CMB-M0232 genome yielded a ~6.4 84 Mbp draft with >5500 open reading frames (ORFs) (see SI). The putative *noz* biosynthetic genes 85 86 are clustered across two separate regions of the *Nocardiopsis* sp. CMB-M0232 chromosome (Figure 1). Bioinformatics analyses of the ORFs revealed candidate enzymes for nocardioazine 87 biosynthesis (Table 1). BLASTP analyses of individual predicted ORFs in the entire draft 88 89 genome revealed both putative nonribosomal peptide synthetases (NRPSs) and a cyclodipeptide synthase (CDPS) as candidates for assembly of the DKP core during the early stage of 90 nocardioazine biosynthesis. However, bioinformatics analyses of adenylation domains from 91 putative NRPSs revealed none predicted to accept two tryptophan substrates.⁷ Further, additional 92 genes clustered with these putative NRPS-encoding genes were strongly suggestive of the 93 biosynthesis of hybrid polyketide synthase -nonribosomal peptide synthase (PKS-NRPS) 94 products⁴ and other classes of secondary metabolites, rather than prenylated diketopiperazine 95 alkaloids. Distinctly, a single putative CDPS (NozA) identified in the draft genome represents 96 the most plausible candidate for assembly of Cyclo-L-Trp-L-Trp DKP (5) (Figure 1, Table 1). 97

Figure 1. Organization of the two clusters of *Nocardiopsis* sp. CMB-M0232 biosynthetic genes (*noz*) predicted to play roles in nocardioazine biosynthesis.

Contig #1	# aa	BLASTP annotation	NCBI accession number of homolog	organism	ID / Sim (%)
orf1	421	hypothetical PLP-dependent protein	WP_012786924	Catenulispora acidiphila DSM 44928	51/62
nozT1	nozT1 402 transporter		AEF16056	Streptomyces vinaceusdrappus NRRL 2363	58/72
nozA	234	cyclodipeptide synthase	YP_003102306	Actinosynnema mirum DSM 43827	35/54
nozD	385	cytochrome P450	KCP45129	Mycobacterium tuberculosis BTB09-382	30/42
nozE	398	cytochrome P450	WP_026248114	Streptomyces sp. MspMP- M5	36/52
orf6	825	adenylosuccinate synthase	WP_016473091	<i>Streptomyces</i> sp. HPH0547	57/70
nozR1	307	XRE family transcriptional regulator	WP_020869817	Streptomyces rapamycinicus	80/89
nozT2	362	ABC transporter	WP_013153583	Nocardiopsis dassonvillei	67/77
nozT3	nozT3 289 ABC transporter		WP_017566834	Nocardiopsis synnemataformans	76/88
orf10	277 hypothetical protein		WP_018657142	Actinomadura flavalba	59/69
nozR2	136 MerR family transcriptional regulator		WP_017544945	Nocardiopsis prasina	76/84
orf12	orf 12 216 hypothetical protein		ERT00338	Sporothrix schenckii	36/52
Contig #2	# aa	BLASTP annotation	NCBI accession number of homolog	organism	ID / Sim (%)
orf13	371	hypothetical protein	WP_017620974	Nocardiopsis gilva YIM 90087	73/82
orf14	318 3-ketoacyl-ACP reductase		WP_018724690	Salinispora pacifica CNS055	63/74
orf15	5 456 family 1 glycosyltransferase WP_017620972		Nocardiopsis gilva YIM 90087	85/92	
nozB	nozB 212 indole C3' and N1' methyltransferase		WP_026123683	Nocardiopsis chromatogenes YIM 90109	84/92
nozC	358	indole C3' prenyltransferase	WP_017620970	Nocardiopsis gilva YIM 90087	80/84
orf18	orf18 781 hypothetical protein		WP_017625718	Nocardiopsis chromatogenes YIM 90109	68/80

99

Table 1. Predicted functions of putative nocardioazine biosynthetic enzymes based on bioinformatics analyses. Two chromosomally distinct gene clusters (contig 1-2) encode these enzymes. # aa = number of amino acid residues; ID = % identity; Sim = % Similarity.

102

Organic & Biomolecular Chemistry

104 Analyses of the *Nocardiopsis* sp. CMB-M0232 genome revealed a single putative 105 prenyltransferase, NozC (Table 1), as the sole candidate for a C3'- normal prenylation of the 106 DKP core. NozC shares homology with enzymes previously annotated as prenyltransferases but 107 for which biosynthetic function has yet to be experimentally confirmed. However, little homology was noted between NozC and biochemically characterized prenyltransferases 108 including the dimethylallyltryptophan synthases FgaPT2⁸ and AnaPT⁹⁻¹⁰. This observation is 109 potentially explained by the unique regioselectivity of NozC as the sole prenyltransferase 110 yielding C3'-normal prenylation. The *nozC* gene is located within a cluster of biosynthetic genes 111 chromosomally distinct from *nozA* (Figure 1). The *nozC* prenyltransferase gene is located within 112 the same operon as *nozB*, which encodes a putative methyltransferase that is a candidate for C-113 and N-methylation of the DKP scaffold. Although the regioselectivity of NozB remains 114 115 unknown, BLASTP analyses revealed NozB possesses residues conserved among SAMdependent methyltransferases.¹¹ In **Figure 1** and **Table 1**, all genes predicted by bioinformatic 116 analyses to play enzymatic or regulatory roles in nocardioazine biosynthesis pathway are 117 118 assigned as "noz" genes. Following typical conventions (for annotation of gene clusters), those genes annotated with no apparent role in nocardioazine biogenesis are listed as "orfs" and many 119 of these correspond to hypothetical proteins whose function remain unclear. 120

121

122

NozA is a cyclodipeptide synthase homologous to Amir4627 as revealed through bioinformatics

123 The putative CDPS, NozA, identified by bioinformatics analyses as the most plausible 124 candidate for assembly of *Cyclo*-L-Trp-L-Trp DKP (**5**) was compared with sequences of known 125 characterized CDPSs. Amino acid sequence alignment revealed 35% identity between NozA and 126 Amir_4627, a CDPS from *Actinosynnema mirum* and the only known example of a CDPS

127	incorporating two Trp residues (NCBI Accession #YP_003102306; Figure 2). ¹² NozA includes
128	residues conserved among related biochemically characterized, catalytically functional CDPSs ¹³
129	including Amir_4627 ¹² . Beyond the conserved active site residues (highlighted in yellow),
130	correlations are also apparent between NozA and Amir_4627 for residues implicated in
131	recognition and binding of NozA to aminoacyl-charged tRNA substrates (highlighted brown).
132	Similar predicted secondary and tertiary structural features are noticeable between the two
133	enzymes (Figure 2). Given this prediction, we next sought to establish the connection of the gene
134	cluster harboring nozA towards production of cyclo-L-Trp-L-Trp (5) through heterologous
135	expression in S. coelicolor.

Figure 2. Amino acid sequence alignment between NozA and Amir_4627 and bioinformatics model of NozA generated using GeneiousTM. Clustal ω was used for basic sequence alignment.

138

140 Heterologous expression connects contig #1 to Cyclo (L-Trp-L-Trp) biosynthesis 141 From the SuperCos 1cosmid library generated from genomic DNA, cosmid clone pAL557 was found to carry ~40 kB of the Nocardiopsis sp. CMB-M0232 genome, including the 142 143 entirety of contig #1 (Figure 1, Table 1). After ensuring that the host organism lacks nocardioazine-like pathway genes, cosmid pAL557 was adapted with genetic elements required 144 for integration into the *Streptomyces* genome and heterologous expression (see SI).¹⁴ This 145 yielded a plasmid (pAL5571), which was introduced by intergeneric conjugation from E. coli 146 into S. coelicolor M1146, a host engineered for optimized heterologous expression of 147 actinomycete gene clusters.¹⁵ M1146 treatment cultures were fermented in parallel with M1146 148 149 controls lacking these biosynthetic genes. Metabolite profiles of chemical extracts from these cultures were compared by HPLC with diode array detection, revealing a signal at 11.2 min as 150 151 the sole discernable metabolite present in treatment cultures and absent from controls (Figure 3). The retention time of this metabolite matched that of synthetic Cyclo(L-Trp-L-Trp), the 152 generation of which is described below. Further, high-resolution LC/MS supported assignment 153 154 of the molecular formula of this metabolite as $C_{22}H_{20}N_4O_2$ (m/z 373.1691 [M+H]⁺), corresponding with the formula of Cyclo(L-Trp-L-Trp). Based on bioinformatics-predicted 155 functions of proteins encoded by contig #1 (Figure 1, Table 1), NozA represents a plausible 156 candidate for catalyzing Cyclo(L-Trp-L-Trp) biosynthesis. Ongoing investigations are directed at 157 experimentally establishing the function of NozA.¹⁶ 158 159

Figure 3. A. Formation of *Cyclo*-L-Trp-L-Trp (**5**). **B.** HPLC chemical profiles of *S. coelicolor* M1146 treatment with pAL5571 (shown in red), control M1146 (shown in blue), and *Cyclo*(L-Trp-L-Trp) (**5**) standard (shown in green). UV detection at 280 nm revealed *Cyclo*(L-Trp-L-Trp) (**5**) produced by treatment cultures carrying contig #1 genes but absent from controls lacking these biosynthetic genes. This suggested that NozA catalyzes biosynthesis of this nocardioazine precursor.

161 Assembly of predicted downstream noz pathway intermediates

162 Two specific reasons prompted us to turn to synthesis and tandem MS for furthering our 163 knowledge of the *noz* pathway. First, given the recent advancements (in the post-genomics era) in the employment of tandem-MS to connect molecules to individual gene clusters¹⁷, we 164 anticipated assembly of synthetic intermediates may lead to conclusive evidence to support the 165 *noz* pathway. Further, use of tandem-MS-guided strategies can illuminate biosynthetic 166 relationships between multiple pathways encoded by respective gene cluster families.¹⁸ Second, 167 our initial efforts to probe nocardioazine biosynthesis focused on the conventional approach of 168 169 generating *Nocardiopsis* sp. CMB-M0232 gene replacement mutants with the intention to employ them as tools for determining biosynthetic intermediates. Thus far, Nocardiopsis sp. has 170 proven resistant to select gene knockout experiments. Therefore, we turned to the alternative 171 172 bio-guided synthesis and tandem-MS-centric strategy presented herein to experimentally establish nocardioazine biosynthetic intermediates predicted through bioinformatics analyses. 173 To provide synthetic standards for the *in vitro* characterization of NozA-catalyzed 174 175 *Cyclo*(L-Trp-L-Trp), and for assembly of downstream pathway intermediates, we constructed 5 and ent-5. Cyclo-(L-Trp-L-Trp) (5) was constructed through a four-step sequence, starting with 176 protection of the amino functionality of L-Trp with benzyloxycarbonyl (Cbz) group (Scheme 2). 177 Treatment with Cbz-Cl along with sodium bicarbonate-sodium carbonate in acetonitrile-water 178 (2:3; v:v) as solvents, over 3h resulted in 8 providing the western half of the DKP. Similarly, 179 treatment of L-Trp under thionyl chloride in methanol at reflux over 18h resulted in formation of 180 181 the L-Trp methyl ester (9) in near quantitative yield, providing the eastern half of the DKP. BOPCI-mediated coupling of 8 and 9 in the presence of triethylamine as a base in THF resulted 182 183 in amide 10 in 93% yield. BOPCl-mediated activation of the carboxylic acid functionality of 8

184	proved the most efficient for isolation of a high yield of amide product 10 . Deprotection of the
185	Cbz group in 10 under hydrogenating conditions in the presence of Pd-C in MeOH (with a trace
186	amount of water) yielded deprotected amine precursor 15 which also contained an ester
187	functionality as an intramolecular reactive partner. The DKP ring system was then formed
188	through the treatment of 11 under 14M ammonia in methanol at 60 °C for 8 h resulting in <i>Cyclo</i> -
189	(L-Trp-L-Trp) (5) in 95% yield. Likewise, an identical sequence was applied starting from D-Trp
190	(through protection resulting in <i>ent</i> -8 and ester <i>ent</i> -9, followed by coupling to give <i>ent</i> -10, finally
191	with deprotection-cyclization step) resulting in the formation of Cyclo-(D-Trp-D-Trp) (ent-5) in
192	excellent overall yield. The four-step sequence was reproduced consistently with identical %
193	yields for either antipode, as shown in Scheme 2A. As shown in Scheme 2B, we were able to
194	mono-methylate the N1' position of 5 to synthesize 14.

Scheme 2. A. Synthesis of *Cyclo*(L-Trp-L-Trp) (5) and *Cyclo*(D-Trp-D-Trp) (*ent-5*). B.
 Synthesis of N1'-Me-*Cyclo*(L-Trp-L-Trp) (14) from 5. Predicted candidate intermediates of the *noz* pathway are presented in box.

198

Given the bioinformatics-based prediction and homology comparisons of enzymes, we
collectively identified 5, *ent*-5, 12-17 as candidates for *in vivo* intermediates in the *noz* pathway.
NozB and NozC are expected to catalyze prenylation and methylation steps to yield six unique
potential intermediates (12-17) depending on the order of reactions (as described later in Scheme

203 5). Additionally, we expected the synthetic endeavour to afford relevant intermediates for future in vitro and in vivo reconstitution assays of individual steps catalyzed by NozA, NozB and NozC 204 in the nocardioazine pathway. 205

206

Scheme 3. A. Asymmetric C3-methylation to yield 20. B. Synthesis of Cyclo-C3-Me-L-Trp-L-Trp DKP (13) and Cyclo-C3-Me-L-Trp-N1'-Me-L-Trp DKP (16). Predicted candidate intermediates of the *noz* pathway are presented in box.

Due to the relative complexity of the proposed intermediates, regio- and stereoselective 209 C3'-prenylation, C3-methylation and N1'-methylation presented significant challenges. As 210 211

Organic & Biomolecular Chemistry Accepted Manuscript

212	points to employ an enantio- and diastereoselective indole-enamide [3+2] cycloaddition reaction
213	in the presence of (S)-BINOL and $tin(IV)$ chloride as a key step to install the C3-methyl
214	functionality. ¹⁹ En route to employing this step as a strategy towards assembling 13 and 16 ,
215	enamide 19, was prepared from L-serine through the conversions involving the corresponding
216	<i>O</i> -Boc derivative (see SI). The [3+2] cycloaddition between 18 and 19 proceeded with a 12:1
217	diastereomeric ratio favouring the <i>exo</i> isomer 20a over the minor <i>endo</i> isomer 20b . Each
218	diastereomer exhibited a 2:3 ratio of conformational isomers (caused by the Cbz group on N11
219	position) as revealed by the presence of equivalent sets of ¹ H NMR signals. The overall yield of
220	the [3+2] cycloaddition product 20 is 61%. Considering the relative stereochemical disposition
221	of substituents at C2, C3 and C9 in major <i>exo</i> isomer 20a , we initially attempted an LDA-
222	mediated deprotonation-reprotonation sequence to invert the C9 center. By virtue of the lack of
223	an allyl protecting group at N1 (that was present in prior report ⁶), a retro-Michael addition
224	occurred, resulting in degradation of 20a under strongly basic conditions. Therefore, a revision
225	of appropriate conditions to achieve the correct relative stereochemistry was imminent. After
226	careful screening and optimization, treatment with excess lithium hydroxide in a mixture of
227	methanol, water and THF (1:1:1; v:v:v) affected this transformation efficiently to yield 20c
228	(Scheme 3A). Concomitant to the epimerization, we observed base-mediated hydrolysis of the
229	carboxymethyl ester functionality. It proved to be a beneficial outcome as the next step en route
230	to 13 involved an amide bond forming coupling to an L-Trp-containing partner 9. Similar to
231	formation of 10, we observed smooth peptide bond formation under BOP-Cl-mediated activation
232	of 20c followed by nucleophilic participation of the amino functionality of 9 resulting in the
233	coupled product 22 in 90% yield in THF as the solvent (Scheme 3B). Hydrogenative
234	deprotection of the Cbz group of 22 was affected smoothly to result in 23. During this

deprotection of the Cbz group under Pd-C, we observed direct intramolecular cyclization 235 236 resulting in formation of 13 in ~10% efficiency. However, this low conversion rate motivated the employment of relatively stronger base²⁰ involving methanolic NH₃ to result in the formation of 237 238 Cyclo-C3-Me-L-Trp-L-Trp DKP (13) in high efficiency through the participation of the secondary amino functional group through an internal nucleophilic substitution reaction. The 239 overall synthetic sequence is 5 linear steps starting from 3-methyl indole (18). The overall yield 240 for formation 13 was 24.9%. Similarly, the assembly of 16 began with 20a undergoing a tandem 241 epimerization-hydrolysis event under aqueous lithium hydroxide yielding **20c**. N1'-methylated 242 243 L-Trp (21) was synthesized (from L-Trp, see SI) for its engagement in a coupling step with 20c. Likewise, **20c** under BOP-Cl activation and triethylamine gave **24** as the product in 81% yield. 244 Similar to the non-methylated counterpart 22, we could effect a hydrogenative deprotection 245 246 followed by base-mediated intramolecular cyclization event on 24 to result in 16 (via 25) in 247 fairly high efficiency (91% yield) in 5 linear steps from commercially available 18. The overall yield for formation of 16 was 31.0%. 248 249 As illustrated in Scheme 4A, We aimed at Cyclo-L-Trp-C3'-ⁿprenyl-L-Trp DKP (12) and its N1'-methylated variant Cyclo-L-Trp-N1'-Me-C3'-ⁿprenyl-L-Trp DKP (15) as synthetic 250 targets. Through a biomimetic prenylation method we published recently²¹, employment of the 251 methyl ester of L-tryptophan (9) served as a precursor to engage in a domino process initiated by 252

a C3'-prenylation event (with prenyl bromide as the electrophile) subsequently resulting in a C-N
bond-forming

Scheme 4. A. Synthesis of *Cyclo*-L-Trp-C3'-ⁿprenyl-L-Trp DKP (12) and *Cyclo*-L-Trp-N1'-Me-C3'-ⁿprenyl-L-Trp DKP (15). a - % isolated yield based on recovered starting material. B. Synthesis of *des*-N-Me-Nocardioazine B (17). Predicted candidate intermediates of the *noz* pathway are presented in box.

- temperature, to result in the formation of 27a and 27b as a 4:1 mixture of *exo* and *endo*
- diastereomers. The overall yield for this transformation was 67% considering full recovery of
- unreacted 9. The fact that 27a and b were accessed through a single biomimetic step afforded
- direct access to the C3'-normal prenylated scaffold of nocardioazines. Stereochemical
- relationship between C3'-^{*n*} prenyl substitution, C2'-H and C9'-carboxymethyl substituent for the

266	major diastereomer 27a was established through NOESY correlations (see SI). Upon treatment
267	of 27a with N-phthalyl-protected L-Trp-acid 29 (prepared prior using a one-step protection
268	reaction with phthalic anhydride, see SI), under BOP-Cl activation and basic conditions, we
269	obtained the coupled product 30 (comprising the carbon skeleton of target 12) in 90% yield.
270	Gratifyingly, the coupled product 30 underwent a tandem sequence initiated by a hydrazine
271	hydrate-mediated deprotection of the phthalyl group followed by an intramolecular cyclization in
272	methanol-dichloromethane and resulted in a 70% yield of Cyclo-C3'- ⁿ prenyl-L-Trp-L-Trp DKP
273	(12). NOESY experiment showed a 2.98% enhancement between C8'-H and olefinic C2"-H;
274	1.78% enhancement between protons on 2' and 8'- α CH; and finally a 3.05% enhancement
275	between protons on 8' β CH and 9' positions. These confirmed the stereochemistry to be <i>cis</i>
276	across the DKP ring system and an overall exo arrangement for the B'-C' pyrroloindoline ring
277	fusion. Likewise, engagement of N1'-methylated-L-Trp carboxymethyl ester (26) in a one-step
278	prenylation (under aqueous solution) using prenyl bromide resulted in 72% overall yield of C3'-
279	prenylated 28a (major) and 28b (minor) based on recovery of unreacted 26. Similar to the
280	formation of 30 , upon subjecting 28a to a coupling reaction with 29 using BOP-Cl and
281	triethylamine in THF, we obtained 31 which upon subjection to a hydrazine hydrate-mediated
282	deprotection-cyclization sequence resulted in the B'-C' ring-forming process leading to Cyclo-L-
283	Trp- <i>N</i> 1'-Me-C3'- ^{<i>n</i>} prenyl-L-Trp DKP (15) in 74% yield. The overall yields for formation of 12
284	and 15 were 42.41% and 44.6% over 3 linear steps respectively. Cyclo-C3-Me-L-Trp-L-Trp
285	DKP (13) underwent C3'-prenylation (similar to prenylations on 9 and 26) to result in <i>des</i> -N1'-
286	Me-Nocardioazine B (17). In addition to NMR indicating the presence of a mixture of
287	diastereomers, the identity of 17 for biosynthetic characterization is supported by HPLC (Figure
288	5), HRMS (Table 2) and LC-MSMS (Figure 4).

289	Evaluation of the biosynthetic relevance of synthesized intermediates through NMR, LC-MS
290	and HR-tandem MS reveals precursor-product relationships for nocardioazine B biosynthesis
291	Having synthesized candidate intermediates of the noz pathway, we applied LC-coupled-
292	tandem-MS as a tool to establish nocardioazine alkaloidal biosynthetic intermediates. While
293	relatively simpler L-Trp-L-Trp DKP (as products of cyclodipeptide synthase biosynthesis) and
294	other dimeric amino acid DKPs have been analysed through tandem mass spectrometry ²² ,
295	complex DKPs like 12-17 were thus far not investigated through mass spectrometry adding
296	further importance to this study. EIC traces (Figure 4A) indicated that HPLC-MS profiles
297	uniquely separated and distinguished most synthesized intermediates. Unique signatures are
298	observable in MS ² spectra for each biosynthetic metabolite (Figure 4B-H). Specifically, Figure
299	4B shows the presence of <i>Cyclo</i> -L-Trp-L-Trp DKP (5). Its $[M+H]^+$ ion (at 373.1662 Da in
300	positive ion mode ESI-MS profile) and its [M-H] ⁻ ion (at 371.1530 Da in negative ion mode ESI-
301	MS) are noticeable (see SI). Characteristic Trp fragments were observed as fingerprints of 5
302	through MS ² fragmentation (Figure 4B; and Table S2). The product molecular ions, arise out of
303	neutral losses of a Trp moiety (129 Da), along with sequential loss of CO (28 Da) and/or
304	HCONH2 (45 Da), in various combinations. Neutral loss of HCN (27 Da) from ion at m/z
305	=130.0654 accounted for presence of $m/z = 103.0547$ ion. Likewise, we mapped tandem MS
306	signatures of <i>Cyclo</i> -L-Trp-C3'- ^{<i>n</i>} prenyl-L-Trp DKP (12); <i>Cyclo</i> -C3-Me-L-Trp- L-Trp DKP (13);
307	Cyclo-N1'-Me-L-Trp-L-Trp DKP (14); Cyclo-L-Trp-C3'- ⁿ prenyl-N1'-Me-L-Trp DKP (15);
308	Cyclo-C3-Me-L-Trp-N1'-Me-L-Trp DKP (16) and des-N1'-Me Nocardioazine B (17), as
309	illustrated in Figure 4 (additionally in SI).

Figure 4. A. Extracted ion chromatograms (EICs) traces of synthetic standards. ESI TOF-MS² fragmentation data: **B**. *Cyclo*-L-Trp-L-Trp DKP (**5**) (M+H)⁺; **C**. *Cyclo*-L-Trp-C3'-^{*n*}prenyl-L-Trp DKP (**12**) (M+H)⁺; **D**. *Cyclo*-C3-Me-L-Trp-L-Trp DKP (**13**) (M-H)⁻; **E**. *Cyclo*-N1'-Me-L-Trp-L-Trp DKP (**14**) (M+H)⁺; **F**. *Cyclo*-L-Trp-N1'-Me-C3'-^{*n*}prenyl-L-Trp DKP (**15**) (M+H)⁺; **G**. *Cyclo*-C3-Me-L-Trp-N1'-Me-C3'-^{*n*}prenyl-L-Trp DKP (**15**) (M+H)⁺; **G**. *Cyclo*-C3-Me-L-Trp-N1'-Me-L-Trp DKP (**16**) and **H**. *des*-N1'-Me nocardioazine B (**17**).

311	Next, we looked for signatures of 12-17 directly from cultures of Nocardiopsis sp. CMB-
312	M0232 to detect their presence as biosynthetic intermediates in vivo. Reverse-phase HPLC
313	uniquely identified synthetic 12-16 (Figure 5A). Comparison of retention times of these
314	synthetic compounds with the alkaloidal fractions of Nocardiopsis sp. CMB-M0232 revealed
315	that 12, 14 and 15 were not relevant biosynthetic products or intermediates. Interestingly, we
316	detected the presence of three relevant metabolites in <i>Nocardiopsis</i> sp. extracts, namely, 13 , 16
317	and 17. Further supporting its biosynthetic relevance, TLC patterns of extracts showed presence
318	of 13 (see Figure S11). We compared the MS^2 fragmentation pattern of 13 <i>extracted from the</i>
319	<i>bacterial culture</i> to that of <i>the synthetic standard</i> . The ESI-TOF-MSMS data for synthesized 13
320	overlapped precisely with that of the extracted metabolite (Figure 5C and D). The ion at $m/z =$
321	256.110 (C3-methyl group containing Trp-DKP) from the m/z 385.2 precursor ion after loss of a
322	neutral Trp unit (129 Da) was observed both in the synthesized standard as well as from the
323	extract. Further, ¹ H and ¹³ C NMR analyses (of LC-derived extracts) confirmed the structure of
324	this metabolite as 13 (Figure S12 and S13, SI). Despite modifying several solvent conditions and
325	flow rates, we were unable to distinctly separate 17 out of overlap in retention time from 13 and
326	16. Overall, this approach of combining synthesis, LC and tandem MS gave a global picture of
327	the biosynthetic map for the <i>noz</i> pathway. The map in Scheme 5 was derived from $LC-MS^2$
328	investigations for all of the intermediates. An intermediate was considered "observed" if its
329	retention time and MS ² pattern seen in bacterial extracts matched those of the synthetic standard.
330	

Figure 5. A. Reverse phase HPLC traces for synthesized and extracted metabolites from *Nocardiopsis* sp. CMB-M0232. B. Culture of *Nocardiopsis* sp. CMB-M0232 at 7, 14 and 21 days. C. ESI-(-)-TOF-MSMS spectrum of 13 from *Nocardiopsis* sp. CMB-M0232 (top) matched with spectrum of synthesized 13 (bottom); D. ESI-(+)-TOF-MSMS spectrum of 13 from *Nocardiopsis* sp. CMB-M0232 (top) matched with spectrum of synthesized 13 (bottom).

Name of Metabolite	Molecular Formula	ESI HR-MS [M] ⁺ [M+H] ⁺ [M-H] ⁻ (expected) Found	LC retention time Found (synth.) (min)	MS ² Fragmenta tion Pattern	Biosynthetic Role	Observations
<i>Cyclo</i> -L-Trp-L-Trp DKP (5) and <i>Cyclo</i> -D-Trp-D-Trp DKP (<i>ent</i> - 5)	$C_{22}H_{20}N_4O_2$	(372.1586) (373.1659) (371.1513) 373.1665 (+) and 371.1530 (-)	7.06 (7.06)	242.0925; 144.0805 and 130.0654	early stage intermediate	[M+H]⁺ and [M-H]⁻ observed in extracts Matches with synthetic standard
<i>Cyclo-</i> L-Trp-C3'- ″prenyl-L-Trp DKP (12)	C ₂₇ H ₂₈ N ₄ O ₂	(440.2212) (441.2285) (439.2139) NF	NF (23.2)	373.1671; 242.0931; 113.0337; 198.1288; 183.1044; 130.0658	Mid stage product of C3'- prenyltransfer on 5	Not detected
<i>Cyclo</i> -C3-Me-L-Trp- L-Trp DKP (13)	$C_{23}H_{22}N_4O_2$	(386.1743) (387.1816) (385.1670) 387.1825 385.1711	11.8 (11.8)	385.1690; 256.110; 130.065	Mid stage product of C3- methyltransfer on 5	[M+H]⁺ and [M-H]⁻ observed in extracts Matches with synthetic standard
<i>Cyclo</i> -N1'-Me-L-Trp- L-Trp DKP (14)	C ₂₃ H ₂₂ N ₄ O ₂	(386.1743) (387.1816) (385.1670) 387.1825 385.1711	NF (9.5)	242.0932, 184.0761, 144.0814	Mid stage product of N1'M methyltransfer on 5	Not detected
<i>cyclo</i> -L-Trp- <i>N</i> 1′-Me- C3′- ⁿ prenyl-L-Trp DKP (15)	C ₂₈ H ₃₀ N ₄ O ₂	(454.2369) (455.2442) (453.2296) NF	NF (18.0)	399.1806; 212.1441; 144.0813; 130.0657	mid stage product of indole N1' methyltransfer on 12	Not detected
<i>Cyclo</i> -C3-Me-L-Trp- <i>N</i> 1'-Me-L-Trp DKP (16)	$C_{24}H_{24}N_4O_2$	(400.1899) (401.1972) (399.1826) 401.1972	12.2 (12.2)	401.1981, 256.1089, 184.0761, 144.0813	Mid stage indole N1'- methyltransfera se product from 13	[M+H]⁺ observed in extracts Matches with synthetic standard
Des- <i>N</i> 1'-Me- nocardioazine B (17)	C ₂₈ H ₃₀ N ₄ O ₂	(454.2369) (455.2442) 455.2442	12.6 (12.6)	256.1089; 184.0761; 144.0813	Putative precursor to secondary metabolite product 4	[M+H]* observed in extracts
Nocardioazine B (4)	$C_{29}H_{32}N_4O_2$	(468.2525) (469.2598) 469.2695	18.44*	186.0914 156.0812 144.0805 and 130.0654	Putative precursor to secondary metabolite product 3	[M+H] ⁺ observed in extracts
Nocardioazine A (3)	C ₂₉ H ₃₀ N ₄ O ₃	(482.2318) (483.2396) (481.224) 483.2396	8.80*	483.2396	Secondary metabolite product	[M+H]⁺ observed in extracts

Table 2. LC-MS and MSMS data for synthetic and extracted biosynthetic intermediates and products. NF – not found; for full detailed listing and corresponding formulas of molecular ions, see SI. Note: metabolites with Mw = 369, 383, 482, 466, 468 and 452 were identified as DKPs in Capon's study.^{2, 4} Ions represented in **bold** are identified from extracts of *Nocardiopsis* sp. CMB-M0232. * - No synthetic standard, exact mass match only. Shaded entries represent those metabolites experimentally observed in *Nocardiopsis* extracts.

Α

early stage

Scheme 5. Biosynthetic steps for early- and mid-stages of *noz* pathway. Dotted lines show hypothesized possibilities and bold lines show the path that is evident from HPLC, LC-MS, MSⁿ analyses for all relevant intermediates.

338	Upon consideration of the three mid-stage enzymatic steps in a simple permutation
339	fashion (Scheme 5), the multi-pronged approach reveals the relevance of <i>C3-methylation as a</i>
340	step preceding C3'-prenylation and N1'-methylation. Specifically, if Nocardiopsis sp. CMB-
341	M0232 were to employ an indole C3'-prenyltransferase (hypothetical NozC) to install a dimethyl
342	allyl group on DKP 5 then the product of this biosynthetic reaction is expected to be Cyclo-L-
343	Trp-C3'- n prenyl-L-Trp DKP (12). The formation of pyrroloindoline cycle (of 12) during this
344	prenyltransfer step is based on fungal precedents such as FgaPT2.9 Alternatively, if the indole
345	C3-methyl transferase (NozB) were operative on the basic early-stage intermediate DKP 5, the
346	product expected out of this transformation is represented by Cyclo-C3-Me-L-Trp-L-Trp DKP
347	(13). The corresponding N1'-methylated product from action of a methyltransferase (NozB, but
348	regioselectively on the N1' position) would be Cyclo-L-Trp-N1'-Me-L-Trp DKP (14). Products
349	15, 16 and 17 represent further increase of complexity through a subsequent enzymatic event.
350	Their relevance in a combinatorial way is discussed in Scheme 5 . N1'-methylation of 13 will
351	lead to production of 16 and therefore we anticipated the presence of 16 from cultured
352	Nocardiopsis sp. CMB-M0232. Indeed, LC-ESI-(+)TOF MSMS analysis indicated the presence
353	of 16 at $R_t = 12.2$ min (Figure S6 in SI). HRMS verification of its presence was confirmed
354	through observation of an ion at $m/z = 401.1972$ and furthermore, MS^2 fragmentation revealed
355	presence of characteristic ions at $m/z = 256.109$, 184.076, and 144.081 that matched well with
356	synthesized 16 (Table 2). Presence of des-N1'-Me nocardioazine B (17) was detected through
357	the identification of a broad LC peak at $R_t \sim 12.6$ min that corresponded to an HR-MS signal at
358	m/z = 455.2442 (Δ m=0 ppm). Its corresponding MS ² spectra revealed signature peaks at m/z
359	256.1089 (seen in fragmentation of 13 +14 Da), 184.0761, and 144.0813 typically observed for
360	all synthetic standards possessing the C3-methyl substitution and two Trp units of the DKP ring

Organic & Biomolecular Chemistry

system (**Table 2**). Significantly **12**, **14** and **15** were *not* identified from cultures of *Nocardiopsis* sp. CMB-M0232 as verified through the conspicuous absence of signature prenylated ions at m/z $= 198.129 (C_{14}H_{16}N^+)$ *observed only in* **12** and a corresponding ion *seen only for* **15** at m/z = $212.144 (C_{15}H_{18}N^+)$. Pathway specific metabolites identified through LC and their MS-MS

fragmentation (in this study) are highlighted green in **Table 2**.

366 **Discussion**

367 Synergistic Approach Establishes Pathway to Nocardioazine B

Microbial systems continue to inspire discovery of novel biocatalysts for the synthesis 368 organic molecules with unique structural and biological properties.²³ We present evidence that 369 points to early stage assembly of Cyclo-Trp-Trp DKP as an intermediate that undergoes a regio 370 and stereoselective C3-methyltransfer step resulting in the formation of a subsequent 371 372 intermediate that is C3-normal prenylated and N1'- methylated by respective enzymes encoded in the *noz* pathway with reasonable promiscuity in the order of their occurrence. These results 373 illuminate the specific precursor-product relationships in the nocardioazine alkaloid biosynthetic 374 375 pathway and are expected to guide future genetic and enzymatic studies to further probe the *noz* pathway. The latent symmetry present in the DKP ring system of 3 and 4 enables numbering 376 (N1-N11 and N1'-N11') of the skeletal constituents comprising the 6-5-5-6-5-5-6 skeleton that 377 includes rings A-B-C-D-C'-B'-A' respectively (Scheme 6). Nature has further decorated the 378 western half of the DKP core through a methyltransferase-catalyzed regio-and stereoselective 379 indole C3-methylation event resulting in the pyrroloindoline B-C ring fusion. The fungal 380 prenyltransferase enzymology offers a precedent for pyrroloindoline formation through 381 enzymatic functionalization of the indole-C3 position accompanied by a concomitant cyclization 382 event between N11 and C2 positions.⁹ The B'-C' rings, on the eastern side of the DKP core, are 383

384 functionalized through a prenyltransferase-catalyzed regio- and stereoselective indole C3'normal prenylation event (with a 3'-1" head-to-head connectivity) and a concomitant N11'-C2' 385 bond-forming cyclization generating des-N1'-Me-nocardioazine B (4). Further, indole N1'-386 387 methylation (at C12) is observed as a likely event catalyzed by an N-methyltransferase leading to 3 and 4. Overall, these three pivotal biosynthetic events create the asymmetry in the two 388 annulated pyrroloindoline moieties of 3 and 4. The mid-stages of the pathway offered a 389 390 reasonably sized cohort of synthetically tractable intermediates that could be used as standards for HPLC and LC-MS² analyses. These experiments facilitated identification of the order of 391 392 biosynthesis in vivo. Thus far, bioinformatics analyses by previous researchers have predicted more than 50 393

gene clusters to encode CDPS machinery for assembly of DKP natural products in various 394 species spanning both prokaryotes and eukaryotes.²⁴ However, far fewer of these CDPSs have 395 been biochemically characterized.^{12-13,25-26} Only a single experimentally characterized CDPS, 396 Amir 4627 from Actinosynnema mirum has been established to yield Cyclo-L-Trp-L-Trp DKP 397 as the dominant product.¹² Homologs of NozA are evident in a range of *Nocardiopsis* strains 398 whose CDPS-containing gene clusters are available in publically deposited genomes. For 399 example, Nocardiopsis alba encodes an enzyme (AlbC) possessing 40% sequence identity to 400 NozA.²⁵ To date, biochemically characterized CDPSs have been reported to catalyze the 401 formation of DKPs exclusively from L-amino acids. This is due to the mechanism of CDPSs, 402 which employ aminoacyl-charged tRNAs from primary metabolism as substrates in catalyzing 403 404 formation of the DKP scaffold. Hence, if nocardioazines A-B (3-4), featuring D-amino acid stereochemistry, are indeed CDPS-derived, then an unidentified isomerase is also expected as a 405

- 406 required component of their biosynthetic pathway to isomerize *Cyclo*-L-Trp-L-Trp DKP (5) into
- 407 its antipode *ent*-5.

Scheme 6. Steps in the *noz*-encoded pathway illustrated as a function of known and unknown stages. Nocardioazine numbering is illustrated in box.

410	As illustrated in Scheme 5, it is evident that the methyltransferase step, likely
411	encoded by NozB, in Nocardiopsis sp. CMB-M0232 is successively processing methylations
412	of 5 and 13. The possibility of the recruitment of a promiscuous indole C3'-normal
413	prenyltransferase that could prenylate either 13 or 16 leading to 17 or 4 is plausible.
414	Nocardioazine A (3) has an additional isoprenoid-tethered DKP scaffold comprised of an 11-
415	membered macrocycle (ring E) bridged between N1 and C3' (tether numbered as 4"-3"-2"-1").
416	P-glycoprotein-mediated efflux pump (P-gp) inhibition is exhibited specifically by 3, by virtue of
417	the macrocycle E. ³ The biosynthetic pathway to nocardioazine A probably incorporates 4 as a
418	reasonable intermediate, and employs a few additional oxidative transformations in tethering two
419	annulated pyrroloindoline rings with a 5-carbon isoprenoid moiety. Cytochrome P450
420	homologs ²⁷ NozD and NozE (Figure 1, Table 1) represent candidates for oxidative
421	transformation of 3 to afford 4 . According to Raju et al. ³ , the C2"-C3" olefinic bond is mono-
422	oxidized into an oxirane and the C4" position participates in an intramolecular cyclization event
423	with the indolic nitrogen of the B-ring on 7 to close the macrocycle. Two possible intermediates
424	(7A or B) for this late stage of the pathway is presented in Scheme 6. 2,5-Diketopiperazines of
425	α -amino acids are valuable structural cores that have inspired natural products research. ²⁸ Bio-
426	inspired synthesis complementing genetic studies of such a privileged core, as detailed herein,
427	therefore has potential to allow new synthetic pathways towards creation of structural analogs
428	through chemo enzymatic pathways and mutasynthesis.

429 Conclusion

430 Nocardioazines A and B (3 and 4), as the first indole-C3-normal prenylated DKPs from
431 any biological source, present a poorly understood pathway. In this study, we laid the chemical
432 foundations of nocardioazine biosynthesis by synthesizing an exhaustive set of putative,

433 bioinformatics-predicted intermediates. Structural verification through 1D and 2D NMR, and 434 analyses through HPLC-MSMS and HRMS methods established the framework for evaluation of the biological relevance of specific intermediates in the proposed *noz* (nocardioazine) pathway in 435 436 vivo. Upon comparing HPLC and tandem mass spectrometry data between synthesized standards and alkaloidal fractions extracted from Nocardiopsis sp. CMB-M0232, it is conclusively evident 437 that indole C3-methylation leading to 13 is a biosynthetic event that precedes indole C3'-normal 438 439 prenylation and a second methyl transfer to the N1' position. In addition, through bioinformatics analyses of the draft genome of *Nocardiopsis* sp. CMB-M0232, heterologous expression of 440 441 Contig #1 was shown to result in the assembly of Cyclo-L-Trp-L-Trp (5) as a precursor to the nocardioazine alkaloids. Future efforts are necessary to unveil the complete genetic and 442 enzymatic-underpinning of nocardioazine A and B biosynthesis. Collectively, these results 443 444 highlight the utility of synergizing bioinformatics analyses, asymmetric synthesis, and mass spectrometric metabolite profiling in guiding natural product biosynthesis studies. 445

446 Acknowledgements

We gratefully thank Prof. Robert J. Capon (University of Queensland, Australia) for 447 448 providing Nocardiopsis sp. CMB-M0232 isolate. We are grateful to Drs. Mervyn J. Bibb and Juan Pablo Gomez-Escribano for providing S. coelicolor M1146. RV, NFA and SKP thank Case 449 Western Reserve University's Department of Chemistry for funding portions of this project. NFA 450 451 thanks the Saudi Arabian Ministry of Higher Education for graduate financial aid. Saudi Arabian 452 Cultural Mission (SACM) and Drs. Rashed M. Alsedran (Director) and Elbreir Mohammed 453 (academic Advisor) are thanked by NFA for academic support. Authors thank Dr. Dale Ray for 454 expert NMR data collection. Authors thank Dr. Ormond Brathwaite for technical support for culturing Nocardiopsis sp. CMB-M0232 strain for metabolic extraction. We thank Prof. Robert 455

Salomon and Dr. Mikhail Linetsky for expert technical support. Authors thank Angela Hansen
and Taylor Harmon for support with collection of mass spectrometry data. Authors thank
William Frank of SIRC (CWRU) for instrumentation support. ALL is grateful for funding from
a Research Corporation Cottrell College Science Award, a UNF Transformational Learning
Opportunity Award, and a UNF Academic Affairs Scholarship grant.

461 **Competing Financial Interests**

462 The authors declare no competing financial interests.

463 Additional Information

464 None.

465 **References**

¹ Blunt, J. W.; Copp, B. R.; Keyzers, R. A.; Munro, M. H. G.; Prinsep, M. R. *Nat. Prod. Rep.* **2013**, *30*, 237-323.

² (a) Raju, R.; Piggott, A. M.; Conte, M.; Tnimov, Z.; Alexandrov, K.; Capon, R. J. *Chem*. *Eur. J.* **2010**, *16*, 3194-3200; (b) Raju, R.; Piggott, A. M.; Quezada, M.; Capon, R. J. *Tetrahedron* **2013**, *69*, 692-698.

³ Raju, R.; Piggott, A. M.; Huang, X.-C.; Capon, R. J. Org. Lett. 2011, 13, 2770-2773.

⁴ Bis, D. M.; Ban, Y. H.; James, E. D.; Alqahtani, N.; Viswanathan, R.; Lane, A. L. *ChemBioChem* **2015**, *16*, 990-997.

⁵ Wang, M.; Feng, X.; Cai, L.; Xu, Z.; Ye, T. Chem. Comm. 2012, 48, 4344-4346.

⁶ Wang, H.; Reisman, S. E. Angew. Chem., Int. Ed. Engl. 2014, 53, 6206-6210.

⁷ Roettig, M.; Medema, M. H.; Blin, K.; Weber, T.; Rausch, C.; Kohlbacher, O. *Nucleic Acids Res.* **2011**, *39*, W362-W367.

⁸ (a) Luk, L. Y. P.; Qian, Q.; Tanner, M. E. *J. Am. Chem. Soc.* 2011, *133*, 12342-12345; (b) Mahmoodi, N.; Qian, Q.; Luk, L. Y. P.; Tanner, M. E. *Pure Appl. Chem.* 2013, *85*, 1935-1948; (c) Mahmoodi, N.; Tanner, M. E. *ChemBioChem* 2013, *14*, 2029-2037.

⁹ (a) Li, S.-M. *Phytochemistry* **2009**, *70*, 1746-1757; (b) Yin, W.-B.; Grundmann, A.; Cheng, J.; Li, S.-M. J. Biol. Chem. **2009**, 284, 100-109.

¹⁰ Pockrandt, D.; Li, S.-M. ChemBioChem 2013, 14, 2023-2028.

¹¹ Schubert, H. L.; Blumenthal, R. M.; Cheng, X. D. Trends Biochem. Sci. 2003, 28, 329-335.

¹² Giessen, T. W.; von Tesmar, A. M.; Marahiel, M. A. *Biochemistry* 2013, 52, 4274-4283.

¹³ Belin, P.; Le Du, M. H.; Fielding, A.; Lequin, O.; Jacquet, M.; Charbonnier, J.-B.; Lecoq, A.; Thai, R.; Courcon, M.; Masson, C.; Dugave, C.; Genet, R.; Pernodet, J.-L.; Gondry, M. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, *106*, 7426-7431.

¹⁴ M. J. Smanski, J. Casper, R. M. Peterson, Z. Yu, S. R. Rajski and B. Shen, *J. Nat. Prod.* **2012**, *75*, 2158-2167.

¹⁵ J. P. Gomez-Escribano and M. J. Bibb, *Microbiol. Biotechnol.* 2011, 4, 207-215.

¹⁶ James E.; Alqahtani, N.; Viswanathan R.; Lane A. L. Planta Med. 2014, 80, PJ5.

¹⁷ Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X.; Boudreau, P. D.; Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; Wong, W. R.; Linington, R. G.; Zhang, L.; Debonsi, H. M.; Gerwick, W. H.; Dorrestein, P. C. *J. Nat. Prod.* **2013**, *76*, 1686-1699.

¹⁸ Nguyen, D. D.; Wu, C.-H.; Moree, W. J.; Lamsa, A.; Medema, M. H.; Zhao, X.; Gavilan, R. G.; Aparicio, M.; Atencio, L.; Jackson, C.; Ballesteros, J.; Sanchez, J.; Watrous, J. D.; Phelan, V. V.; van de Wiel, C.; Kersten, R. D.; Mehnaz, S.; De Mot, R.; Shank, E. A.; Charusanti, P.; Nagarajan, H.; Duggan, B. M.; Moore, B. S.; Bandeira, N.; Palsson, B. O.; Pogliano, K.; Gutierrez, M.; Dorrestein, P. C. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110*, E2611-E2620. ¹⁹ (a) Repka, L. M.; Ni, J.; Reisman, S. E. *J. Am. Chem. Soc.* **2010**, *132*, 14418-14420; (b) Repka, L. M.; Reisman, S. E. *J. Org. Chem.* **2013**, *78*, 12314-12320.

²⁰ Takase, S.; Itoh, Y.; Uchida, I.; Tanaka, H.; Aoki, H. Tetrahedron 1986, 42, 5887-5894.

²¹ Thandavamurthy, K.; Sharma, D.; Porwal, S. K.; Ray, D.; Viswanathan, R. *J. Org. Chem.* **2014**, *79*, 10049-10067.

²² (a) Guo, Y.-C.; Cao, S.-X.; Zong, X.-K.; Liao, X.-C.; Zhao, Y.-F. *Spectroscopy*, **2009**, *23*, 131-139; (b) Furtado, N. A. J. C.; Vessecchi, R.; Tomaz, J. C.; Galembeck, S. E.; Bastos, J. K.; Lopes, N. P.; Crotti, A. E. M. *J. Mass Spectrom*. **2007**, *42*, 1279-1286.

²³ Micallef, M. L.; Sharma, D.; Bunn, B. M.; Gerwick, L.; Viswanathan, R.; Moffitt, M. C. *BMC Microbiol.* **2014**, *14*, 213.

²⁴ (a) Aravind, L.; de Souza, R. F.; Iyer, L. M. *Biology Direct* **2010**, *5*, 48; (b) Bonnefond, L.; Arai, T.;
Sakaguchi, Y.; Suzuki, T.; Ishitani, R.; Nureki, O. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 3912-3917;
(c) Giessen, T. W.; von Tesmar, A. M.; Marahiel, M. A. *Chem. Biol.* **2013**, *20*, 828-838.

²⁵ Vetting, M. W.; Hegde, S. S.; Blanchard, J. S. Nat. Chem. Biol. 2010, 6, 797-799.

²⁶ Gondry, M.; Sauguet, L.; Belin, P.; Thai, R.; Amouroux, R.; Tellier, C.; Tuphile, K.; Jacquet, M.; Braud, S.; Courcon, M.; Masson, C.; Dubois, S.; Lautru, S.; Lecoq, A.; Hashimoto, S.-I.; Genet, R.; Pernodet, J.-L. *Nat. Chem. Bio.* **2009**, *5*, 414-420.

²⁷ Belin, P.; Moutiez, M.; Lautru, S.; Seguin, J.; Pernodet, J.-L.; Gondry, M. *Nat. Prod. Rep.* **2012**, *29*, 961-979.

²⁸ Borthwick, A. D. Chem. Rev. 2012, 112, 3641-3716.