Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

1	MPA-capped CdTe quantum dots exposure causes neurotoxic effects through affecting the
2	transporters and receptors of glutamate, serotonin and dopamine at the genetic level and
3	increasing ROS or both of them in nematode Caenorhabditis elegans
4 5	Tianshu Wu ^{1,2} , Keyu He ^{1,2} , Qinglin Zhan ^{1,2} , Shengjun Ang ^{1,2} , Jiali Ying ^{1,2} , Shihan
6 7	Zhang ^{1,2} , Ting Zhang ^{1,2} , Yuying Xue ^{1,2} and Meng Tang ^{1,2*}
8	¹ Key Laboratory of Environmental Medicine and Engineering, Ministry of Education;
9	School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and
10	Technology, Southeast University, Nanjing 210009, China;
11	² Jiangsu key Laboratory for Biomaterials and Devices; Southeast University, Nanjing
12	210009, China
13	E-Mails: <u>ninatswu@126.com</u> (T.W.); <u>tm@seu.edu.cn</u> (M.T.)
14	* The author to whom correspondence should be addressed; E-Mail: <u>tm@seu.edu.cn</u> (M.T.)
15	Tel.: +86-025-83272564; Fax: +86-025-83272479
16	
17	
18	
19	
20	
21	

Nanoscale Accepted Manuscript

22	Abstract: As quantum dots (QDs) are widely used in biomedical, the number of study
23	focusing on their biological matters is increasing. While several studies have attempted to
24	evaluate the toxicity of QDs on neural cells, the in vivo toxic effects on the nervous system
25	and the molecular mechanisms are unclear. The aim of the present study was to investigate
26	the neurotoxic effects and the underlying mechanisms of water-soluble cadmium telluride
27	(CdTe) QDs capped with 3-mercaptopropionic acid (MPA) in Caenorhabditis elegans (C.
28	elegans). Our results showed that exposure to MPA-capped CdTe QDs induced behavioral
29	defects, including alterations to body bending, head trashing, pharyngeal pumping and
30	defecation interval, as well as impaired learning and memory behavior plasticity based on
31	chemotaxis or thermotaxis in a dose-, time- and size-dependent manner. Further
32	investigations suggested that MPA-capped CdTe QDs exposure within 24 h inhibited the
33	transporters and receptors of glutamate, serotonin and dopamine at the genetic level in C.
34	elegans, while showed opposite results at 72 h. Additionally, excessive ROS generations were
35	observed in the CdTe QD-treated worms, which confirmed the common nanotoxicity
36	mechanism of oxidative stress damage, and might overcome the improved gene expression of
37	transporters and receptors of neurotransmitters induced by long-term QD-exposure in the C.
38	elegans, resulting in severer behavioral impairments.
39	Key words: MPA-capped CdTe quantum dot, Caenorhabditis elegans, neurotransmission,
40	nanotoxicology, neurotoxicity
41	

42 **1. Introduction**

43	Quantum dots (QDs), considered as alternatives of conventional fluorescent dyes, are an
44	increasingly used class of nanoparticles in biomedical imagery and target drug delivery ¹⁻³ .
45	Owning to their unique photophysical properties, they become an ideal noninvasive probes to
46	visualize biological processes of live organisms at molecular and cellular levels in both real
47	time and three dimensions ⁴ . However, lagging behind the rapid rate of progress and
48	application of QDs has been the consideration of the potential risks associated with human
49	exposure to these particles. Concern about the potential adverse effects of QDs on biological
50	systems, especially the nervous system, has been increasing in recent years, resulting in calls
51	for much more thorough neurotoxicity assessment.
52	Studies on the toxicity of QDs to various neural cells and little animals have reported that
53	cadmium-containing QDs exposure was associated with cell death and apoptosis, oxidative
54	stress damage, and altered neurobehaviors, such as impaired spatial learning and reference
55	memory ⁵⁻⁸ . Our previous work have found that 3-mercaptopropionic acid (MPA)-capped
56	CdTe QDs exposure resulted in rat primary cultured hippocampal neurons apoptosis and
57	death by inducing intracellular oxidative stress and elevation of cytoplasmic calcium level
58	(Wu et al., 2015 in revision). Although in vitro studies are fast and suitable for evaluating
59	QD's toxicity, they are limited in capturing subtle organism impacts. Systematic in-depth
60	studies of the neurotoxicity induced by QDs in whole organisms are imperative for their
61	future biological applications. Given the vital but limited in vivo research on nervous system
62	damage in association with QD exposure and the potential value of QDs' application in the
63	field of neuroscience, here, we presented an <i>in vivo</i> study of the model animal C. elegans to

Nanoscale Accepted Manuscript

64 address these issues.

65	C. elegans has been considered an excellent test organism to evaluate toxic responses to
66	several chemicals due to its multitude of advantages, such as inexpensive maintenance, its
67	size, short life cycle, and large brood size. Additionally, C. elegans has 302 neurons that
68	signal through 890 electrical junctions, 1410 neuromuscular junctions and 6393 chemical
69	synapses, where its neuronal lineage is fully described. And it uses the same neurotransmitter
70	systems, such as glutamatergic, dopaminergic (DAergic), serotonergic, cholinergic and
71	gamma-amino butyric acid (GABA) ergic, that are expressed in vertebrates, which allows
72	findings from C. elegans to be extrapolated and further confirmed in vertebrate systems.
73	Therefore, C. elegans has been the reliable subject of a number of neurotoxicological studies
74	focused on various chemicals 9 . As the genome of <i>C. elegans</i> has been sequenced completely,
75	it also offers an attractive experimental platform to design and implement studies to evaluate
76	molecular gene mechanisms of tested chemicals.
77	This study investigated the potential neurotoxic effects of a water-soluble CdTe QDs
78	capped with MPA on C. elegans. Quantitative methodologies were applied to assess multiple
79	end points relevant to their nervous system health after short- and long-term exposure to
80	MPA-capped CdTe QDs. The results suggested that changes in the locomotion behavior and
81	plasticity of learning and memory behaviors indicated the adversely neurological effects of
82	MPA-capped CdTe QDs with both two sizes, which might be related with QD-induced
83	changes on transporters and receptors of glutamate, serotonin and dopamine at the genetic
84	level and excessive ROS generation or both of them in C. elegans.

85	
86	2. Materials and methods
87	2.1. QDs preparation and characterization
88	The water-soluble MPA-capped CdTe QDs used in this study were prepared as described
89	previously ¹⁰⁻¹² . Before the study, we evaluated the physicochemical properties of these QDs.
90	High-resolution transmission electron microscopy (HR-TEM) revealed that the average size
91	of CdTe QDs were 2.2±0.25 nm and 3.5±0.49 nm, respectively. Otherwise, dynamic light
92	scattering (DLS) confirmed that comparable dimensions were 7.39±0.74 nm and 9.82±1.14
93	nm for 2.2 nm and 3.5 nm CdTe QDs in water solution, respectively. The MPA coating
94	contributed substantially to the size of QDs in water. The surface charges through ξ -potential
95	measurement were -31.84±3.06 mV and -26.46±4.75 mV for 2.2 nm and 3.5 nm CdTe QDs
96	in water solution, respectively. Three concentrations of MPA-capped CdTe QDs suspensions
97	(400, 800 and 1600 μ g/mL) were prepared by diluting the stock solution (2200 μ g/mL) of
98	QDs, which was sonicated for 20 min before, with K medium (32 mM KCl, 5 mM NaCl) just
99	prior to exposure. The used concentrations for QDs here were selected based on our
100	preliminary lethal experiments, which showed the LD ₅₀ of exposure to MPA-capped CdTe
101	QDs for 72 h is approximately 8,000 μ g/mL (data not shown), and a series of previous studies
102	¹⁰ (Wu et al., 2015 in revision).
103	2.2. Strains and culture conditions
104	Nematodes used in this study were wild-type N2 C. elegans. The C. elegans strain and
105	the Escherichia coli OP50 strain were obtained from the Caenorhabditis Genetics Center

Nanoscale Accepted Manuscript

106	(CGC) (University of Minnesota, MN, USA). C. elegans culture and manipulation were
107	performed using standard methods ¹³ , which is that the wild-type N2 C. elegans was cultured
108	at 20 °C on nematode growth media (NGM) agar plates seeded with Escherichia coli OP50.
109	Synchronization of nematode cultures was achieved using a bleaching buffer (5% 5 M NaOH,
110	12% NaClO) treatment of gravid hermaphrodites.
111	2.3. Preparation of plates and exposure conditions
112	Experiments were carried out on 24-well plates with 0.5mL of NGM-agar added into
113	each well, which were seeded with fresh overnight-culture of OP50. To the surface of each
114	well, 30 μ L various concentration MPA-capped CdTe QDs dissolved in K-medium were
115	added to the corresponding coagulated NGM and covered the bacterial lawn. After about 30
116	min at 20 °C, synchronized L4-stage nematodes were placed into each well cultivated in a 20
117	°C incubator for 24 and 72 h.
118	2.4. Bioimaging
119	The uptake and distribution of MPA-capped CdTe QDs by C. elegans were observed by a
120	fluorescence microscope (Olympus, FSX100). Worms exposed to 1600 μ g/mL CdTe QDs for
121	24 h and 72 h were washed five times and transferred to an agar pad to which was added
122	sodium azide previously in order to immobilized the worms. 2.2 nm CdTe QDs showed green
123	fluorescence while 3.5 nm CdTe QDs showed red. All images were acquired and processed
124	using the FSX-BSW PC software.
125	2.4. Behavior assay
126	2.4.1. Locomotion behavior assay

127	The body bend frequency and the head thrash frequency were determined to monitor the
128	locomotion behavior. A body bend was counted as a change in the direction of the part of the
129	nematodes corresponding to the posterior bulb of the pharynx along the Y axis, assuming the
130	nematode travelling along the X axis ^{14, 15} . A head trash was defined as a change in the
131	direction of bending at the mid body ^{9, 16-18} . The nematodes were transferred to a second plate
132	without food and scored for the number of body bends in an interval of 20 s, and the head
133	thrashes were scored for 1 min. A minimum of 30 nematodes was examined per treatment
134	using a stereo microscope (Olympus, SZ61) and the tests were performed at least three times.
135	2.4.2. Pharyngeal pumping assay
136	The pharyngeal pumping rate represents the ability of food intake of <i>C. elegans</i> . 30
137	nematodes of the different exposure groups were randomly selected and their pharynx
138	pumping frequency was determined three times over a 1 min timespan at room temperature ¹⁹ .
139	The test was performed a minimum of three times.
140	2.4.3. Defecation assay
141	The whole defecation process includes four steps, but we measured the interval between
142	the initiations of two successive posterior body-wall muscle contraction steps as a cycle
143	period of defecation ^{20, 21} . 30 nematodes were used for each defecation cycle length assay and
144	three replicates were performed.
145	2.4.4. Chemotaxis assay
146	The nematodes C. elegans are usually attracted to NaCl when they are cultured on
147	normal NGM, but their chemotaxis towards NaCl will fall dramatically if nematodes are

148	staved on plates that contain NaCl ^{22,23} . Thus, the plasticity of learning behavior could be
149	indicated by pairing presentation of a chemoattractant and starvation in C. elegans. The
150	specific test method was according to Ju et al. with some modifications ^{15, 18} . An agar plug
151	with additional of 100 mM NaCl was placed on one side (N) of the assay plate, which was
152	then left overnight (Fig. 1A). Just before the test, the NaCl plug was removed and one drop of
153	0.5 M sodium azide was spotted on the same position to anaesthetize the nematodes. The
154	sodium azide was also spotted onto the position (C) 3 cm away from the NaCl spot. Exposed
155	nematodes were cultured in the presence of NaCl and the absence of food at 20 $^{\circ}$ C for 4 h.
156	About 100 worms of each group were placed on the starting point (S), which was 3 cm away
157	from the N and C. And then nematodes were left to move freely on the assay plate for 60 min
158	at 20 $^{o}\text{C},$ where the number of nematodes within 1.5 cm of each spot was counted (N_n and N_c).
159	The chemotaxis index (CI) was equal to $(N_n-N_c)/(N_n+N_c)$. Assays were performed in triplicate,
160	and the CI value was averaged.
161	2.4.5. Thermotaxis assay
162	The nematode C. elegans memorizes temperatures, and this stored information modifies
163	its subsequent migration along a temperature gradient (Temperature Sensing by an Olfactory
164	Neuron in a Circuit Controlling Behavior of <i>C. elegans</i>) ^{24, 25} . A radical temperature gradient
165	was created by placing a vial containing frozen glacial acetic acid on the bottom of the assay
166	plate for 30 min at 25 °C (Fig. 1B). Exposed nematodes were transferred to NGM agar with a
167	plenty of food at 20 °C overnight, and then gotten starved for 0, 0.5, 1, 3, 7, 12 and 18 h. At

169	for 45 min at 25 °C. The percentage of animals performing isothermal tracking (IT) at 20 °C
170	was determined by the tracks left on the agar surface after removal of the worms from the
171	plate. A trace is considered as IT if more than half of the trace length left on the agar surface
172	by a single worm is circular, or presents an arc of a circle near the isotherm of the cultivation
173	temperature ²⁵ .
174	2.5. Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR)
175	analysis
176	Total RNA from worms of each group was isolated using TRIzol, and the synthesis of
177	cDNA was performed by a reverse transcriptase reaction using Mastercycleasr gradient PCR
178	system (Eppendorf, USA). The qRT-PCR analysis was carried out on selected genes relevant
179	to three transmissions of glutamate, serotonin and dopamine on a StepOnePlus TM real-time
180	PCR systems (Version 2.2.2, Applied Biosystems, Carlsbad, CA, USA) using the SYBR
181	Green qRT-PCR master mix (TOYOBO, Japan). The qRT-PCR primers were designed based
182	on sequences retrieved from the C. elegans database (www.wormbase.org) and National
183	Center for Biotechnology Information (NCBI), and detailed base sequences were on Table 1.
184	Three replicates were conducted for each qRT-PCR analysis. The relative quantities of mRNA
185	were determined using comparative cycle threshold methods, and were normalized against
186	the mRNA of <i>act-1</i> , which encodes actin isoforms. The fold change of the mRNA level was
187	normalized to that observed in non-exposed control samples.
188	2.6. Determination of ROS generation

Nanoscale Accepted Manuscript

We used the oxidation-sensitive fluorescence probe 2',7'-dichlorofluorescin diacetate		
(DCFH-DA) (Sigma, MO, USA) to measure the levels of reactive oxygen species (ROS) in		
nematode C. elegans. After treatment with QDs for 24 h and 72 h, the worms were washed		
twice with M9 buffer and then loaded with 10 μM DCFH-DA and incubated at 20 $^o\!C$ for 30		
min in dark. After washed three times with M9 buffer, random ten worms of each group were		
mounted on an agar pad for the examination with a fluorescence microscope (Olympus,		
FSX100) at 488 nm of excitation wavelength and 525 nm of emission filter. All images were		
analyzed by ImageJ Software to measure the florescence intensity of the highly fluorescent		
dichlorofluorescein (DCF) oxidized. The semiquantified ROS was expressed as relative		
fluorescent units (RFU). In C. elegans, the DCFH-DA labeled fluorescent signals were much		
stronger than the autofluorescence signals of MPA-capped CdTe QDs.		
2.7. Data analysis		
All data were displayed as the mean \pm standard deviation (SD). Statistical analysis was		
performed using SPSS Statistics 19.0 Software. One-way analysis of variance (ANOVA) was		
used to determine the statistical significance between control and exposed groups, followed		
by the <i>Dunnett's t</i> -test to determine the significance of differences between the groups.		
Probability levels of <0.05 and <0.01 were considered statistically significant.		

195	FSX100) at 488 nm of excitation wavelength and 525 nm of emission filter. All in
196	analyzed by ImageJ Software to measure the florescence intensity of the highly fl
197	dichlorofluorescein (DCF) oxidized. The semiquantified ROS was expressed as re-
198	fluorescent units (RFU). In C. elegans, the DCFH-DA labeled fluorescent signals
199	stronger than the autofluorescence signals of MPA-capped CdTe QDs.
200	2.7. Data analysis
201	All data were displayed as the mean \pm standard deviation (SD). Statistical and
202	performed using SPSS Statistics 19.0 Software. One-way analysis of variance (Al
203	used to determine the statistical significance between control and exposed groups
204	by the Dunnett's t-test to determine the significance of differences between the gro
205	Probability levels of <0.05 and <0.01 were considered statistically significant.
206	
207	3. Results
208	3.1. In vivo imaging of distribution of MPA-capped CdTe QDs in C. elegans

Before any MPA-capped CdTe QD toxicity could be interpreted, it was necessary to

210	evaluate the uptake and distribution of QDs in <i>C. elegans</i> . The transparent body of <i>C. elegans</i>
211	and the bright fluorescence from MPA-stabilized CdTe QDs enabled us to directly visualize
212	them in a live and intact worm using florescent microscopy. As the QDs were added to the
213	surface of an agar plate supporting the worms, we anticipated that the main route of exposure
214	would be through the digestive tract. We found green (2.2 nm CdTe QDs) and red (3.5 nm
215	CdTe QDs) fluorescence in the whole body, mainly digestive tissue of the nematodes (Fig.
216	2B1, 2C1, 2D1 and 2E1). Additionally, in the amplified images (Fig. 2B2, 2C2, 2D2 and 2E2),
217	MPA-capped CdTe QDs were noticeably translocated into head areas, which might be trough
218	the biological barrier along the intestine. Compared to 3.5 nm CdTe QDs, 2.2 nm CdTe QDs
219	showed brighter and more dispersed in head region. Longer exposure time also resulted in
220	brighter fluorescence. Moreover, the QDs remained bright and consistent over the duration of
221	the study, which indicated that the MPA-capped CdTe QDs did not appreciably change while
222	ingested.
223	3.2. Toxicity responses to MPA-capped CdTe QDs on behavior in C. elegans
224	As locomotion behavior is a relatively sensitive endpoint for neurotoxicity evaluation in
225	nematodes, firstly, we investigated the effects of MPA-capped CdTe QDs exposure on
226	locomotion behavior as indicators of body bends and head thrashes. Apart from the low-dose
227	3.5 nm CdTe QDs group, exposure to 400~1600 $\mu\text{g/mL}$ CdTe QDs with two sizes for 24 or 72
228	h decreased the body bends and head thrashes of nematodes significantly compared with the
229	control (Fig. 3A and 3B). And both the body bends and head thrashes of nematodes exposed
230	to 2.2 nm CdTe QDs were more severely reduced than those exposed to 3.5 nm CdTe QDs.

231	The time course analysis further indicated that the more significant reductions of body bends
232	and head thrashes were observed after nematodes were exposed to MPA-capped CdTe QDs at
233	the L4-larval stage for 72 h.
234	As pharyngeal pumping and defecation in C. elegans were controlled by specific neurons
235	and MPA-capped CdTe QDs were mainly accumulated in the alimentary system, we chose
236	pharyngeal pumping frequency and defecation interval as endpoints to reflect neurotoxic
237	effects of QDs. After exposed to CdTe QDs for 24 h, significant decrease in the number of
238	pharyngeal pumping in C. elegans over a 1min timespan was observed in the middle- and
239	high-dose treatments compared to control (Fig. 4A). And for 72 h exposure, every treatment
240	groups showed a significant decrease in pharyngeal pumping frequency. For the defecation
241	activity in C. elegans, MPA-capped CdTe QDs exposure significantly increased the interval
242	between two posterior body-wall muscle contractions in a dose- and time-dependent manner,
243	compared with the control (Fig. 4B).
244	Considering the important value of plasticity in learning and memory, we next examined
245	the possible adverse effects of MPA-capped CdTe QDs exposure on capacity of learning and
246	memory in C. elegans based on their chemotaxis and thermotaxis. Our results showed that the
247	CIs increased along with the crescent concentrations of CdTe QDs, indicating the number of
248	nematodes that have learned pairing presentation of a chemoattractant and starvation was
249	decreasing (Fig. 5). Compared with the control, CIs of nematodes exposed to middle- and
250	high-dose CdTe QDs for 24 or 72 h increased significantly. Moreover, the 2.2 nm CdTe QDs
251	and the longer exposure time exerted severer learning deficits in C. elegans.

252	In the control group, the percentage of animals performing IT at 20 °C was decreasing
253	during starvation, from 85.42±1.43% and 86.11±3.46% at the beginning to 45.36±9.36% and
254	44.63±6.93% at the end of the experiment for 24 h and 72 h, respectively. As shown in Figure
255	6A and 6B, the data of each treatment group followed the similar tendency of the controls,
256	and exposure to high-dose of MPA-capped CdTe QDs caused significant decreases in the
257	percentage of IT behaviors in C. elegans at 20 °C at each time point, compared with the
258	controls, while only some time points suggested significantly different data between the
259	middle-dose groups and the controls. However, the thermostatic behavior was unaffected by
260	low-dose MPA-capped CdTe QDs. Moreover, when the exposure dose was same, 2.2 nm
261	CdTe QDs always leaded to severer toxic effects.
262	3.3 The expression of transporters and receptors of glutamate, serotonin and dopamine in
263	regulating the formation of adverse effects in MPA-capped CdTe QD-exposed C. elegans
264	C. elegans contain many classic neurotransmissions found in vertebrates. To identify
265	which neurotransmission(s) mediates the adverse effects of MPA-capped CdTe QDs, we
266	further examined the expression of genes that are required for the transmissions of glutamate,
267	serotonin and dopamine, which might be affected by MPA-capped CdTe QD exposure. As
268	shown in Table 1, selected genes can be separated into encoding transporter and receptor. The
269	mRNA levels were determined using quantitative real-time RT-PCR and normalized to the
270	expression of act-1. The fold change was normalized to that observed in untreated control
271	group.

The results showed that the mRNA levels of *glr-1*, *glr-2*, *glt-7*, *eat-4*, *mgl-1*, *ser-1*, *mod-1*,

273	dat-1 and dop-3 were significantly decreased, but the mRNA level of mod-5 was significantly
274	increased, compared to those in the control, when worms were exposed to three doses of
275	MPA-capped CdTe QDs with two size for 24 h (Fig. 7A). Among them, glr-1, glr-2, glt-7,
276	eat-4 and dat-1 showed dose-effect relationship to 2.2 nm CdTe QDs, while glr-2 and mod-5
277	showed dose-effect relationship to 3.5 nm CdTe QDs. Otherwise, 2.2 nm CdTe QDs exposure
278	significantly decreased the mRNA levels of <i>nmr-1</i> and <i>dop-1</i> , while 3.5 nm CdTe QDs
279	exposure significantly influenced the mRNA levels of glr-6, glt-3 and glt-6, where low-dose
280	caused increased expressions but middle-dose caused reduced expressions.
281	In contrast, when nematodes were exposed to MPA-capped CdTe QDs for 72 h, the
282	mRNA levels of most genes, including glr-1, glt-3, glt-6, eat-4, mgl-1, ser-1, mod-1, mod-5,
283	dat-1 and dop-1, were significantly increased compared with the control, of which glt-3, glt-6,
284	eat-4, mgl-1, ser-1, mod-1, mod-5 and dat-1 showed dose-effect relationship to 2.2 nm CdTe
285	QDs, while glt-3, glt-6, eat-4, mgl-1, dat-1 and dop-1 showed dose-effect relationship to 3.5
286	nm CdTe QDs (Fig. 7B). However, except that the mRNA level of <i>dop-1</i> decreased
287	dose-dependently, tendencies of others were opposite. Otherwise, only was the expression of
288	gene glr-2 significantly decreased after CdTe QDs exposure when compared to the control.
289	Significantly increased mRNA levels of <i>glr-6</i> and <i>dop-3</i> were merely observed in 2.2 nm
290	CdTe QDs treatment groups. The results suggested that MPA-capped CdTe QDs exposure
291	influenced the expression of many genes that are required for the transmissions of glutamate,
292	serotonin and dopamine in C. elegans.

293 3.4. Generated ROS production

294	The connection between nanotoxicity and excessive oxidative stress has been widely
295	accepted and the levels of ROS serve as reliable indicators of oxidative stress ²⁶⁻²⁸ . DCFH-DA
296	is a common detection reagent to measure ROS generation. Exposure to 1600 μ g/mL CdTe
297	QDs for 24 h significantly enhanced ROS production in nematodes (P <0.001, Fig. 9).
298	Prolonged exposure to over 400 μ g/mL of CdTe QDs also significantly increased the levels of
299	ROS production (P <0.001, Fig. 9), and the fluorescent intensities of nematodes in 72 h
300	control looked like stronger than those in 24 h control (Fig. 8).
301	
302	4. Discussion
303	Neurobehavioral tests are traditionally used in mammals, but it costs a plenty of time,
304	resources and money. C. elegans was originally developed as an experimental model to study
305	nervous system development in 1974 ²⁹ . Furthermore, its nervous system has been
306	systematically investigated, and differentiation and migration patterns have been described, as
307	well as the main neurotransmission systems are phylogenetically conserved which permits the
308	analysis of changes in neurotransmitter expression in response to various neurotoxins.
309	Moreover, researchers have found that C. elegans was equally affected by positive
310	neurotoxins, but responded much faster than vertebrates, which indicated the validity and
311	robustness of this applied model animal ^{15, 18, 19} .
312	So far, C. elegans has been used widely to investigate neurotoxicity of assorted
313	nanoparticles with locomotion behavior, pharyngeal pumping, defecation and chemotaxis as
314	the endpoints ^{14, 16, 30-32} . Although there is limited but growing evidence linking QDs exposure

315	to neurobehavioral outcomes ^{7, 14} , the effects and mechanisms of QDs toxicity on neuronal
316	functions require further explanation. Knowledge having gained on the C. elegans behavior
317	will facilitate the use of these worms in understanding the behavior effects of interventions.
318	Therefore, the extensive advantage of using a <i>C. elegans</i> model provides the capability of
319	examining various endpoints of nervous system function, including the behaviors and gene
320	transcription.
321	Firstly, benefit from the bright fluorescence of water-soluble MPA-capped CdTe QDs, we
322	used fluorescent microscopy to observe the uptake and distribution of a high level of
323	MPA-capped CdTe QDs and found that QDs were mainly accumulated within the digestive
324	lumen, and some may enter into the adjacent cells in C. elegans. The results implied that
325	MPA-capped CdTe QDs were capable of crossing the intestinal barrier and translocated into
326	nerve nets in head area, which was similar to some previous studies: Contreras et al.
327	suggested that C. <i>elegans</i> might have the capacity to acclimate low levels of QDs 33 ; Zhao et
328	al showed that MPA-capped CdTe QDs could be translocated through intestinal barrier and
329	deposited in RMEs motor neurons in nematodes, resulting in abnormal foraging behavior and
330	deficits in development of RMEs motor neurons ¹⁴ ; and in the investigation of Qu et al., the
331	transfer of QDs from alimentary system to the reproductive system also verified the capacity
332	of QD's distribution from the intestine to the adjacent cell and causing adverse effects ³⁴ .
333	Along with exposure time, the accumulation and biodistribution effects of QDs were severer.
334	And 2.2 nm CdTe QDs seemed like tend to cause more obvious effects than 3.5 nm CdTe
335	QDs. Therefore, MPA-capped CdTe QDs could accumulate in the body of C. elegans,

336	especially the head region containing the nerve nets, which was more likely to cause several
337	neurotoxic effects.

338	Biodistribution of QDs is only the beginning on the long road to unravel their biological
339	effects. After confirming the accumulation of QDs within the organ systems, including the
340	nervous system in C elegans, we can further investigate the corresponding toxicological
341	impact on its physiological behavior. In this study, we chose endpoints of body bending and
342	head thrashing to evaluate the locomotion behavioral defects caused by MPA-capped CdTe
343	QDs in <i>C. elegans</i> , because locomotion behavior is a relatively sensitive endpoint for
344	neurotoxicity evaluation in nematodes. The results showed that MPA-capped CdTe QDs
345	exposure could restrain the body bending and head thrashing in a dose- and time-dependent
346	manner. Additionally, several well-characterized behaviors of C. elegans controlled by
347	specific neurons, including pharyngeal pumping and defecation, were easily assessed ^{35, 36} .
348	We found that the pharyngeal pumping behavior and defecation system of nematodes in CdTe
349	QDs treatment groups were be damaged in different degrees, where the longer exposure time
350	and the smaller size of QDs gave worms more damage.
351	C. elegans has developed chemical induction system, which is used to sense many
352	environmental stimuli. According to different chemical signals in the environment, C. elegans
353	integrates various sensory signals within the nervous system, showing different forms of
354	learning behavior plasticity ³⁷ . In the chemotaxis asssy, the conditioning required both the
355	presence of NaCl and the absence of a bacterial food source, indicating it was a form of
356	associative learning not merely adaptation or habituation. This assay system provided an

357	opportunity to study the changes of learning behavioral plasticity in C. elegans exposed to
358	MPA-capped CdTe QDs, which reflected neurological functions.
359	The results from the control group showed that starvation in the presence of NaCl for 4 h
360	resulted in a strong avoidance of high NaCl concerntration. This response was very similar to
361	that reported by Saeki et al., suggesting that starvation sensitized the ability to associate NaCl
362	with negative cues ²² . However, the proportion of worms that failed to learning the
363	association with NaCl and starvation was increasing with the raising expose dose and time.
364	The changes in the learning behavior plasticity of C. elegans exposure to MPA-capped CdTe
365	QDs were identified as neurotoxic compounds by tests.
366	The thermotaxis assay is used to investigate nematodes' memory capacity based on their
367	thermotaxis behavior, which is the response to temperature on spatial thermal gradients in an
368	experience-modulated manner. The results suggested that the percentage of nematodes
369	performing IT at 20 °C in MPA-capped CdTe QDs treatment groups decreased more
370	obviously over time, compared to the control, which indicated that exposure to MPA-capped
371	CdTe QDs caused severe deficits in thermotaxis memory in nematodes. The decrease in
372	thermotaxis-dependent memory capacity occurred quickly over 3~4h, which was confirmed
373	by previous studies ^{25, 38} . Otherwise, nanoparticles are often expected that the smaller size
374	exert stronger toxicity. In this study, smaller sized CdTe QDs (2.2 nm) really seemed to be
375	more toxic than larger sized ones on the observed neurotoxic effects in C. elegans.
376	As any individual reduction of the locomotive activity, pumping or defecation activity, or
377	impairment of the behavior plasticity must be taken as an individual indication of

378	neurotoxicity, the neurotoxic effects of MPA-capped CdTe QDs have been identified.
379	However, we still know little about the genetic and molecular mechanisms explaining the
380	formation of neurotoxicity after MPA-capped CdTe QDs exposure. The effects and
381	mechanisms of MPA-capped CdTe QDs toxicity on neuronal functions require further
382	explanation.
383	Recently, gene transcription has been widely used in toxicological studies, because it is
384	able to provide high sensitivity and mechanistic values to investigate adverse effects of
385	chemicals. Attributed to C. elegans's genome and metabolic pathways highly conserved with
386	mammals, it is suitable for studying genetic mechanisms of MPA-capped CdTe QDs
387	neurotoxicity ³⁹ . Here, in order to assess whether the defects of locomotion, feeding,
388	defecation, capacities of learning and memory were caused by neuron physical blockage, we
389	used qRT-PCR to analysis the alteration of gene transcription related to the transporters and
390	receptors of three common neurotransmitters: glutamate, serotonin and dopamine based on
391	the functions of them in neuronal migration.
392	Glutamate acts as both an excitatory and inhibitory neurotransmitter in C. elegans, and
393	glutamate transporters and receptors are responsible for the glutamate-mediated postsynaptic
394	excitation of neural cell, which is important for neural communication, memory formation,
395	learning and regulation. MPA-capped CdTe QDs exposure for 24 h caused significant
396	reduction of the mRNA levels of genes glt-3, glt-6, glt-7 and eat-4, encoding glutamate
397	transporters; genes glr-1 and glr-2, encoding non-NMDA-like ionotropic glutamate receptors;
398	and gene mgl-1, encoding metabotropic glutamate receptors; but no NMDA glutamate

Nanoscale Accepted Manuscript

399	receptors	gene	(nmr-1).
	1	$\boldsymbol{\omega}$		/

400	Serotonin (5-hydroxytryptamine, or 5-HT) is another common neurotransmitter in
401	vertebrates and invertebrates. In C. elegans, serotonin stimulates pharyngeal pumping while
402	inhibits locomotion and defecation ⁴⁰ . Our results showed that MPA-capped CdTe QDs
403	exposure for 24 h elicited significant decrease of the mRNAs levels of genes mod-5, ser-1
404	and mod-1. The gene mod-5, which encodes the only serotonin reuptake transporter in
405	<i>C. elegans</i> , modulates locomotion defective ⁴¹ . The findings from Li et al. demonstrated that
406	mutations of mod-5 gene resulted in deficits in thermotaxis memory behavior in C. elegans,
407	indicating that deficits in uptake of serotonin would noticeably influence the thermotaxis
408	memory behavior ³⁸ . Several studies have found that serotonin-gated chloride channel
409	MOD-1 modulated locomotion behavior ⁴² , and G protein coupled serotonin receptor SER-1
410	might be responsible for the effects of serotonin on pharyngeal pumping, and learning and
411	memory ^{43, 44} .
412	Dopamine (3,4-dihydroxyphenylethylamine) signaling has established roles in the
413	modulation of locomotion behavior and in learning ⁴⁵ . Exposed to MPA-capped CdTe QDs
414	for 24 h significantly decreased the mRNAs levels of genes <i>dat-1</i> , <i>dop-1</i> and <i>dop-3</i> . The <i>dat-1</i>
415	encoding presynaptic dopamine transporter proteins (DATs) is a dispensable part of chemical
416	signaling by small molecule neurotransmitters ⁴⁶ . Chase et al have found that two classes of
417	dopamine receptor: D1-like receptor DOP-1 and D2-like receptor DOP-3 antagonized each
418	other to control locomotion behavior in C. elegans by acting in the same motor neurons of the
419	ventral nerve cord, which were not postsynaptic to dopaminergic neurons ⁴⁷ .

420	Thus it was obvious that short-term exposure of MPA-capped CdTe QDs decreased the
421	expression of most genes, suggesting the inhibitory effect of QDs on neurotransmissions in
422	the mRNA levels. However, after treatment of MPA-capped CdTe QDs for 72 h, the
423	expression of most genes was completely opposite. We speculated that it might be due to the
424	recovery response to MPA-capped CdTe QDs and aging- and QD-induced oxidative stress in
425	C. elegans. The recovery response formation has been found in nanoparticle exposed C.
426	<i>elegans</i> , which was regulated by both defecation behavior and intestinal barrier ^{14, 48} . Zhao et
427	al. also found that animals undergoing prolonged exposure to nanoparticles would be difficult
428	to exhibit the recovery response because the deficit in intestinal structure might be
429	irreversible, which could explain the outcomes seemed to be contradicting.
430	Otherwise, oxidative stress damage has been considered as one of major contributors to
431	QD-induced toxicity ⁴⁹ . The activation of glutamate or dopamine receptors located and
432	expressed in neurons has been reported capable of reducing oxidative stress and supporting
433	neurons viability ⁵⁰⁻⁵² . Therefore, long-term exposure of MPA-capped CdTe QDs could
434	increase the expression of genes encoding transporters and receptors to fix QD-induced
435	neurotransmission inhibition and oxidative stress, even though the outcomes were not
436	obvious. However, as extensive oxidative stress occur in the aging process, and aging is
437	accompanied with decline in behavioral and cognitive functions ⁵³⁻⁵⁵ , the effects of
438	overexpression of neurotransmitter-relevant genes might not overwhelm the aging-related
439	ROS generation and behavioral deterioration in the nematodes of 72 h treatment groups
440	which were experiencing aging.

441	All in all, these data suggested an obvious link or correlation between various
442	neurotoxicity endpoints, and gene transcription relevant to transporters and receptors of three
443	neurotransmitters and ROS generation in C. elegans exposed to MPA-capped CdTe QDs.
444	Therefore, physiological disturbances in the nervous system may be considered as a
445	progression of toxicity in the complex consequence of abnormal gene transcriptions relevant
446	to neurotransmitters and ROS generation induced by MPA-capped CdTe QDs. However,
447	owning to the complex of neurotransmissions, some specific genes and definite mechanisms
448	of MPA-capped CdTe QDs disturbing neurotransmissions should be further investigated,
449	perhaps by corresponding RNAi knockdown strains.
450	
451	5. Conclusion
452	Our results suggested that MPA-capped CdTe QDs exposure tended to inhibit locomotion
453	behaviors, pharyngeal pumping and defecation, as well as impair learning and memory
454	behavior plasticity based on chemotaxis or thermotaxis in C. elegans, by which reflected the
455	neurotoxic effects of MPA-capped CdTe QDs in a dose-, time- and size-dependent manner.
456	The potential mechanisms of causing these adverse effects seemed complicated. We observed
457	that short-term MPA-capped CdTe QDs exposure was capable of inhibiting the expression of
458	several genes encoding transporters and receptors of three important neurotransmitters:
459	glutamate, serotonin and dopamine without requiring the ROS increment. However, the

- 460 neurological deficits of *C. elegans* in the long-term QD-treatment groups could not be merely
- 461 explained by the expression of transporters and receptors of neurotransmitters, which was

Nanoscale Accepted Manuscript

462	most probably attributed to the excessive ROS generation. Some other factors, such as					
463	recovery response to QDs and aging effects, were possibly involved in the long-term					
464	mechanisms of MPA-capped CdTe QDs inducing neurotoxicity, which was worthy of					
465	investigating. As we know, understanding the neurotoxcity of MPA-capped CdTe QDs is the					
466	key requirement to use them in the living organisms, further studies into the underlying					
467	complex mechanisms of QDs in this inexpensive but valuable nematodes should be					
468	considered.					
469						
470	Acknowledgements					
471	This work was supported by National Natural Science Foundation of China (Nos.					
472	30972504, 81172697, 81302461, 81473003), National Important Project on Scientific					
473	Research of China (No. 2011CB933404) and Provincial Natural Science Foundation of					
474	Jiangsu (No. BK2011606).					
475						
476	Declaration of interest					
477	Authors of this article declare that there are no conflicts of competing financial interest.					
478						
479	References					
480	1. L. Yildirimer, N. T. K. Thanh, M. Loizidou and A. M. Seifalian, <i>Nano Today</i> , 2011, 6 ,					
481	585-607.					
482	2. I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, <i>Nat Mater</i> , 2005, 4 ,					
483	435-446.					
484 485	3. S. Akhter, I. Ahmad, M. Z. Ahmad, F. Ramazani, A. Singh, Z. Rahman, F. J. Ahmad, G. Storm and R. J. Kok, <i>Curr. Cancer Drug Targets</i> , 2013, 13 , 362-378.					

486	4.	I. Texier and V. Josser, <i>Methods Mol. Biol.</i> , 2009, 544 , 393-406.			
487	5.	M. Tang, T. Xing, J. Zeng, H. Wang, C. Li, S. Yin, D. Yan, H. Deng, J. Liu, M. Wang, J.			
488		Chen and D. Y. Ruan, <i>Environ. Health Perspect.</i> , 2008, 116 , 915-922.			
489	6.	M. Tang, M. Wang, T. Xing, J. Zeng, H. Wang and D. Y. Ruan, <i>Biomaterials</i> , 2008, 29 ,			
490		4383-4391.			
491	7.	M. Tang, Z. Li, L. Chen, T. Xing, Y. Hu, B. Yang, D. Y. Ruan, F. Sun and M. Wang,			
492		Biomaterials, 2009, 30 , 4948-4955.			
493	8.	J. Lovric, H. S. Bazzi, Y. Cuie, G. R. Fortin, F. M. Winnik and D. Maysinger, J. Mol. Med.			
494		(Berl.), 2005, 83 , 377-385.			
495	9.	D. Avila, K. Helmcke and M. Aschner, <i>Hum. Exp. Toxicol.</i> , 2012, 31 , 236-243.			
496	10.	X. Liu, M. Tang, T. Zhang, Y. Hu, S. Zhang, L. Kong and Y. Xue, <i>PLoS One</i> , 2013, 8 ,			
497		e59359.			
498	11.	J. Liu, Y. Zhang, C. Ge, Y. Jin, S. Hu and N. Gu, <i>Journal of nanoscience and</i>			
499		nanotechnology, 2010, 10 , 7578-7582.			
500	12.	J. W. Liu, Y. Zhang, C. W. Ge, Y. L. Jin, S. L. Hu and N. Gu, <i>Chin. Chem. Lett.</i> , 2009, 20 ,			
501		977-980.			
502	13.	J. A. Lewis and J. T. Fleming, <i>Methods in Cell Biology, Vol 48</i> , 1995, 48 , 3-29.			
503	14.	Y. Zhao, X. Wang, Q. Wu, Y. Li and D. Wang, <i>J. Hazard. Mater.</i> , 2015, 283 , 480-489.			
504	15.	J. Ju, Q. Ruan, X. Li, R. Liu, Y. Li, Y. Pu, L. Yin and D. Wang, Environ. Sci. Pollut. Res.			
505		Int., 2013, 20 , 1823-1830.			
506	16.	Y. Li, S. Yu, Q. Wu, M. Tang and D. Wang, <i>Nanotoxicology</i> , 2013, 7 , 1004-1013.			
507	17.	Y. L. Zhao, Q. L. Wu, Y. P. Li and D. Y. Wang, <i>Rsc Advances</i> , 2013, 3 , 5741-5757.			
508	18.	J. Ju, T. Lieke, N. Saul, Y. Pu, L. Yin, C. Kochan, A. Putschew, N. Baberschke and C. E.			
509		Steinberg, <i>Ecotoxicol. Environ. Saf.</i> , 2014, 104 , 194-201.			
510	19.	J. Ju, N. Saul, C. Kochan, A. Putschew, Y. Pu, L. Yin and C. E. Steinberg, Int. J. Environ.			
511		<i>Res. Public Health</i> , 2014, 11 , 4589-4606.			
512	20.	Y. Zhao, Q. Wu, Y. Li, A. Nouara, R. Jia and D. Wang, <i>Nanoscale</i> , 2014, 6 , 4275-4284.			
513	21.	Q. Wu, Y. Li, M. Tang and D. Wang, <i>PLoS One</i> , 2012, 7 , e43729.			
514	22.	S. Saeki, M. Yamamoto and Y. Iino, <i>J. Exp. Biol.</i> , 2001, 204 , 1757-1764.			
515	23.	R. K. Hukema, S. Rademakers and G. Jansen, <i>Learn. Mem.</i> , 2008, 15 , 829-836.			
516	24.	I. Mori, H. Sasakura and A. Kuhara, <i>Curr. Opin. Neurobiol.</i> , 2007, 17 , 712-719.			
517	25.	Y. Nishida, T. Sugi, M. Nonomura and I. Mori, <i>EMBO Rep</i> , 2011, 12 , 855-862.			
518	26.	A. M. Schrand, L. M. Dai, J. J. Schlager and S. M. Hussain, in New Technologies for			
519		<i>Toxicity Testing</i> , 2012, vol. 745, pp. 58-75.			
520	27.	M. A. Zoroddu, S. Medici, A. Ledda, V. M. Nurchi, J. I. Lachowicz and M. Peana, <i>Curr.</i>			
521		Med. Chem., 2014.			
522	28.	S. Sharifi, S. Behzadi, S. Laurent, M. L. Forrest, P. Stroeve and M. Mahmoudi, <i>Chem.</i>			
523		<i>Soc. Rev.</i> , 2012, 41 , 2323-2343.			
524	29.	S. Brenner, <i>Genetics</i> , 1974, 77 , 71-94.			
525	30.	Q. Wu, Y. Zhao, Y. Li and D. Wang, <i>Nanomedicine</i> , 2014, 10 , 1263-1271.			
526	31.	Q. Wu, W. Wang, Y. Li, Y. Li, B. Ye, M. Tang and D. Wang, J. Hazard. Mater., 2012,			
527		243 , 161-168.			

528 529	32.	Y. Li, S. Yu, Q. Wu, M. Tang, Y. Pu and D. Wang, <i>J. Hazard. Mater.</i> , 2012, 219-220 , 221-230				
529	22	E O Contreras M Cho H Zhu H I Punnala C Escalera W Zhong and V I				
530	55.	Colvin, Environ, Sci. Technol., 2013, 47 , 1148-1154.				
532	34	Y. Qu. W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y. F. Li, A. Jida, Z. Tang, Y. Zhao, Z.				
533	011	Chai and C. Chen, <i>Nano Lett.</i> , 2011, 11 , 3174-3183.				
534	35.	L. Avery and H. R. Horvitz, <i>Neuron</i> , 1989, 3 , 473-485.				
535	36.	R. Branicky and S. Hekimi, <i>Trends Genet.</i> , 2006. 22 , 571-579.				
536	37.	T. Ishihara, Y. Iino, A. Mohri, I. Mori, K. Gengyo-Ando, S. Mitani and I. Katsura, <i>Ce</i>				
537		2002, 109 , 639-649.				
538	38.	Y. Li, Y. Zhao, X. Huang, X. Lin, Y. Guo, D. Wang, C. Li and D. Wang, <i>PLoS One</i> , 2013,				
539		8 , e77779.				
540	39.	G. I. Dawlatsina, R. T. Minullina and R. F. Fakhrullin, <i>Nanoscale</i> , 2013, 5 ,				
541		11761-11769.				
542	40.	L. Segalat, D. A. Elkes and J. M. Kaplan, <i>Science</i> , 1995, 267 , 1648-1651.				
543	41.	R. Ranganathan, E. R. Sawin, C. Trent and H. R. Horvitz, <i>J. Neurosci.</i> , 2001, 21 ,				
544		5871-5884.				
545	42.	R. Ranganathan, S. C. Cannon and H. R. Horvitz, <i>Nature</i> , 2000, 408 , 470-475.				
546	43.	T. Niacaris and L. Avery, <i>J. Exp. Biol.</i> , 2003, 206 , 223-231.				
547 548	44.	M. Banasr, M. Hery, R. Printemps and A. Daszuta, <i>Neuropsychopharmacology</i> , 2004 29 450-460				
549	45	D L Chase and M R Koelle <i>WormBook</i> 2007 1-15				
550	46.	L. D. Javanthi, S. Apparsundaram, M. D. Malone, E. Ward, D. M. Miller, M. Eppler				
551	101	and R. D. Blakely, <i>Mol. Pharmacol.</i> , 1998, 54 , 601-609.				
552	47.	D. L. Chase, J. S. Pepper and M. R. Koelle, <i>Nat. Neurosci.</i> , 2004, 7 , 1096-1103.				
553	48.	Y. Zhao, Q. Wu, M. Tang and D. Wang, <i>Nanomedicine</i> , 2014, 10 , 89-98.				
554	49.	T. Wu and M. Tang, Inhal. Toxicol., 2014, 26 , 128-139.				
555	50.	R. Tellez, L. Gomez-Viquez and A. Meneses, Neurobiol. Learn. Mem., 2012, 97,				
556		189-201.				
557	51.	R. Tellez, L. Gomez-Viquez, G. Liy-Salmeron and A. Meneses, Neurobiol. Learn.				
558		<i>Mem.</i> , 2012, 98 , 66-77.				
559	52.	K. Ishige, Q. Chen, Y. Sagara and D. Schubert, <i>J. Neurosci.</i> , 2001, 21 , 6069-6076.				
560	53.	H. Murakami, K. Bessinger, J. Hellmann and S. Murakami, <i>Neurobiol. Aging</i> , 2008,				
561		29 , 1093-1100.				
562	54.	J. A. Yin, X. J. Liu, J. Yuan, J. Jiang and S. Q. Cai, <i>J. Neurosci.</i> , 2014, 34 , 3947-3958.				
563	55.	D. Ortuno-Sahagun, M. Pallas and A. E. Rojas-Mayorquin, <i>Oxid. Med. Cell. Longev.</i> ,				
564		2014, 2014 , 573208.				

565

Table1: Functions and designed qRT-PCR primers of genes required for glutamate, serotonin, and dopamineneurotransmissions in *C. elegans*

Neurotrans-	Gene	Functions	Designed qRT-PCR primers	
mitter			Forward	Backward
	eat-4	Glutamate transporter	5'-TCTTATTAGCCAGTCTTATTCAC-3'	5'-GACCATTCTTCCTCCTCTT-3'
	glt-3	Glutamate transporter	5'-CGTTGCCAGTAACATTCC-3'	5'-TTCCGTCCATTGTAATTGTG-3'
	glt-6	Glutamate transporter	5'-TTGCTGCTTCAATGGTTC-3'	5'-GTGAATGATGGTCTTCTACTG-3'
	glt-7	Glutamate transporter	5'-CGAATTGAAGTTAGAGGAAGG-3'	5'-CGATGGAATGTGATGGAAG-3'
Glutamate	glr-1	Non-NMDA glutamate receptor	5'-CCTACGACCAAGAGATGTT-3'	5'-CTCCACCTCCTAATGAAGAT-3'
	glr-2	Non-NMDA glutamate receptor	5'-TCTCTTCATACACGGCTAAT-3'	5'-CCTTCATTGACACCATACAG-3'
	glr-6	Non-NMDA glutamate receptor	5'-ACCAATCACGAAGGAGTT-3'	5'-TGCCAACACGAGTAAGAT-3'
	mgl-1	Metabotropic glutamate receptor	5'-ACTGTAGTTCCCGATTATGT-3'	5'-AGATGTCTTGCGTGATGA-3'
	nmr-1	NMDA glutamate receptor	5'-GGAGATAATCGTCTGGAATTG-3'	5'-AGTGTATATGCTGATGATGTAAC-3'
	mod-5	Serotonin transporter	5'-ACTACCTCCATCATTAACTGT-3'	5'-ACTACCTCCATCATTAACTGT-3'
Serotonin	mod-1	Ionotropic serotonin transporter	5'-ATTATTCAAGCCTATGTTCCAA-3'	5'-GAGATGAGATTCCGACAGT-3'
	ser-1	Metabotropic serotonin receptor	5'-TTCTCACCTCATCAACACT-3'	5'-TTCTCACCTCATCAACACT-3'
	dat-1	Dopamine transporter	5'-ATGGTAATTGGAATTGCTATGT-3'	5'-CATTGCTTCACAGAACACT-3'
Dopamine	dop-1	D1-like receptor	5'-GACGAGCATTCAAGAAGATT-3'	5'-ATTGTCAGGAGCAGCATA-3'
	dop-3	D2-like receptor	5'-CCTGAATGTGGAAGTATGC-3'	5'-TAGTGAGAATTGCCGAAGA-3'

Figure 1: Methological details. (A) The 9 cm plates with a piece of NaCl plug for chemotaxis assay. (B) The 9 cm radial thermal-gradient plates was performed using a vital containing frozen acetic acid (the middle glass vial) for thermotaxis assay, in which adult animals were allowed to move freely for 45 min on the assay plate. The stable radial temperature-gradient ranging from ~17 °C to 25 °C was established for at least 50 min on the agar surface. Worm tracks were categorized into six groups after thermotaxis assay. Typical tracks of each category are shown in (a)~(f). They were classified as "17 °C", "17/20 °C", "20 °C", "20 °C", "25 °C" and "17/25 °C" depending on the area to which worms moved.

Figure 2: Uptake and distribution of 2.2 nm and 3.5 nm CdTe QDs in *C. elegans.* (A) The image taken by a fluorescence microscope (Olympus, FSX100) of the entire nematode representing the anatomy: head, body and tail. (B1, B2) Images of an entire worm and the amplified head region after 1600 μ g/mL 2.2 nm CdTe QDs treatment for 24 h, respectively. (C1, C2) Images of an entire worm and the amplified head region after 1600 μ g/mL 3.5 nm CdTe QDs treatment for 24 h, respectively. (D1, C2) Images of an entire worm and the amplified head region after 1600 μ g/mL 3.5 nm CdTe QDs treatment for 24 h, respectively. (D1, D2) Images of an entire worm and the amplified head region after 1600 μ g/mL 2.2 nm CdTe QDs treatment for 72 h, respectively. (E1, E2) Images of an entire worm and the amplified head region after 1600 μ g/mL 3.5 nm CdTe QDs treatment for 72 h, respectively. (E1, E2) Images of an entire worm and the amplified head region after 1600 μ g/mL 3.5 nm CdTe QDs treatment for 72 h, respectively. (E1, E2) Images of an entire worm and the amplified head region after 1600 μ g/mL 3.5 nm CdTe QDs treatment for 72 h, respectively.

Figure 3: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h

(right) on locomotion behaviors in *C. elegans*. (A) The number of body bends in 20 s. (B) The number of head thrashes in 1 min. The results were performed as the mean \pm SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by *Dunnett's post hoc* test was used for statistical analysis. **p*<0.05 or ***p*<0.01 indicates a statistically significant difference when compared to the control.

Figure 4: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on pharyngeal pumping and defecation system in *C. elegans*. (A) The frequency of pharyngeal pumping in 1 min. (B) The length of defecation interval. The results were performed as the mean \pm SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by *Dunnett's post hoc* test was used for statistical analysis. **p*<0.05 or ***p*<0.01 indicates a statistically significant difference when compared to the control.

Figure 5: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on chemotaxis in *C. elegans*. The results were performed as the mean \pm SD of three independent experiments. One-way analysis of variance followed by *Dunnett's post hoc* test was used for statistical analysis. **p*<0.05 or ***p*<0.01 indicates a statistically significant difference when compared to the control.

Figure 6: Time course of changes on thermotaxis in C. elegans after exposed to 2.2

nm and 3.5 nm CdTe QDs exposure for 24 h (A) and 72 h (B). The traces show mean \pm SD of animals performing IT behavior at 20 °C of three independent experiments. One-way analysis of variance followed by *Dunnett's post hoc* test was used for statistical analysis at each testing time point. **p*<0.05 or ***p*<0.01 indicates a statistically significant difference when compared to the control.

Figure 7: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (A) and 72 h (B) on the gene expression of neurotransmitters including glutamate, serotonin and dopamine in *C. elegans*. The results were performed as the mean \pm SD of three independent experiments. One-way analysis of variance followed by *Dunnett's post hoc* test was used for statistical analysis at each testing time point. **p*<0.05 or ***p*<0.01 indicates a statistically significant difference when compared to the control (control=1).

Figure 8: Representative fluorescent images taken by a fluorescence microscope (Olympus, FSX100) showing changes of the DCF inflorescence intensity in *C. elegans* treated with CdTe QDs for 24 h and 72 h. (A1 and A2) Images of worm in controls for 24h and 72 h, respectively. (B1~D1) Images of worms after 400, 800 and 1600µg/mL 2.2 nm CdTe QDs treatment for 24 h. (B2~D2) Images of worms after 400, 800 and 1600µg/mL 2.2 nm CdTe QDs treatment for 72 h. (E1~G1) Images of worms after 400, 800 and 1600µg/mL 3.5 nm CdTe QDs treatment for 72 h. (E2~G2) Images of worms after 400, 800 and 1600µg/mL 3.5 nm CdTe QDs treatment for 72 h.

h.

Figure 9: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on ROS generation in *C. elegans*. The results were performed as the mean \pm SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by *Dunnett's post hoc* test was used for statistical analysis. **p*<0.05 or ***p*<0.01 indicates a statistically significant difference when compared to the control.

Figure 1: Methological details. (A) The 9 cm plates with a piece of NaCl plug for chemotaxis assay. 712x684mm (72 x 72 DPI)

Figure 1: Methological details. (B) The 9 cm radial thermal-gradient plates was performed using a vital containing frozen acetic acid (the middle glass vial) for thermotaxis assay, in which adult animals were allowed to move freely for 45 min on the assay plate. The stable radial temperature-gradient ranging from ~17 oC to 25 oC was established for at least 50 min on the agar surface. Worm tracks were categorized into six groups after thermotaxis assay. Typical tracks of each category are shown in (a)~(f). They were classified as "17 oC", "17/20 oC", "20 oC", "20/25 oC", "25 oC" and "17/25 oC" depending on the area to which worms moved.

266x251mm (72 x 72 DPI)

Figure 2: Uptake and distribution of 2.2 nm and 3.5 nm CdTe QDs in C. elegans. (A) The image taken by a fluorescence microscope (Olympus, FSX100) of the entire nematode representing the anatomy: head, body and tail. (B1, B2) Images of an entire worm and the amplified head region after 1600 µg/mL 2.2 nm CdTe QDs treatment for 24 h, respectively. (C1, C2) Images of an entire worm and the amplified head region after 1600 µg/mL 3.5 nm CdTe QDs treatment for 24 h, respectively. (D1, D2) Images of an entire worm and the amplified head region after 1600 µg/mL 3.5 nm CdTe QDs treatment for 24 h, respectively. (D1, D2) Images of an entire worm and the amplified head region after 1600 µg/mL 3.5 nm CdTe QDs treatment for 72 h, respectively. (E1, E2) Images of an entire worm and the amplified head region after 1600 µg/mL 3.5 nm CdTe QDs treatment for 72 h, respectively. (E1, E2) Images of an entire worm and the amplified head region after 1600 µg/mL 3.5 nm CdTe QDs treatment for 72 h, respectively.

398x259mm (72 x 72 DPI)

Figure 3: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on locomotion behaviors in C. elegans. (A) The number of body bends in 20 s. The results were performed as the mean ± SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control.

Figure 3: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on locomotion behaviors in C. elegans. (B) The number of head thrashes in 1 min. The results were performed as the mean ± SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control.

Figure 4: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on pharyngeal pumping and defecation system in C. elegans. (A) The frequency of pharyngeal pumping in 1 min. The results were performed as the mean ± SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control.

Figure 4: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on pharyngeal pumping and defecation system in C. elegans. (B) The length of defecation interval. The results were performed as the mean ± SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control.

Figure 5: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on chemotaxis in C. elegans. The results were performed as the mean \pm SD of three independent experiments. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control. 463x271mm (72 x 72 DPI)

Figure 6: Time course of changes on thermotaxis in C. elegans after exposed to 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (A). The traces show mean ± SD of animals performing IT behavior at 20 oC of three independent experiments. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis at each testing time point. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control. 282x168mm (72 x 72 DPI)

Figure 6: Time course of changes on thermotaxis in C. elegans after exposed to 2.2 nm and 3.5 nm CdTe QDs exposure for 72 h (B). The traces show mean ± SD of animals performing IT behavior at 20 oC of three independent experiments. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis at each testing time point. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control. 282x168mm (72 x 72 DPI)

Figure 7: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (A) on the gene expression of neurotransmitters including glutamate, serotonin and dopamine in C. elegans. The results were performed as the mean \pm SD of three independent experiments. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis at each testing time point. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control (control=1). 878x513mm (72 x 72 DPI)

Figure 7: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 72 h (B) on the gene expression of neurotransmitters including glutamate, serotonin and dopamine in C. elegans. The results were performed as the mean \pm SD of three independent experiments. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis at each testing time point. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control (control=1). 878x439mm (72 x 72 DPI)

Figure 8: Representative fluorescent images taken by a fluorescence microscope (Olympus, FSX100) showing changes of the DCF inflorescence intensity in C. elegans treated with CdTe QDs for 24 h and 72 h. (A1 and A2) Images of worm in controls for 24h and 72 h, respectively. (B1~D1) Images of worms after 400, 800 and 1600µg/mL 2.2 nm CdTe QDs treatment for 24 h. (B2~D2) Images of worms after 400, 800 and 1600µg/mL 2.2 nm CdTe QDs treatment for 72 h. (E1~G1) Images of worms after 400, 800 and 1600µg/mL 3.5 nm CdTe QDs treatment for 24 h. (E2~G2) Images of worms after 400, 800 and 1600µg/mL 3.5 nm CdTe QDs treatment for 72 h.

Figure 9: Effects of 2.2 nm and 3.5 nm CdTe QDs exposure for 24 h (left) and 72 h (right) on ROS generation in C. elegans. The results were performed as the mean \pm SD of randomly selected thirty worms from each treatment. One-way analysis of variance followed by Dunnett's post hoc test was used for statistical analysis. *p<0.05 or **p<0.01 indicates a statistically significant difference when compared to the control.