This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Nanoscale electric polarizability of ultrathin biolayers on insulator substrates by electrostatic force microscopy

A. Dols-Perez, G. Gramse, A. Calò, G. Gomila and L. Fumagalli

We measured and quantified the local electric polarization properties of ultrathin (~ 5 nm) biolayers on mm-thick mica substrates. We achieved it by scanning a sharp conductive tip (< 10 nm radius) of an electrostatic force microscope over these biolayers and quantifying sub-picoNewton electric polarization forces with a sharp-tip model implemented using finite element numerical calculations. We obtained relative dielectric constants \(\varepsilon_r = 3.3, 2.4 \) and 1.9 for bacteriorhodopsin, dioleoylphosphatidylcholine (DOPC) and cholesterol layers, chosen as representative of the main cell membrane components, with an error below 10% and a spatial resolution down to ~ 50 nm. The ability of using insulating substrates is common in biophysics research, such as mica or glass, instead of metallic substrates, offers both a general platform to determine the dielectric properties of biolayers and a wider compatibility with other characterization techniques, such as optical microscopy. This opens up new possibilities for biolayer research at the nanoscale, including nanoscale label-free composition mapping.

Introduction

The electric polarization properties of ultrathin biological layers made of proteins, lipids or sterols in response to an external electric field play an important role in many areas of science and technology. In particular, they are inherently coupled to cell membrane bioelectric phenomena in excitable and non-excit able cells such as membrane potential formation, action potential propagation or ion membrane transport. Moreover, they largely determine the cell response to externally applied electrical fields in electrokinetic techniques such as dielectrophoresis, impedance spectroscopy or electroporation. Finally, they are key in many electrical and electrochemical biosensors, in particular capacitive and impedance biosensors, which base their elect ro-transducing mechanism on changes in the dielectric properties of integrated biolayers upon sensing. Therefore, determining the electric polarization properties of biolayers, commonly represented by the dielectric constant, \(\varepsilon_0 \), is of great importance. However, their ultrathin thickness (~ 5 nm) and extremely soft and fragile nature make dielectric constant quantification a challenging task. To this aim, specific measurement techniques have been developed in the past to access this important physical property, such as electrical impedance spectroscopy of cell suspensions, capacitance patch-clamp of single cells and micrometric membrane patches, and impedance spectroscopy of planar lipid bilayers either deposited on electrodes or suspended on apertures separating two compartments. But the spatial resolution of these techniques is in the microscale range (in the best of the cases) and hence they cannot resolve the ultrastructure of biolayers, where rich biochemical and bioelectrical phenomena take place.

In recent years, a number of scanning probe microscopy (SPM) techniques sensitive to the nanoscale electrical polarization properties of materials has been developed. Techniques such as nanoscale capacitance microscopy, electrostatic force microscopy, nanoscale impedance microscopy, scanning polarization force microscopy, scanning microwave microscopy or nanoscale non-linear dielectric microscopy, have progressively increased the spatial resolution of dielectric measurements in general, and in particular applied to ultrathin biolayers. Dielectric SPM techniques are well suited to the study of soft biolayers because they offer the advantage of gentle imaging conditions and of an extremely high spatial resolution down to the nanoscale range, which is not achievable by standard characterization techniques. So far, however, accurate measurements of the local dielectric properties of ultrathin biolayers have only been reported for biolayers on metallic substrates such as gold and graphite or on highly-doped silicon substrates. These substrates are used as bottom electrode of a standard two-electrode measurement setup, with the nano-sized tip of the SPM system being used as top electrode. This configuration guarantees high signal...
noise ratio and simple theoretical modelling of the system. But it severely limits the variety of biolayers that can be studied, because biolayers typically do not adsorb easily to metallic substrates, unless specific immobilization strategies are used, e.g. sulphur-tagged molecules for binding on gold substrates or gold substrate oxidation, which make the measurement more complicated and less accurate.

Here, we overcome this limitation and show that nanoscale dielectric properties of ultrathin biolayers can be accurately measured on top of mm-thick insulating substrates such as mica or glass conventionally used in biolayer research. These substrates have very flat surfaces and almost all biolayers tend to spontaneously adsorb to them without requiring any special treatment, thus making this approach of wide applicability. Dielectric SPM techniques have already been applied to insulating substrates, but the possibility of quantifying the dielectric properties of ultrathin film biolayers of only few-nm thickness and sub-micrometre width deposited on them has still to be demonstrated. In particular, existing dielectric images of liquid islands and self-assembled monolayers on insulators obtained with scanning polarization force microscopy or of biomolecules and nanoparticles on mica obtained with electrostatic force microscopy are still awaiting quantitative interpretation. We achieved it here by combining a number of advances, namely, by taking low-noise electrostatic force microscopy images using soft cantilevers, thus achieving the sub-picoNewton force resolution required to probe such ultrathin layers on a thick insulator; by taking EFM images in constant-height mode with accurate scan-height control, thus avoiding topographic artefacts and tip-substrate distance uncertainty that would impede dielectric quantification; by carefully implementing a two-step calibration procedure based on force-distance curves to obtain the geometric parameters of the micrometric probe (tip radius, cone angles and cantilever width) that play a role on thick insulators; by fitting the EFM images to a theoretical model that accurately reproduces the complex electrostatic interaction of the whole microscopic probe over ultrathin layers on top of thick insulators; finally, by using wear-resistant doped-silicon probes instead of standard metal-coated probes. Metal-coated probes were appositely avoided in this work because structurally unstable due to tip wear. They would make it extremely difficult to achieve dielectric constant quantification with the accuracy required here. We remark that in order to use doped-silicon probes, which show a sharpened tip apex with respect to metal-coated probes, here we implemented an advanced model with a double-cone geometry that reproduces both the short-range electrostatic interaction of the sharpened cone and the long-range effects that contribute on thick insulator substrates, in contrast with the simple case of metallic substrates where only the short-range contribution of the end of the single-cone tip plays a role. The developed methodology has been successfully applied here to determine the local dielectric constant of three ultrathin biolayer samples, bacteriorhodopsin, dioleoylphosphatidylcholine (DOPC) and cholesterol, representative of the three main components of natural biomembranes, namely, proteins, lipids and sterols. By using the sharpest commercially available probes for this type of measurements (doped-silicon probes with tip radius of ~5 nm), we show here that high spatial resolution is achieved, while keeping high precision in dielectric constant, that is, better than 10% precision sub-micrometric wide patches, with the potential of reaching 2% precision on extremely small patches down to only 20 nm in diameter.

Results

The dielectric constant of the biolayer patches deposited on the insulator substrate is obtained from ultra low-noise images of the local capacitance gradient (~0.1 zF/nm resolution, sub-picoNewton forces) using amplitude modulated electrostatic force microscopy in constant-height mode (Fig. 1).

The experimental data are matched to a sharp tip-biolayer model, which includes long-range cantilever contributions (Fig. 2a) solved with finite-element numerical calculations (see details in the Experimental section). The tip geometry is obtained by applying a specific two-step calibration procedure and the biolayer geometry/size is obtained from standard topography imaging, so that the dielectric constant of the biolayer patch is the only fitting parameter of the analysis procedure. An example of electric potential distribution at two magnification levels is shown in Fig. 2b and 2c.
Cholesterol is an important component of eukaryotic cell membranes, especially in mammals, being the major non-polar lipid of cell membranes. It is responsible of 20% of the membrane weight and has a major role in processes such as endocytosis and exocytosis. It also plays an important role in modulating physical properties of the cell membranes such as membrane orderings, permeability, and stiffness, and it is involved in the membrane dynamic clustering, i.e. the formation of lipid rafts. Due to the rigid ring structure of cholesterol molecules, and to the poor balance between their hydrophilic and hydrophobic parts, monocomponent samples of cholesterol tend to form plate like crystals containing one or multiple cholesterol bilayers with thickness multiple of ~ 3.5 nm.

Figure 3a shows the topography obtained of a single-layer bacteriorhodopsin patch on mica, with diameter ~ 1.5 μm and thickness h ~ 5.3 nm (see also the topographic profile in Fig. 3c). Fig. 3b gives the dielectric image (dC/dz) recorded at the scan height z = 18 nm.

As representative examples of biolayers, we have chosen biolayers made of three of the main components of natural membranes (proteins, lipids and sterols), specifically bacteriorhodopsin, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol. Bacteriorhodopsin is one of the prototypical membrane proteins and it has been widely studied. It acts as proton pump in some Archaea, and naturally forms 2D crystalline membranes of ~ 5 nm thickness, with the presence of only a very small amount of lipids (typically in a 1:10 ratio (mol:mol)). Once formed, bacteriorhodopsin membranes can be easily deposited on planar substrates and remain stable under dry conditions. DOPC is a widely used representative example of unsaturated phospholipids and phosphocholines, which constitute the more abundant phospholipids in eukaryotic cells. DOPC single bilayers are ~ 5 nm thick and they can be formed on flat freshly-cleaved mica substrates under dry conditions by spin-coating as shown in Ref. 48. By using this procedure the lipid bilayers show a remarkable stability as well as structural and mechanical properties very similar to their analogues prepared in aqueous solutions.

Figure 2. (a) Schematic representation of the sharp tip-biolayer model implemented with finite-element numerical calculations (not to scale). A dual-angle cone model that mimics the short-range effects given by the sharpened silicon tip geometry is used. A large disc is included to take into account the long-range effects of the cantilever. The values of parameter that determine probe geometry/size are obtained from a specific double step calibration procedure. (b) Calculated electrostatic potential distribution around the probe apex and (c) the overall calculated probe corresponding to the interaction of the probe with a biolayer patch on an insulating substrate. Parameters used in the calculations: L = 10 μm, H = 12.5 μm, w = 2 μm, θ = 25º, h = 10º, h_cone = 200 nm, R = 5 nm, h = 5 nm, D = 200 nm, ε = 2 and ε = 25 nm.

This journal is © The Royal Society of Chemistry 20xx

Nanoscale 2015, XX, | 3

Nanoscale Accepted Manuscript

Please do not adjust margins
$= 2 \mu m$ and $\theta = 25^\circ$. (c) Topography and (d) dielectric profiles at different heights taken across the center of the patch, showing the typical height of ~5.3 nm and a dielectric signal around 1fF/nm decreasing with distance. (e) Calculated capacitance gradient contrast, dC/dz, (lines) as a function of the ϕ of the bilayer patch using the measured parameters (z_0, D, h, R, θ, L), with ϕ_{br} as the only fitting parameter. By matching the average signal measured on the patch (symbols) for each height, we obtained an average value of ϕ_{br} ~ 3.3 ± 0.3. The error bars in (e) are given by the detection noise of 0.1 fF/nm, while the color-shaded region show the standard deviation of the measurement.

The calibrated probe radius was $R = 5.5 \pm 0.25$ nm and the sharpened cone half-angle $\theta = 7.4 \pm 0.3^\circ$ (obtained on metal) and $L = 13.0 \pm 0.5$ μm (obtained on the bare mica substrate). To calibrate the tip geometry, we fixed $h_{cone} = 400$ nm, $H = 12.5 \mu m$, $w = 2 \mu m$ and $\theta = 25^\circ$. The dielectric image shows a clear dielectric signal contrast corresponding to the ultrathin small patch, although it only amounts ~ 1 fF/nm (see dielectric profiles in Fig. 3d), thus demonstrating the high sensitivity of EFM (~ 0.1 fF/nm noise level). We repeated the measurement at three different scan heights ($z_0 = 18, 20, 22$ nm, see profiles in Fig. 3d) and fitted the dielectric data to finite-element simulations. Fig. 3e shows the calculated capacitance-gradient contrast (lines) and measured contrast (symbols) as a function of the dielectric constant, showing that the obtained dielectric constant is ϕ_{br} ~ 3.3 ± 0.3.

These results demonstrate that the dielectric constant of small bilayer patches can be obtained on insulating substrates with EFM, despite the challenges imposed by these substrates in both measurement and quantification respect to the case of using metallic substrates. In particular, the precision with which the dielectric constant value is obtained (~10% relative error) is remarkable, considering the effect of the insulating substrates (reduction in signal by a factor around 4 as compared to the use of metallic substrates) and of using very small silicon tips (additional reduction in signal by a factor 4 as compared to typical metal-coated tips).

In Fig. 4a we show a large scale topographic image of the DOPC lipid single bilayer patches. They show a thickness of ~5 nm and a diameter between microns and few hundreds of nanometers. We and others, have shown earlier that the bilayer patches sit on a lipid monolayer ~1.3 nm thick, as schematically shown in Fig. 4b. The presence of this monolayer can be shown to be negligible in the quantification procedure used here because it only modifies the dielectric constant of the substrate to a very small extent due to its small thickness and polarizability (less than a 1% in agreement with the predictions of Ref. 60). A dielectric image obtained on a single lipid bilayer patch around 700 nm wide is shown in Fig. 4d together with the corresponding topographic image in Fig. 4c. Images taken at different tip-substrate distance reveal the corresponding variation of the capacitance gradient contrast as a function of tip substrate distance (see Fig. 4f). By using the calibrated tip parameters ($R = 2.8 \pm 0.25$ nm, $\theta = 11 \pm 0.3^\circ$, $L = 7.0 \pm 0.5$ μm) and the sample topography ($h = 5$ nm, $D = 700$ nm), the fitting of the finite-element numerical calculations gives a dielectric constant value of ϕ_{br} ~ 1.9 ± 0.2.

Figure 4. Dielectric constant measurement of a DOPC bilayer patch on an insulator substrate. (a) Large scale image of the topography of DOPC bilayer patches of different diameters on a mica substrate. (b) Schematic representation of the structure of the DOPC bilayer patches. (c) Topographic image and (d) dielectric image taken at constant-height at $z_0 = 18$ nm from the substrate taken on a single bilayer patch of diameter $D = 700$ nm. Scale bar: 500 nm. The radius of the tip was previously calibrated on a metal substrate, giving $R = 2.8 \mu m$ and $\theta = 11^\circ$. The cantilever disc radius was calibrated on the mica surface giving $L = 7 \mu m$ (with ϕ_{br} ~ 6.5). In the tip calibration we fixed $h_{cone} = 400$ nm, $H=12.5 \mu m$, $w=2 \mu m$ and $\theta=24^\circ$. (e) Topography and (f), dielectric profiles taken across the center of the patch, showing the typical height of ~5 nm and dielectric signal decreasing with distance. (g) Calculated capacitance gradient contrast, dC/dz, (lines) as a function of the ϕ of the lipid bilayer using the measured parameters (z_0, D, h, R, θ, L) and ϕ_{br} as the only fitting parameter. By matching the average signal measured on the patch (symbols) for each height, we obtained an average value of ϕ_{br} ~ 1.9 ± 0.2. The error bars in (g) are given by the detection noise of 0.1 fF/nm while the colour-coded region shows the standard deviation of the measurement.

Finally, Fig. 5 shows the cholesterol sample topography, dielectric image and corresponding profiles, together with the fitting of the numerical calculations to the measured dielectric contrasts.
different heights. The final result obtained from the quantification procedure, where we approximated the size and shape of the cholesterol crystal by a disc of ~7 nm thickness and lateral dimension approximately equal to the width of the crystal, D ~ 1μm, gives a dielectric constant of $\varepsilon_{\text{chol}} \sim 2.3 \pm 0.1$. This value is slightly higher than the value obtained for the DOPC patches and slightly smaller than the one obtained for bacteriorhodopsin patches, indicating an intermediate dielectric polarizability of the cholesterol crystals as compared to the other biomembrane components.

Discussion

We have shown that the dielectric constant of ultrathin small scale bilayer patches can be quantified on insulating substrates with a high precision (relative error below a 10%) and unparalleled lateral resolution. We have demonstrated it by measuring the dielectric constant of DOPC lipid bilayer patches ($\varepsilon_{\text{DOPC}} \sim 1.9 \pm 0.2$), which is remarkably close to the value obtained for bulk oils and hydrocarbons ($\varepsilon_{\text{oils}} \sim 2.1$) and close to the value normally associated to the hydrophobic core of lipid bilayers ($\varepsilon_{\text{bilayer}} \sim 2.1$)\(^6^2\). This validates the technique and shows its high accuracy (around 10%) in addition to the increased lateral resolution achieved with respect to standard techniques, as we discuss further below. The accuracy of the technique is confirmed by the measurements on Purple Membrane patches. The dielectric constant that we obtained here ($\varepsilon_{\text{PM}} \sim 3.2 \pm 0.3$) matches (with accuracy below 10%) the value obtained in bulk on very low hydrated samples using standard dielectric spectroscopy ($\varepsilon_{\text{PM}} \sim 3.3$ at 1 MHz and 21% water content\(^6^3\)).

We emphasise that the dielectric constant reported here for lipid bilayers (~ 2) is the first direct measurement at the single bilayer level on a dry sample. In hydrated samples a slightly larger value is expected due to hydration effects, as we previously reported for another lipid bilayer dipalmitoylglycerophosphocholine (DPPC) ($\varepsilon_{\text{DPPC}} \sim 3.3$)\(^2^1\). We remark that the dielectric constant of ~ 3 that we measured here for dried bacteriorhodopsin proteins, which compose the Purple Membrane, matches the value that we recently obtained using EFM on conductive substrates on the dried proteins that compose the T7 bacteriophage capsid ($\varepsilon_{\text{protein}} \sim 3.5 \pm 0.5$ for the shell and tail proteins). It is also in remarkable agreement with the value ~ 3.5 measured on dried protein powders at bulk level\(^6^4\) and with the generally recognized value for dried proteins ~ 2.5-3.5, slightly larger than the dielectric constant of lipids, which was verified by theoretical calculations\(^6^5\). In particular, the remarkably close values around ~ 3 measured on different dried proteins confirm the theoretical prediction of small dependence of dielectric constant on protein structure and composition and it reflects the low-polarizable hydrophobic core of proteins. We note that we previously reported slightly smaller values for Purple Membrane patches on metallic substrates with nanoscopic capacitance microscopy ($\varepsilon_{\text{PM}} \sim 1.9 \pm 0.2$)\(^2^0\) and static EFM ($\varepsilon_{\text{PM}} \sim 1.78 \pm 0.07$)\(^2^3\), which we attribute to both the higher resolution/accuracy of the measurement setup and the more accurate theoretical modelling implemented in our recent works\(^2^7,2^8,6^6\) with respect to our early estimations\(^2^0,2^1\).

![Figure 5. Dielectric constant measurement of a Cholesterol layer patch on an insulator substrate.](image)

(a) Topography of the Cholesterol layer on a mica substrate. (b) Dielectric image taken at constant-height at z = 27 nm from the substrate. Scale bar: 500 nm. The radius of the tip was previously calibrated on a metal substrate, giving R = 19.5 nm, $\theta = 2.6^\circ$. The cantilever disc radius was calibrated on the mica surface close to the bilayer patch, giving $\ell = 27 \mu m$ (with $\varepsilon_{\text{air}} \sim 6.5$). In the tip calibration we fixed $h = 400 \text{ nm}$, $H = 12.5 \mu m$, $W = 2 \mu m$ and $\theta = 15^\circ$. (c) Topography and (d), dielectric profiles taken across the center of the patch, showing a height of $\sim 7 \text{ nm}$ and a dielectric signal decreasing with z distance. (e) Calculated capacitance-gradient contrast, dC/dz, (lines) as a function of the dielectric constant measurement of a Cholesterol layer patch on an insulator substrate. (symbols) for each measuring height, we obtained an average value of $\varepsilon_{\text{chol}} \sim 2.3\pm 0.1$. The error bar in (e) is given by the detection noise of 0.1 μF/nm while the colour-coded region shows the standard deviation of the measurements.

Concerning the dielectric constant of cholesterol crystals that we obtained here ($\varepsilon_{\text{chol}} \sim 2.3 \pm 0.1$), to our knowledge this is the first direct measurement reported either at the nanoscale or on bulk samples, thus showing the versatility and potential of our technique. So far only indirect information on the dielectric properties on cholesterol have been reported, which were obtained from macroscopic impedance spectroscopy measurements on egg phosphatidylcholine bilayers mixed with cholesterol (at 2:1 mol ratio). These measurements revealed only a marginal variation in the specific capacitance of the bilayer upon addition of cholesterol, from $C_{\text{eggPC}} \sim 0.61 \mu F/cm^2$ to $C_{\text{eggPC+chol}} \sim 0.7 \mu F/cm^2$\(^6^7\), which is consistent...
with the fact demonstrated here that cholesterol has a dielectric constant only slightly larger than that of lipid bilayers.

The values obtained for the three biolayers measured here lie in the range ≈ 2–3, with slight differences between the constituents (the larger value corresponds to the protein layer and the smallest one to the lipids, with cholesterol lying in between). This result indicates that despite the highly heterogeneous composition of natural biomembranes, their dielectric response should be relatively homogeneous, showing only slight variation between different biochemical components.

The consistency of the results reported here with existing results at larger scale (when available) and the high accuracy and precision (~10%) with which we obtained them at the highest spatial resolution definitively supports the wide applicability of EFM for quantification of dielectric properties of ultrathin biolayer patches on top of mm-thick insulating substrates.

Finally here below we discuss the minimum biolayer patch size that can be detected and quantified and the expected spatial resolution of our technique. Figure 6 shows the evolution of the capacitance-gradient contrast (left axis) and of the relative error in the extracted dielectric constant (right axis) as a function of the patch diameter for a membrane patch of dielectric constant $\varepsilon_r = 2$ and thickness $h = 5 \text{ nm}$ interacting with a characteristic sharp tip ($R = 5 \text{ nm}$, $\theta = 10^\circ$, $\Theta = 25^\circ$, $h = 200 \text{ nm}$, $H = 12.5 \mu\text{m}$ and $L = 10 \mu\text{m}$). Results are shown for an insulating substrate with $\varepsilon_{r,\text{ins}} = 6.5$ (blue symbols) and for a metallic substrate (red symbols). In all cases the tip-substrate measuring distance has been kept to $z_0 = 15 \text{ nm}$. The relative error has been calculated as

$$\delta \varepsilon_r = \frac{\partial \Delta C \text{ _{inst}}}{\varepsilon_r} \frac{\partial \Delta C}{\varepsilon_r} \cdot \Delta C (z_r, \varepsilon_r, D)$$

where, $\partial \Delta C \text{ _{inst}}$ is the instrumental noise, assumed to be 0.1 zF/nm (which constitutes a good trade-off between different practical experimental constraints). The contrast is seen to be approximately constant for diameters $D > 100 \text{ nm}$ (it is not exactly constant as it shows a very smooth variation) and starts to decrease sharply for diameters $D < 100 \text{ nm}$. By setting the detection limit of the instrument to $\sim 0.1 \text{ zF/nm}$ the smallest detectable patch is around $\sim 9 \text{ nm}$ in diameter for the case of an insulating substrate and around $\sim 4 \text{ nm}$ for the metallic substrate. Therefore, despite the fact that the signal on insulating substrates is significantly lower than on metal substrates (around a factor 4 in the present case), the use of insulating substrates does not severely limit the size of the smallest detectable patch as compared to the use of metallic substrates. In parallel to the reduction in the signal when the size of the membrane patch is reduced, the relative error of the quantified dielectric constant increases. In the case of insulating substrates the error goes below 20% for membrane patch diameters just above 20 nm (and below 10% for patch diameters above 100 nm). In the case of metallic substrates the situation is slightly better due to the higher signal-to-noise ratio - the relative error goes below 20% already for patch diameters of only 6 nm (and below 10% for patch diameters larger than 10 nm). In any case, this demonstrates that the dielectric quantification of biolayer patches on insulating substrates can be achieved with high precision down to nearly biomolecular sizes.

The spatial resolution of the measurements is also remarkable. We have experimentally evaluated it by determining the distance at which the measured capacitance gradient contrast profiles decrease to half its maximum value. For the PM profiles shown in Fig. 3c we obtained $\delta \varepsilon_r \text{ _{delta}} = 50 \pm 5 \text{ nm}, 60 \pm 5 \text{ nm}$ and $70 \pm 5 \text{ nm}$ for the measuring distances of $z_0 = 18 \text{ nm}, 20 \text{ nm}$ and 22 nm, respectively. Within the relatively large uncertainty of these estimations, the spatial resolution seems to follow a linear increase with tip-sample distance with a slope $\sim 5 \text{ nm/mm}$. This latter result is compatible with the theoretical calculations reported in Ref. 68, where it is predicted that on insulator substrates the spatial resolution increases linearly with tip-substrate distance in the whole range of measuring distances. The extrapolation of the obtained results allows predicting a spatial resolution of $\delta \varepsilon_r \text{ _{delta}} \sim 10 \text{ nm}$ at the closest practical measuring distance of $z_0 \sim 10 \text{ nm}$. This spatial resolution is comparable to the topographic spatial resolution, $\delta \varepsilon_r \text{ _{topo}} \sim 10 \text{ nm}$. Two nm obtained from the topographic profile in Fig. 3b. This demonstrates that the spatial resolution achievable with sharpened probes on insulating substrates is near to the molecular size for both topographic and dielectric imaging.

We note that for physiological studies it would be necessary to perform the dielectric measurements in liquid environment. At present, the extension of EFM to the liquid environment has only
been achieved for metallic substrates69-71, including the study of lipid DPPC bilayer patches22. However, from the theory of EFM measurements in liquid media72 it is not immediate that they can be easily extended to insulating substrates, since innovative solutions would be required to achieve that.

Finally, we mention a potential interesting application of the results obtained here, i.e. the label-free mapping of the composition of heterogeneous membranes through the measurement of the local dielectric constant. With the results reported here, although the main biomembrane components do not seem to show large differences in their dielectric constants, their difference is enough to be detectable, at least for medium size domains of the order of 100 nm. Indeed, from Fig. 3e, for instance, one can estimate a change in contrast directly reflects the variation of electric polarization of the layer with respect to the air surrounding it, that is the dielectric constant, and not the variation of the tip distance/height. To avoid direct stray contributions from micrometric parts of the probe (tip, cantilever and the upper part of the cone), we calculated the capacitance gradient contrast, \(\Delta C'(x,y,z,\varepsilon) = C'(x,y,z,\varepsilon) - C'(x_0,y_0,z,\varepsilon) \), where \((x_0,y_0)\) is a reference position on the bare substrate. By analyzing \(\Delta C'(x,y,z,\varepsilon) \) rather than the absolute value \(C'(x,y,z,\varepsilon) \), we directly obtain the local dielectric image. We precisely measured the scan height, \(z \), with respect to the dielectric substrate, and specifically determined it (\(\Delta z = \pm 0.5 \) nm) by recording both the deflection and the capacitance gradient as a function of the tip-substrate distance at the image edges. The dc deflection provides the distance from the substrate, while the capacitance gradient was used to determine and compensate any vertical piezo drift (typically 2-3 nm) by comparison with the tip calibration fit curve. All the data were taken applying 5V, scan speed 1 sec per line, achieving \(\sim 0.05 \, \text{zF/nm} \) electrical resolution corresponding to a force of \(\sim 0.3 \) pN.

We used highly-doped silicon tips with nominal radius < 7 nm, which we preferred to metal-coated silicon tips because they exhibit smaller tip radius and show minimum radius variation during the experiments. We found that the radius of silicon tips remained constant within \(\pm 0.25 \) nm during the set of measurements required for dielectric constant extraction. We carefully checked it by repeating the probe geometry calibration before and after each experiment.

Quantification of the membrane local dielectric constant. To quantify the dielectric constant of the bilayer patches, \(\varepsilon \), we used finite-element numerical calculations (COMSOL MULTIPHYSICS 4.3 AC/DC electrostatic module) to solve for Poisson's equation and calculate the force acting on the tip, because an accurate analytical model including the microscopic effects of the cone and cantilever on insulator substrates is not available. We performed 2D axial symmetric simulations using the Pardiso solver and the specific-probe model developed for the sharp silicon probes in Ref. 73. This model takes into account the particular shape of sharp silicon tips,
with a cone half-angle of 15°-25° that tapers to a smaller angle around 10° at the very end of the tip. To this end, we modelled the probe with a dual-angle cone model, which consists of a microscopic truncated cone of height \(H \) and cone half-angle \(\Theta \) ended with a sharpened smaller truncated cone of height \(h_{\text{cone}} \) and half-angle \(\theta \) ended with a semi-spherical apex of radius \(R \) (Fig. 2a). Note that contrary to some situations in metallic substrates\(^{27,72}\), the explicit use of the full dual-angle cone model is necessary on insulator substrates, due to relevance of indirect effects that depend on the microscopic parts of the probe (see Supplementary Information). We also included in the model a disc on top of the cone to account for the effective effects of the cantilever, as we described in Ref. 45 for the case of single angle tip models. The disc has a radius \(R_{\text{disc}} = L + H \tan(\Theta) \) and thickness \(w \), where \(L \) (that we will refer to as cantilever radius) is the part of the disc cantilever overseeing the cone base. The biolayer patch is modelled as a disc of relative dielectric constant, \(n_{\text{die}} \), diameter, \(D \), and thickness \(h \) directly obtained from the width and height of the topographic image. No geometric parameter related to the substrate thickness is used because we modelled it as semi-infinite, as we previously demonstrated that results do not depend on the substrate thickness, provided this is larger than \(\sim 100 \mu m \).\(^{41}\). On the other hand, the dielectric constant of the mica substrate is taken to be \(\varepsilon_{\text{subs}} = 6.5 \), as we showed earlier using a similar approach\(^{41,45}\). The full model used is schematically shown in Fig. 2a, while in Fig. 2b,c we show an example of an electric potential distribution at two different levels of magnification. The global meshing used is extra fine with boundary mesh-size < 100 nm as cantilever radius) is the part of the disc cantilever overseeing the cone base. The biolayer patch is modelled as a disc of relative dielectric constant, \(n_{\text{die}} \), diameter, \(D \), and thickness \(h \) directly obtained from the width and height of the topographic image. No geometric parameter related to the substrate thickness is used because we modelled it as semi-infinite, as we previously demonstrated that results do not depend on the substrate thickness, provided this is larger than \(\sim 100 \mu m \).\(^{41}\). On the other hand, the dielectric constant of the mica substrate is taken to be \(\varepsilon_{\text{subs}} = 6.5 \), as we showed earlier using a similar approach\(^{41,45}\). The full model used is schematically shown in Fig. 2a, while in Fig. 2b,c we show an example of an electric potential distribution at two different levels of magnification. The global meshing used is extra fine with boundary mesh-size < 100 nm on the probe and < \(R_{\text{LH}} / 5 \) on the smaller cone of the tip (apex). The electrostatic force is obtained from the calculations by using the built-in Maxwell stress function, from where the capacitance gradient is obtained as for the experimental measurements. We evaluated the accuracy of the calculations against the analytical formula of the electrostatic force of a sphere on an infinite dielectric and found it better than 1%. The quantification of the dielectric constant of the biolayer patches, \(n_{\text{die}} \), is obtained by fitting the measured capacitance gradient contrast values to the predictions of the finite element numerical simulations, calculated with the geometric values obtained from the calibrated probe geometry (see below) and the measured sample topography\(^{27}\). In this procedure, the dielectric constant of the biolayer is the single fitting parameter of the model. The dielectric constants obtained within the present framework are representative of the average dielectric properties of the biolayers on the lateral scale achieved here (roughly \(\sim 50 \) nm lateral resolution).

Probe geometry calibration. In the analysis we have kept the microscopic cone geometry, the cantilever thickness and the apex cone height fixed to a nominal value within the range given by the manufacturer (\(H = 12-15 \mu m, \Theta = 15^\circ-25^\circ, w = 2-3 \mu m, h_{\text{cone}} = 0.2-0.4 \mu m \)), and fitted the tip radius, \(R \), the cantilever radius, \(L \), and the half-angle of the sharpened cone end, \(\theta \) by using a two step calibration procedure. First, the tip radius was calibrated by fitting a short range force-distance curve taken over a metallic substrate while keeping the sharp cone angle fixed to its nominal value \(\theta = 10^\circ \) (tip calibration). Then, the value of the cone angle, \(\theta \), is refined by fitting a longer range force-distance curve on a metallic substrate by keeping the radius \(R \) fixed to the value determined from the short range curve. Finally, with the same tip, a second force-distance curve on the dielectric substrate – over which the sample is deposited - was used to set the effective value of the cantilever radius, \(L \), so that the local dielectric constant of the insulator substrate, \(\varepsilon_{\text{subs}} = 6.5 \) for mica) is precisely obtained (disc calibration). This elaborated calibration procedure is the adaptation of the procedure developed for single-cone probes on insulator substrates and of dual-angle cone probes on metallic substrates for nanoparticle characterization (Ref. 44, 45 and 73, respectively). Calibration curves are shown in the Supplementary Information.

Samples and sample preparation. Here, bacteriorhodopsin membranes were prepared from a lyophilized powder of purple membrane from *Halobacterium salinarum* (Sigma Aldrich). The powder was resuspended in high purity MilliQ water (Millipore) to a final concentration of 0.5 mg/mL, deposited on a flat freshly-cleaved mica sheet and incubated for ~ 20 min at room temperature, after which it was gently dried out into a nitrogen flow prior to its use. DOPC single bilayers on mica were prepared following the spin-coating method detailed in Ref. 48. In the present case we used DOPC hexane solution of a concentration 0.25 mM. Finally, cholesterol ultrathin layers were prepared on mica also by the spin-coating technique. Solutions of cholesterol (Sigma Aldrich) were prepared in pure hexane (Sigma Aldrich) at the concentration of 0.25-0.5 mM. A volume of about 100 µL was spin-coated onto freshly-cleaved mica (velocity: 3000 rpm, acceleration: 4000 rpm/s, time: 1 minute), and the sample was stored for 24 h in dark and in low vacuum conditions (0.1 mbar) to remove all solvent residuals. In these conditions lath shaped cholesterol crystals ~ 7 nm thick were easily and reproducibly formed on the mica surface. AFM measurements on all samples were performed in dry conditions (RH ~ 1%, under nitrogen flow).

Conclusions

We have demonstrated the ability of amplitude modulated electrostatic force microscopy to measure the local dielectric constant of ultrathin biolayer patches (~5 nm thick) on mm-thick insulator substrates with a non-invasive procedure, good precision and nanoscale spatial resolution. Given the simplicity of biolayer preparation on this type of substrates, present results open the possibility to study local electric polarization properties of a large variety of ultrathin biolayers. We showed that the use of mm-thick insulator substrates has practically no cost in terms of spatial resolution and minimum lateral dimensions of the detectable biolayers with respect to the use of metallic substrates. Furthermore it offers a broader compatibility with other microscopy techniques such as optical techniques by enabling to use glass substrates. The nanoscale spatial resolution of the technique allows accessing the local dielectric properties of biolayers - not averaged over large areas - as in macroscopic techniques. It also provides high accuracy...
because it has access to the precise geometry/size of the biolayer (thickness and diameter) \textit{in-situ}, which is not possible using macroscopic techniques. The proposed method could help in obtaining an accurate map of the dielectric properties of heterogeneous biolayers i.e. natural cell membranes, thus improving present theoretical models of nanoscale bioelectric phenomena such as membrane electroporation or ion membrane transport, and could represent one of the first label-free composition mapping techniques for biolayer research.

Acknowledgements

This work was supported by the Spanish MINECO under grants TEC2010-16844 and TEC2013-48344-C2. (GG) acknowledges support from an ICREA Academia grant from the Generalitat de Catalunya. We acknowledge useful discussion with Dr. M. A. Edwards.

References

