This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
August 13, 2015

Prof. Yamuna Krishnan
Associate Editor
Nanoscale

Dear Prof. Krishnan,

I thank you for inviting us to resubmit our manuscript titled "Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model" (Manuscript ID: NR-ART-07-2015-004587). We appreciate comments and suggestions from you and the reviewers. We’d like to re-submit our manuscript, revised per reviewers' critiques.

Revised manuscript without highlighting or editing mark as a primary manuscript document file was uploaded to the nanoscale submission system. A copy of revised manuscript that show changes marked in yellow was also uploaded as “supporting information for review”. A point-to-point response to the reviewers’ comment is summarized below.

Sincerely,

Chun Li, Ph.D
Point-to-Point Responses

Reviewer #1
The paper by Zhou et al. describes a novel combination therapy approach for cancer treatment using a single compartment nanosystem. PET imaging and biodistribution showed high tumor retaining of the NPs and possibility for therapy. Combined radiotherapy and photothermal therapy can significantly delay tumor growth in subcutaneous BT474 breast cancer model and prolonged the survival in orthotopic 4T1 breast cancer model. Important, the combined therapy can efficiently kill the tumor initiating cells, and thus suppress the tumor metastasis. Such an approach would be a very interesting nanomedical application and could have great importance. The paper is very well written and the studies are very well described. In my opinion, it deserves publication in Nanoscale without any doubt. Publish as is in Nanoscale; no revisions needed.

Response: We appreciate Reviewer #1’s positive feedback.

Reviewer #2
This is a very interesting work reported by Zhou et al. The developed single compartment nanoplatform can be used for radio-photothermal therapy and also can deplete tumor initiating cells and reduces lung metastasis in orthotopic 4T1 breast tumor model. The experimental work is well done and the results support the conclusion drawn. The manuscript is also well written. I would recommend publication in Nanoscale after a few minor revision has been made.

Response: Thanks for the positive comments.

Comment 1: On Page 13 Line 4, “PEG-SH” should be better revised as “mPEG-SH”. The author should use the thermogravimetric analysis (TGA) to quantitatively analyze the amount of mPEG-SH modified onto the [64Cu]CuS NPs.

Response: The “PEG-SH” has been changed to “mPEG-SH” in the revised manuscript. We also added new TGA data per reviewer’s suggestion. The data show that each CuS NP contained approximately 135 PEG molecules (see paragraph 1, page 6; paragraph 2, page 12, and Supporting Figure S1 in the revised manuscript).

Comment 2: Other relevant work regarding the development of theranostic nanoplatform should be cited: Biomaterials 2014, 35, 7635-7646; Biomaterials 2015 38, 10-21

Response: As suggested, additional references (reference #9 and reference #11) are added in revised manuscript.
Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model

Min Zhou,a,b Jun Zhao,a Mei Tian,b Shaoli Song,c Rui Zhang,a Sanjay Gupta,d Dongfeng Tan,e Haifa Shenf, Mauro Ferrarif, and Chun Lia

aDepartment of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 USA. Email: cli@mdanderson.org

bThe Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.

cDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

dDepartment of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

eDepartment of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

fDepartment of Nanomedicine, The Methodist Hospital System Research Institute, Houston, TX 77030

*Corresponding Author: Chun Li, Department of Cancer Systems Imaging, Unit 1907, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054-1907 Phone: 713-792-5182; Fax: 713-794-5456; E-mail: cli@mdanderson.org
Abstract

Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and has demonstrated promising application in clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([^{64}Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [^{64}Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs is suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for suppression of tumor metastasis through localized RT/PTT therapy.
Introduction

Breast cancer remains the leading cause of cancer death among women in the world. Along with surgery and chemotherapy, radiotherapy (RT) is one of the most used therapeutic approaches to treat breast cancer. The rationale for RT is that ionizing radiation can cause lethal DNA damage to tumor cells. However, local-regional recurrence or metastasis often leads to treatment failure. A subpopulation of cells possesses self-renewal, tumor-initiating abilities and is regarded as tumor initiating cells (TICs). Recent reports have demonstrated that TICs were responsible for the tumor recurrence and metastasis. While chemotherapy and radiotherapy can destroy most of cancer cells, the lethal TICs cannot be eradicated effectively by either chemotherapy or radiotherapy as monotherapy. A rational combination of multiple therapeutic modalities is likely required.

Nanoparticle (NP) based cancer therapies significantly expand the range of the current anticancer drugs and treatment strategies. NPs that absorb light in the near-infrared (NIR) region (700 nm -1100 nm in wavelength) provide an opportunity for photothermal conversion and selective delivery of optical energy into tumors to ablate cancer cells. Semiconductor CuS NPs are a promising photothermal conversion agent. In our previous work, we showed that CuS NPs mediated effective photothermal therapy (PTT) of solid tumors. However, it is difficult to eradicate all the cancer cells including TICs due to heterogeneous heat distribution in tumor. Thus, it is necessary to combine PTT with other treatment modalities to achieve complete elimination of cancer cells. In particular, combining photothermal ablation with radiotherapy is an attractive approach. In support of this notion, hyperthermia has previously been shown to potentiate radiotherapy. It is believed that non-discriminating effect of hyperthermia on both cancer cells and cancer stem cells may be a possible mechanism for the radiosensitizing effect of heat.

Beta-emitting radionuclides have been widely used in targeted radionuclide therapy. One of the advantages of radiotherapy with beta emitters is that the radioactivity can cause substantial damage to the target cells, but non-target tissues are unlikely to be harmed
because the mean range in tissue is less than a few millimeters. As a cyclotron produced radionuclide, copper-64 (64Cu) has an intermediate half-life (12.7 hours) that decays through β^+ emission (0.655 meV, 17%), β^- emission (0.573 meV, 39%), and electron capture (44%). This means that 64Cu is suitable for radiotherapy of cancer by β^- particle and Auger electron, positron emission tomography (PET) imaging,¹⁸-²⁰ and accurate assessment of dosimetry.²¹ 64Cu has been applied to label various nanomaterials, including quantum dots,²²,²³ gold NPs,²⁴ carbon nanotubes,²⁵, ²⁶ and polymeric NPs,²⁷, ²⁸ to provide non-invasive PET imaging of nanomaterials' tissue distribution and pharmacokinetics.

In this study, we aimed to establish an effective approach to eradicate the breast TICs using chelator-free radioactive [64Cu]CuS NPs. The combination of high NIR absorption with incorporation of 64Cu as a homogenous ingredient makes these [64Cu]CuS NPs suited for combined radio-photothermal therapy (RT/PTT). The antitumor effects of [64Cu]CuS NPs were first evaluated in subcutaneous BT474 breast tumor model, and animal survival and anti-metastatic efficacy were subsequently investigated in orthotopic breast 4T1 tumor model. Mammosphere formation efficiency of the treated tumors was investigated to assess the efficacy of the combination therapy on TICs. To our knowledge, this is the first report to study dual RT/PTT on TICs and on metastatic potential of breast tumors mediated by a single-compartment, beta-emitting nanoparticle platform ([64Cu]CuS NPs).

Results and Discussion

Nanoparticle synthesis and characterization

[64Cu]CuS NPs were synthesized by introducing Na$_2$S into an aqueous solution of CuCl$_2$ and a trace mount of 64CuCl$_2$ in the presence of mPEG-SH. Fast synthesis (within 20 min) of [64Cu]CuS NPs is essential to reduce its radioactivity decay. Figure 1a shows schematic representative of [64Cu]CuS NPs in which 64Cu is homogeneously integrated into CuS NPs. Transmission electron microscopy (TEM) image of the resulting [64Cu]CuS NPs after radioactivity decay shows that the NPs were well dispersed (Figure 1b). The average size of
particle size was 11.0 ± 5.1 nm based on analysis of TEM images. Dynamic light-scattering analysis was used to evaluate the [\[^{64}\text{Cu}]\text{CuS}\) NPs' hydrodynamic diameters (Figure 1c). Compared to the particle sizes observed in the TEM image, the corresponding hydrodynamic diameters of the NPs increased from 11.0 nm to 30.1 nm as a result of PEG coating on the surface. On the basis of thermal gravimetric analysis (Supporting Information: Figure S1), each PEG-CuS NP was coated with approximately 135 PEG molecules. The optical spectra of the NPs are shown in Figure 1d; the NPs have a strong absorption in the NIR region peaked at ~930 nm, a feature indicative of their high photothermal conversion efficiency. To demonstrate that CuS NPs could mediate temperature elevation, an aqueous solution of CuS NPs (2 mM, 0.2 mg/mL, 4 OD [optical density]) was exposed to a continuous-wave laser light centered at 808 nm. Irradiation of the CuS NPs solution to NIR laser light (1.5 W/cm\(^2\)) for 10 min increased the temperature of the solution from 23.6°C to 48°C (\(\Delta T = 24.4 \, ^\circ\text{C}\)) (Figure 1e). No significant temperature change was found with pure water under the same conditions. Figure 1f show representative thermal images of water and the CuS NP solution under laser irradiation.

Distribution of \[^{64}\text{Cu}]\text{CuS}\) NPs after intratumoral injection

The radio-labeling efficiency of \[^{64}\text{Cu}]\text{CuS}\) NPs was extremely high; more than 99% of the radioactivity was incorporated to \[^{64}\text{Cu}]\text{CuS}\) NPs after synthesis (Supporting Information: Figure S2). In addition to the high labeling efficiency and fast (20 min) preparation of \[^{64}\text{Cu}]\text{CuS}\) NPs, direct incorporation of \(^{64}\text{Cu}\) into CuS NPs resulted in \[^{64}\text{Cu}]\text{CuS}\) NPs with high stability under a wide range of conditions.\(^{12}\) The tissue distribution of \[^{64}\text{Cu}]\text{CuS}\) NPs was investigated by a micro-PET/computed tomography (CT) (\(\mu\text{PET/CT})\) camera after intratumoral (i.t.) injection. Mice (n=3 mice/group) with BT-474 breast tumors were administrated with either 7.4 MBq \(^{64}\text{Cu}\text{Cl}_2\) or \[^{64}\text{Cu}]\text{CuS}\) NPs. Most of the radioactivity was retained in the tumor 24 h after intratumoral injection with \[^{64}\text{Cu}]\text{CuS}\) NPs (Figure 2a). However, radioactivity was leaked from the tumor and distributed to other organs after intratumoral injection of an aqueous solution of \(^{64}\text{Cu}\text{Cl}_2\). The biodistribution data were
consistent with our imaging results (Figure 2b). For $[^{64}\text{Cu}]\text{CuS}$ NPs, greater than 90% of radioactivity remained in the tumor at 24 h after injection, but only ~25% of radioactivity was still in the tumor after injection of $^{64}\text{CuCl}_2$. Figure 2c compares autoradiographs of tumors from mice injected with $[^{64}\text{Cu}]\text{CuS}$ NPs and $^{64}\text{CuCl}_2$ at 24 h. Again, tumors from the $[^{64}\text{Cu}]\text{CuS}$ NPs group showed much higher radioactivity than those from the $^{64}\text{CuCl}_2$ group. These data indicate that $[^{64}\text{Cu}]\text{CuS}$ NPs is suitable for local radiotherapeutic applications.

Tumor growth curves of BT-474 subcutaneous breast tumor model

Figure 3a shows the experimental design used to test the in vivo anticancer effects of various treatments with $[^{64}\text{Cu}]\text{CuS}$ in a subcutaneous BT-474 breast cancer model. Infrared thermal images showed that the temperature of the tumor elevated from ~32°C to ~52°C within 3 minutes after exposure to an 808 nm continuous laser (power density: 1.5 W/cm2) for tumors that had injected with either CuS NPs (PTT) or $[^{64}\text{Cu}]\text{CuS}$ NPs (RT/PTT). By comparison, tumors in the control group and RT alone group injected with $[^{64}\text{Cu}]\text{CuS}$ NPs but without exposure to laser did not show any change in temperature (Figure 3b, 3c).

Figure 4a shows tumor growth curves for the four treatment groups. Compared with the untreated control, tumor growths were delayed for mice in the RT, PTT, and RT/PTT groups. The mean tumor volume in the untreated control mice reached 998 ± 354 mm3 by day 30. For the mice treated with RT, PTT, and RT/PTT, the mean tumor volumes were 392 ± 96 mm3, 264 ± 345 mm3, and 75 ± 105 mm3, respectively, at 30 days after treatment. The tumor volume in the combination treatment (RT/PTT) group was approximately 14, 5, and 3.5 times smaller than those in the control group ($p = 0.003$), RT group ($p = 0.02$), and PTT group ($p = 0.2$), respectively. Similarly, the tumor weight at 30 days after initiation of treatment in the RT/PTT group was 14.4 ± 26.3 mg, which was significant smaller than tumors in the untreated control group (773.7± 238.9 mg, $p<0.0001$), the RT alone group (279.0 ± 73.2 mg, $p<0.005$), and the PTT alone group (176.4 ± 126.3 mg, $p<0.05$) (Figure 4b). Figure 4c show representative photo images of the tumor in different treatment group. Notably, 3 of 6 mice in the RT/PTT group did not have tumor at day 30.
Histological evaluation of treated BT-474 tumors

Histological examination of the tumor tissues removed at 30 days post-treatment further confirmed the successful killing of tumor cells with $[^{64}\text{Cu}]$CuS NP-mediated RT/PTT therapy (Figure 4d). For the control group, tumor mass was localized in the subcutaneous tissue and covered by the epidermis. At higher magnification, the tumors demonstrated a solid growth pattern, with a vague nesting formation. No unequivocal intracellular mucin or glands were present. The tumors were high-grade breast carcinomas with metaplastic features. Tumor cells displayed marked pleomorphism, with enlarged nuclei and prominent nucleoli. Typical mitotic figures were readily seen. In the RT group, the tumor showed remarkable degenerative and necrotic changes. At higher magnification, the tumors displayed an array of treatment effects characterized by clear cell/ballooning degeneration and coagulative tumor necrosis. In the PTT group, general features of ablation necrosis including cell coagulation and nucleus loss were observed. The tumor mass was shrunken, with a small focus of tumor nests that occupied <10% of the nodule. At higher magnification, the nodule mainly consisted of fibroblasts, histiocytes, and lymphoplasmocytes, which surrounded a small focus of tumor nests. Tumor cells revealed degenerative changes and single-cell necrosis. In both the RT alone and PTT alone treatment groups, however, residual tumor lesions were present, and the tumors were not completely eradicated.

In the RT/PTT group, residual tissues removed from 3 of the 6 treated area displayed features similar to those of normal skin tissue. A rounded cellular nodule was present in the subcutaneous tissue, with surrounding adipose tissue and hair sheaths. At higher magnification, the nodule consisted of reactive mesenchymal cells, small vessels, and dense plasma cells and lymphocytes. No tumor cells were present. The absence of tumor cells in the reactive nodule represents a complete response.

Evaluation of toxicity of BT-474 subcutaneous breast tumor model

Total body weight and general well-being of the BT-474 tumor bearing mice without treatment and with treatments by RT, PTT, and RT/PTT were used as measures for toxicity.
In all treatment groups, no significant signs of toxic effects were observed in the CuS NP-injected mice within 30 days after injection. Neither mortality nor noticeable loss of body weight was observed in the untreated control or treatment groups (Figure 5a). Histopathologic analysis (Figure 5b) of major organs (liver, spleen, and kidney) did not show any significant histological changes. Further work is needed to systematically study the potential short- and long-term toxicity of CuS NPs after intravenous and intratumoral injections.

Antitumor activity against orthotopic 4T1 breast tumor

Survival probability was another metric used to evaluate the therapeutic effects of RT/PTT mediated by $[^{64}\text{Cu}]\text{CuS}$. Figure 6 shows Kaplan–Meier survival curves for female Mice (Balb/c) bearing 4T1 tumors in the mammary fat pads following treatments with RT, PTT, and RT/PTT. Tumors progressed rapidly in the untreated control group and none of the ten mice survived beyond 10 days (mean survival = 6.4 days). For mice treated with RT, PTT, and RT/PTT, the mean survival time were 16.8 days, 20.3 days, and 48.7 days, respectively. Analysis with a log-rank test revealed that combined RT/PTT significantly prolonged the life of tumor-bearing mice. The mean animal survival time in the RT/PTT treatment group was approximately 7.6, 2.9, and 2.4 times longer than those in the control group ($p<0.0001$), RT group ($p<0.001$), and PTT group ($p=0.003$), respectively. Two of the ten mice in the RT/PTT treatment group were tumor free at 60 days after treatment. Therefore, the inhibition of tumor growth in mice treated with RT/PTT translated into a significant survival advantage.

Lethal lung metastasis is one of the main causes of mortality breast cancer. In our study, a large number of metastatic lesions in the lungs of mice in the control group were observed at the time of euthanization when tumors at the primary site had grown to be 12 mm or larger (Figure 7a). Metastatic lesions were also seen in groups of mice treated with RT alone or PTT alone, indicating that monotherapy was not able to control tumor spread. However, we did not observe any visible sign of lung metastasis for all surviving mice treated by combined RT/PTT up to 60 days when mice were euthanized. Quantitative analysis show that RT/PTT
significantly reduced the number of lung metastatic nodules compared to the control, RT, and PTT groups (all comparison \(p < 0.001 \)) (Figure 7b).

RT/PTT combination therapy depleted TICs

The mammosphere assay is one of the most used methods to evaluate the effect of anti-TIC therapies. Tumor treated with RT/PTT exhibit significant decrease of mammospheres formation efficiency compared to all other treatment groups (mammospheres number/5000 tumor cells: RT/PTT, 2.9 ± 0.8; PTT, 9.3 ± 3.2; RT, 10.7 ± 3.1; Control, 22.9 ± 9.0). The mammospheres number is approximately 31.2%, 27.1%, and 12.7% of that of the PTT group \((p < 0.001) \), the RT group \((p < 0.001) \), and the no treatment control group \((p < 0.001) \), respectively (Figure 8). These data suggest that dual modality RT/PTT treatment potentiated the killing effect against TICs compared to RT or PTT alone mono-therapy.

Our findings indicate that combined RT/PTT mediated by a single-compartment nanoparticle system, \([^{64}\text{Cu}]\text{CuS NPs}\), resulted in synergistic antitumor activity compared to either RT or PTT therapy alone. The RT/PTT also prolongs the animal survival significantly. The combined RT/PTT efficiently eradicated breast TICs and inhibited the lung metastasis. Furthermore, this higher antitumor activity was achieved without causing apparent systemic toxicity, as indicated by minimal changes in body weight for the mice in all treatment groups. Although further studies are needed to document both the short- and long-term systemic toxicity of \([^{64}\text{Cu}]\text{CuS NPs}\) after intratumoral injection, \([^{64}\text{Cu}]\text{CuS NPs}\) are a promising candidate for cancer thermal therapy owing to their several characteristics. First, these nanoparticles display strong absorbance and high thermal conducting efficiency in the NIR region. Second, the incorporation of \(^{64}\text{Cu}\) into CuS NPs permits PET imaging and quantification of the NPs’ retention in the tumor. This feature should aid future radiation dosimetry calculation if this treatment is translated into the clinic. Third, beta radiation emitted from \([^{64}\text{Cu}]\text{CuS NPs}\) is suitable for effective radiotherapy of relatively large tumors after intratumoral injection. In general, the depth of tissue penetration increases with increasing beta particle energy. This implies that beta-emitting radionuclides with relatively high energy
are more effective in treating larger tumors. The penetration depth of ^{64}Cu (β^- energy: 573 keV) is expected to be greater than 1 mm, which is longer than that of commonly used beta emitters such as Lu-177 (β^- energy: 147 keV; penetration depth: <0.2 mm) and I-131 (β^- energy: 192 keV; penetration depth: 0.2-1 mm); but shorter than that of Re-188 (β^- energy: 778 keV; penetration depth: 3 mm).

Many breast cancer patients eventually develop lung metastasis after treatment. About 60% - 70% of breast cancer patients died because of the lung metastasis. TICs are considered as the possible reason for the tumor recurrence and metastasis due to their resistance to therapy. In our studies, moderate reduction of lung metastasis was found after RT and PTT. A highly significant reduction for lung metastasis was observed when RT/PTT was instituted in murine 4T1 model. The enhanced antitumor activity and TICs killing effect observed with $[^{64}\text{Cu}]\text{CuS NPs}$ in combination with NIR laser treatment could be attributed to (i) prolonged retention of beta-emitting nanoparticles retained in the tumors, (ii) an efficient photothermal ablation effect mediated by CuS NPs, and (iii) the synergistic interaction between radiotherapy and heat. Hyperthermia has been shown to potentiate effect of radiotherapy owing to re-oxygenation of hypoxic tumor tissues after heating. The non-discriminating effect of hyperthermia on both cancer cells and TICs is also proposed as a possible mechanism for the radiosensitizing effect of heat. Clearly, more investigations are required to further understand the mechanism(s) of action for enhanced cell killing effect mediated by $[^{64}\text{Cu}]\text{CuS NPs}$.

Conclusions

In this study, we showed that tumor growth in the subcutaneous BT-474 tumor-bearing mice was inhibited by combined RT/PTT mediated by $[^{64}\text{Cu}]\text{CuS NPs}$ as compared to treatments with RT or PTT alone. Moreover, the combined RT/PTT significantly prolonged the survival of orthotopic 4T1 breast tumor-bearing mice. Importantly, we demonstrated that the combinational therapy could effectively kill the breast TICs, resulting in prevention of lung
metastasis. In addition, tissue distribution of $[^{64}\text{Cu}]$CuS NPs could be imaged and quantified by PET, thus providing opportunity for calculating dosimetry and predicting thermal dose for individual patients.

Materials and Methods

Preparation and characterization of CuS NPs

CuS NPs were prepared following our previously published method.12 In brief, 1.0 mg of methoxy-PEG-thiol (mPEG-SH; 5000 Da, Sigma-Aldrich) was added into 10.0 mL aqueous solution of CuCl$_2$ (4 mM) upon stirring at room temperature. Ten minutes later, 40 µL sodium sulfide solution (Na$_2$S, 1M) was added to the solution. Then, the reaction solution was heated to 90 ºC until the color changed to dark green. The mixture solution was moved to ice water. Finally, the as-prepared CuS NPs were purified by a Centrifugal Filter Units (Amicon Ultra 15a, Millipore) and stored at 4°C till use. The morphology and size of the CuS NPs particle were measured by transmission electron microscopy (JEOL JEM-2010) and dynamic light scattering analysis (ZetaPLUS, Brookhaven Instruments Corp., Holtsville, NY). The optical property of the CuS NPs was monitored by a UV−vis spectrometer (Beckman Coulter DU-800, Brea, CA). TGA was performed using a thermogravimetric analyzer (TGA-50, Shimadzu Inc., Columbia, MD, USA). Samples were heated from 25°C to 600°C at an increase rate of 20°C per minute.

Radiolabelling

Radiolabeled $[^{64}\text{Cu}]$CuS NPs were prepared following previously published protocol.10 Briefly, a trace amount of radioactive 64CuCl$_2$ (10 µL, 148 MBq) was mixed with non-radioactiveCuCl$_2$ solution (190 µL, 4 mM) containing 0.2 g/L of PEG-SH. After 10 minutes, sodium sulfide (10 µL, 100 mM) was added to the 64Cu-CuCl$_2$ mixture. Then, the mixture was heated to 90 ºC for 15 min. The solution was put on ice-water to obtain radioactive $[^{64}\text{Cu}]$CuS NPs. The labeling efficiency of the $[^{64}\text{Cu}]$CuS NPs were tested using instant thin-layer chromatography (ITLC, IAR-2000, Bioscan). Aliquot of $[^{64}\text{Cu}]$CuS NPs was dropped on a ITLC strip. The strip
was then developed with a phosphate-buffered saline (PBS) containing ethylenediaminetetraacetic acid (4 mM). Radioactivity on the strip was read and quantified by a radio-TLC imaging scanner (model IAR-2000, Bioscan, Washington, DC). To investigate the radiolabeling stability, $[^{64}\text{Cu}]\text{CuS}$ NPs were incubated in PBS or mouse serum at 37 °C for 24 h. The solution was then re-analyzed using ITLC.

Photothermal Effect in CuS NPs solution

A 808-nm NIR laser (continuous-wave, 15PLUS Laser, Diomed) was used to record temperature change in the presence of CuS NPs. The laser light (1.5 W/cm2) was passed through a quartz cuvette containing either an aqueous solution of CuS NPs (100 µg/mL, 400 µL) or pure water (control). The temperature of the samples were monitored by a thermocouple over a period of 4 min.

Micro-PET/CT imaging, biodistribution, and autoradiography

All experiments involving animals were approved by the MD Anderson Institutional Animal Care and Use Committee (IACUC). All mice were supplied by Charles River Laboratories (Wilmington, MA). The BT-474 tumor models were generated by subcutaneous injection of 2×10^6 BT-474 (American Type Culture Collection, Manassas, VA) into the right front arms of female nude mice. Each mice were supplemented with 0.72 mg of 17β-estradiol pellets (Innovative Research of America, Sarasota, FL) 3 days prior to tumor cells inoculation. The tumor-bearing mice were randomly divided into two groups (n = 3 mice/group) when the tumor size reached 50-150 mm3. Mice in Group 1 were intratumorally injected with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD, 10 µL, 7.4 MBq/mouse). Mice in group 2 were intratumorally injected with $[^{64}\text{Cu}]\text{Cl}_2$ (2 mM, 10 µL, 7.4 MBq/mouse). Twenty-four hours later, the mice were anesthetized, and PET/CT images were obtained by a µPET/CT scanner (Inveon, Siemens). All the mice were sacrificed by CO$_2$ exposure at the end of the imaging session. Major organs including blood, heart, liver, spleen, kidney, lung, stomach, intestine, muscle, bone, brain, bladder, and tumor were removed and weighed. The radioactivities of the organs were
counted by a gamma counter (Packard Cobra). Uptake of $[^{64}\text{Cu}]\text{CuS}$ NPs or $^{64}\text{CuCl}_2$ in different organs was defined as a percentage of the injected dose per gram of tissue (%ID/g).

For autoradiography, tumor tissues were resected and cryosectioned into 20-µm slices. Then, the slices were exposed on a Fuji film (BAS-SR 2025) for 24 h. The film was scanned by a Multifunctional Imaging System (Fuji Film FLA5100 Life Science, Valhalla, NY).

Tumor growth delay in subcutaneous BT-474 breast tumor model

Twenty-four BT-474 mice were randomly arranged into 4 groups (n = 6 mice/group) when the tumor volume reached 50 to 150 mm3. Mice in the PTT group were intratumorally injected with nonradioactive CuS NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL) followed by NIR laser light exposure. Mice in the RT group were intratumorally injected with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL, 7.4 MBq/mouse). Mice in the RT/PTT group were intratumorally injected with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL, 7.4 MBq/mouse) followed by NIR laser treatment. Laser treatment was instituted 24 h after NP injection with a 808-nm NIR laser beam at 1.5 W/cm2 for 3 min. Mice in the control group were not treated.

Thermographic photos were acquired by a Flir i7 thermal camera (Flir Systems Inc., Portland, OR). The tumor sizes were monitored 2 or 3 times a week using a caliper and were calculated as follows: (tumor length) x (tumor width)2/2. All mice were killed on day 30. The tumor tissues were removed, snapfrozen, and sectioned into 5-µm slices. The slices were stained with hematoxylin & eosin (H&E) for histology analysis.

Antitumor activity against orthotopic 4T1 breast tumors in Balb/c mice

To established orthotopic breast tumor, 4T1 cancer cells (5×10^6, American Type Culture Collection) were inoculated into mammary fat pads of female Balb/c mice. When the tumor volume reached 50 to 150 mm3, 4T1 tumor–bearing mice were randomly divided into 4 groups (n = 10 mice/group). Mice in the control group were not treated. Mice in the RT and RT/PTT groups were injected intratumorally with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL, 7.4 MBq/mouse). Mice in the PTT group were injected intratumorally with nonradioactive CuS NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL). Mice in PTT and RT/PTT treatment groups were
also treated with NIR laser (808 nm, 1.5 W/cm² for 3 min) 24 h after NP injection. The animals were monitored daily for survival. The mice were sacrificed when one dimension of tumor reached 15 mm.

Assessment of lung metastasis

For the assessment of lung metastasis, female Balb/c mice bearing 4T1 tumors were treated as described in the previous section (n = 3 mice/group). Mice were killed when tumor size at the primary sites had reached 15 mm. Lungs were removed, fixed in formalin, sectioned to 5-µm slices, and stained with H&E for histology analysis.

Tumorsphere formation assay

A fraction of harvested 4T1 tumor tissues (~0.5 g) was washed with PBS, and minced in digestion solution (RPMI 1640 medium with 0.2% collagenase-II and 1.5% bovine serum albumin fraction V) into 1 mm³ slices. The minced tumor was then added to 10 mL digestion solution and shaken vigorously at 37 °C for 45 min. After digestion, the mixture was filtered through 100-µm strainer to remove acellular debris. The resultant cell suspension was then centrifuged at 900 RPM for 5 min and washed again with RPMI 1640 with 1% bovine serum albumin. Red blood cells were removed by pipetting the cell pellet in RBC lysis buffer. The resultant cells were washed again, resuspended in RPMI 1640 (1% BSA), and counted. Tumorspheres were grown in 24-well ultralow attachment plates (sigma-aldrich). Each well was added with 5000 tumor cells and 0.5 mL sphere-forming medium (RPMI-1640, 10 ng/mL β-FGF, 10 ng/mL EGF, and 4 µg/mL heparin). Cells were cultured for 7 days at 37 °C. The suspension was collected into Eppendorf tubes and pipetted to disperse cell aggregates. Tumorspheres were collected by centrifugation at 200 g for 5 min, and fixed with 4% formalin in PBS. The number of tumorspheres was counted under a microscope.

Statistical analysis

Quantitative data analysis were defined as mean ± standard deviation (SD). Student’s t-test
was used to compare mean value. A logrank test was used to determine significance of survival. $p < 0.05$ was considered statistically significant.

Supporting Information

Details on methods used for radiolabeling efficiency and stability of 64Cu-labeled CuS NPs.

Acknowledgements

We acknowledge Dawn Chalaire for help editing this paper. This work was supported by John S. Dunn Research Foundation, National Cancer Institute Grant U54CA151668, and DoD Breast Cancer Innovator Award W81XWH-09-1-0212 (MF). We also thank the NCI Cancer Center Support Grant CA016672, which supports MD Anderson’s Small Animal Imaging Facility, High Resolution Electron Microscopy Facility, and the Research Animal Support Facility.
References

Figure Legends

Figure 1. a) Scheme illustrates the structure of $[^{64}\text{Cu}]\text{CuS NPs}$. b) Transmission electron microscopic image of CuS NPs. c) Hydrodynamic size of CuS NPs measured by dynamic light-scattering. d) Ultraviolet-visible spectrum of CuS NPs. e, f) Temperature change curves and thermal images of aqueous CuS NPs solution and pure water under the NIR laser irradiation at 808 nm.

Figure 2. a) Typical µPET/CT images of subcutaneous BT-474 tumor-bearing mice treated with $[^{64}\text{Cu}]\text{CuS NPs}$ or $^{64}\text{CuCl}_2$ at 24 h after intratumoral injection. b) Biodistribution of $[^{64}\text{Cu}]\text{CuS NPs}$ and $^{64}\text{CuCl}_2$ in mice bearing BT474 tumors at 24 h after intratumoral injection. * indicates $p<0.001$. c) Autoradiographs of BT474 tumors from mice treated with $[^{64}\text{Cu}]\text{CuS NPs}$ or $^{64}\text{CuCl}_2$ 24 h post-injection.

Figure 3. a) Scheme of the experimental design of the antitumor activity study in nude mice bearing subcutaneous BT474 tumors. b) Temperature change curves and c) thermal images of mice in different groups under the NIR laser irradiation.

Figure 4. a) Tumor growth curves after treatment with radiotherapy (RT), photothermal therapy (PTT), and combined radio-photothermal therapy (RT/PTT). b) Tumor weights and c) representative microphotographs of BT474 tumors after treatments with RT, PTT, and RT/PTT. * $p<0.05$, ** $p<0.01$, *** $p<0.001$. d) Histology analysis of tumors in different groups. Bars: 200 µm (top) and 20 µm (bottom).

Figure 5. a) Body weight changes after treatments with RT, PTT, and RT/PTT. b) Histology analysis of major organs (liver, spleen, and kidney) after different treatments. Bar: 50 µm.

Figure 6. Kaplan–Meier survival curves of 4T1 breast tumor-bearing mice after treatments with RT, PTT, and RT/PTT ($n=10$). Control mice were not treated. * indicates significant difference between RT/PTT group and the other treatment groups (log-rank test, $p<0.005$).

Figure 7. a) Anti-metastasis effect of RT, PTT, and RT/PTT treatment against 4T1 breast tumor. Lung tissues from the Balb/c mice-bearing tumors were analyzed for the number of
metastatic nodules. Circle: metastatic tumor. Bars: 1 mm, (top row) and 100 µm (bottom row)
b) Quantitative analysis of lung metastasis. * indicates statistical significance between groups
\((p<0.001) \).

Figure 8. a) Photographs and b) quantitative analysis of mammospheres formed from tumors of mice subjected to different treatments. * \(p<0.001 \).
Graphical Abstract

The combined radio-photothermal therapy mediated by a single compartment nanoplatform can depletes tumor initiating cells and reduces lung metastasis in orthotopic 4T1 breast tumor model.
Fig. 1

(a) [64Cu]CuS NPs

(b) Image of CuS NPs

(c) Size distribution of CuS NPs

(d) Absorbance vs. Wavelength

(e) Temperature vs. Time

(f) Images of Water and CuS NPs
Fig. 2

(a) $[^{64}\text{Cu}]\text{CuS NPs}$ vs $^{64}\text{CuCl}_2$

(b) Bar graph showing % ID/g for $[^{64}\text{Cu}]\text{CuS NPs}$ and $^{64}\text{CuCl}_2$ across various organs.

(c) Imaging of $[^{64}\text{Cu}]\text{CuS NPs}$ and $^{64}\text{CuCl}_2$ localization.
Fig. 3

(a) Schematic diagram showing the experimental setup for photothermal therapy (PTT) using CuS nanoparticles (NPs) and laser. The diagram illustrates the control group and groups treated with CuS NPs, CuS NPs + Laser, RT, and RT/PTT.

(b) Graph showing the temperature change over time for different treatments. The temperature is measured in °C, and the time is in minutes. The graph includes lines for Control, RT, PTT, and RT/PTT. The laser is turned on at time 0, indicated by the red arrow.

(c) Infrared images of the treatment results for the Control, RT, PTT, and RT/PTT groups. The images are labeled with Sp1 and show the temperature distribution with a color scale ranging from 25.0 to 55.0 °C.
Fig. 4

(a) Tumor Volume (mm3) over Time (days)

- Control
- RT
- PTT
- RT/PTT

(b) Tumor weight (g)

- Control
- RT
- PTT
- RT/PTT

(c) Images showing tumor size:
- Control: 16.5 mm
- RT: 5.2 mm
- PTT: 4.1 mm
- RT/PTT: No residual
Fig. 4d
Fig. 5

(a) Body Weight Change (%)

- Control
- RT
- PTT
- RT/PTT

Time (days)

(b) Histological images of liver, spleen, and kidney for Control, RT, PTT, and RT/PTT groups.
Fig. 7

(a) Images showing tumor nodules in different treatment groups: Control, RT, PTT, and RT/PTT.

(b) Bar graph showing tumor nodules in the lung across different treatments. Significance indicated by asterisks (*) compared to Control.
Fig. 8

(a) Control, RT, PTT, RT/PTT

(b) Tumorsphere number / 5000 cells

- Control
- RT
- PTT
- RT/PTT

* indicates statistical significance.
Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model

Min Zhou, a,b Jun Zhao, a Mei Tian, b Shaoli Song, c Rui Zhang, a Sanjay Gupta, d Dongfeng Tan, e Haifa Shen f, Mauro Ferrari f, and Chun Li a

aDepartment of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 USA. Email: cli@mdanderson.org

bThe Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.

cDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

dDepartment of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

eDepartment of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

fDepartment of Nanomedicine, The Methodist Hospital System Research Institute, Houston, TX 77030

*Corresponding Author: Chun Li, Department of Cancer Systems Imaging, Unit 1907, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054-1907 Phone: 713-792-5182; Fax: 713-794-5456; E-mail: cli@mdanderson.org
Thermal gravimetric analysis (TGA). PEG-CuS NPs were purified and centrifugal filtration at 6000 RPM for 15 min (MWCO 100K). After lyophilization, 5.161 milligram of sample was transferred to an aluminum pan and analyzed on a thermogravimetric analyzer. Figure S1 shows the TGA of PEG-CuS NPs. Weight loss occurred between 25°C and 600°C.

![Figure S1. TGA of PEG-CuS NPs.](image-url)
Radiolabeling efficiency. The radiolabeling efficiency and stability of the labeled NPs were analyzed using instant thin-layer chromatography. The chromatography strips were developed with phosphate-buffered saline (pH 7.4) containing 4 mM ethylenediaminetetraacetic acid and quantified using an IAR-2000 TLC imaging scanner (Bioscan, Washington, DC). To study the labeling stability, $^{64}\text{Cu}\text{CuS}$ NPs were suspended in phosphate-buffered saline or mouse serum and incubated at 37 °C for 24 h. Free $^{64}\text{Cu}^{2+}$ ions moved to the solvent front, and the NPs remained at the original spot. The radioactivity at the original spot was recorded as a percentage of the total radioactivity of the chromatography strip.

![Radioactivity vs Position](image_url)

Figure S2. Radio-labeling efficiency of $^{64}\text{Cu}\text{CuS}$ NPs. More than 99% of the radioactivity was associated with $^{64}\text{Cu}\text{CuS}$ NPs at the end of synthesis. Incorporation of ^{64}Cu into CuS NPs was almost quantitative.
Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model

Min Zhou,ab Jun Zhao, a Mei Tian, b Shaoli Song, c Rui Zhang, a Sanjay Gupta, d Dongfeng Tan, e Haifa Shenf, Mauro Ferrarif, and Chun Li*a

aDepartment of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030 USA. Email: cli@mdanderson.org

bThe Second Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China.

cDepartment of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China

dDepartment of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

eDepartment of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA

fDepartment of Nanomedicine, The Methodist Hospital System Research Institute, Houston, TX 77030

*Corresponding Author: Chun Li, Department of Cancer Systems Imaging, Unit 1907, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054-1907 Phone: 713-792-5182; Fax: 713-794-5456; E-mail: cli@mdanderson.org
Abstract

Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and has demonstrated promising application in clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles (\[^{64}\text{Cu}]\text{CuS NPs}\) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of \[^{64}\text{Cu}]\text{CuS NPs}\) was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs is suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for suppression of tumor metastasis through localized RT/PTT therapy.
Introduction

Breast cancer remains the leading cause of cancer death among women in the world.\(^1\) Along with surgery and chemotherapy, radiotherapy (RT) is one of the most used therapeutic approaches to treat breast cancer. The rationale for RT is that ionizing radiation can cause lethal DNA damage to tumor cells.\(^2\) However, local-regional recurrence or metastasis often leads to treatment failure.\(^3\) A subpopulation of cells possesses self-renewal, tumor-initiating abilities and is regarded as tumor initiating cells (TICs). Recent reports have demonstrated that TICs were responsible for the tumor recurrence and metastasis.\(^4\) While chemotherapy and radiotherapy can destroy most of cancer cells, the lethal TICs cannot be eradicated effectively by either chemotherapy or radiotherapy as monotherapy.\(^5,6\) A rational combination of multiple therapeutic modalities is likely required.

Nanoparticle (NP) based cancer therapies significantly expand the range of the current anticancer drugs and treatment strategies.\(^7-9\) NPs that absorb light in the near-infrared (NIR) region (700 nm -1100 nm in wavelength) provide an opportunity for photothermal conversion and selective delivery of optical energy into tumors to ablate cancer cells.\(^10,11\) Semiconductor CuS NPs are a promising photothermal conversion agent. In our previous work, we showed that CuS NPs mediated effective photothermal therapy (PTT) of solid tumors.\(^12,13\) However, it is difficult to eradicate all the cancer cells including TICs due to heterogeneous heat distribution in tumor. Thus, it is necessary to combine PTT with other treatment modalities to achieve complete elimination of cancer cells. In particular, combining photothermal ablation with radiotherapy is an attractive approach. In support of this notion, hyperthermia has previously been shown to potentiate radiotherapy.\(^14-16\) It is believed that non-discriminating effect of hyperthermia on both cancer cells and cancer stem cells may be a possible mechanism for the radiosensitizing effect of heat.\(^17\)

Beta-emitting radionuclides have been widely used in targeted radionuclide therapy. One of the advantages of radiotherapy with beta emitters is that the radioactivity can cause substantial damage to the target cells, but non-target tissues are unlikely to be harmed.
because the mean range in tissue is less than a few millimeters. As a cyclotron produced radionuclide, copper-64 (\(^{64}\text{Cu}\)) has an intermediate half-life (12.7 hours) that decays through \(\beta^+\) emission (0.655 meV, 17%), \(\beta^-\) emission (0.573 meV, 39%), and electron capture (44%). This means that \(^{64}\text{Cu}\) is suitable for radiotherapy of cancer by \(\beta^-\) particle and Auger electron, positron emission tomography (PET) imaging,\(^{18-20}\) and accurate assessment of dosimetry.\(^{21}\) \(^{64}\text{Cu}\) has been applied to label various nanomaterials, including quantum dots,\(^{22,23}\) gold NPs,\(^{24}\) carbon nanotubes,\(^{25,26}\) and polymeric NPs,\(^{27,28}\) to provide non-invasive PET imaging of nanomaterials’ tissue distribution and pharmacokinetics.

In this study, we aimed to establish an effective approach to eradicate the breast TICs using chelator-free radioactive \([^{64}\text{Cu}]\text{CuS NPs}\). The combination of high NIR absorption with incorporation of \(^{64}\text{Cu}\) as a homogenous ingredient makes these \([^{64}\text{Cu}]\text{CuS NPs}\) suited for combined radio-photothermal therapy (RT/PTT). The antitumor effects of \([^{64}\text{Cu}]\text{CuS NPs}\) were first evaluated in subcutaneous BT474 breast tumor model, and animal survival and anti-metastatic efficacy were subsequently investigated in orthotopic breast 4T1 tumor model. Mammosphere formation efficiency of the treated tumors was investigated to assess the efficacy of the combination therapy on TICs. To our knowledge, this is the first report to study dual RT/PTT on TICs and on metastatic potential of breast tumors mediated by a single-compartment, beta-emitting nanoparticle platform (\([^{64}\text{Cu}]\text{CuS NPs}\)).

Results and Discussion

Nanoparticle synthesis and characterization

\([^{64}\text{Cu}]\text{CuS NPs}\) were synthesized by introducing Na\(_2\)S into an aqueous solution of CuCl\(_2\) and a trace mount of \(^{64}\text{CuCl}_2\) in the presence of mPEG-SH. Fast synthesis (within 20 min) of \([^{64}\text{Cu}]\text{CuS NPs}\) is essential to reduce its radioactivity decay. Figure 1a shows schematic representative of \([^{64}\text{Cu}]\text{CuS NPs}\) in which \(^{64}\text{Cu}\) is homogeneously integrated into CuS NPs. Transmission electron microscopy (TEM) image of the resulting \([^{64}\text{Cu}]\text{CuS NPs}\) after radioactivity decay shows that the NPs were well dispersed (Figure 1b). The average size of
particle size was 11.0 ± 5.1 nm based on analysis of TEM images. Dynamic light-scattering analysis was used to evaluate the [\(^{64}\text{Cu}\)]CuS NPs' hydrodynamic diameters (Figure 1c). Compared to the particle sizes observed in the TEM image, the corresponding hydrodynamic diameters of the NPs increased from 11.0 nm to 30.1 nm as a result of PEG coating on the surface. On the basis of thermal gravimetric analysis (Supporting Information: Figure S1), each PEG-CuS NP was coated with approximately 135 PEG molecules. The optical spectra of the NPs are shown in Figure 1d; the NPs have a strong absorption in the NIR region peaked at \(\sim 930 \) nm, a feature indicative of their high photothermal conversion efficiency. To demonstrate that CuS NPs could mediate temperature elevation, an aqueous solution of CuS NPs (2 mM, 0.2 mg/mL, 4 OD [optical density]) was exposed to a continuous-wave laser light centered at 808 nm. Irradiation of the CuS NPs solution to NIR laser light (1.5 W/cm\(^2\)) for 10 min increased the temperature of the solution from 23.6°C to 48°C (∆T = 24.4 °C) (Figure 1e). No significant temperature change was found with pure water under the same conditions. Figure 1f show representative thermal images of water and the CuS NP solution under laser irradiation.

Distribution of [\(^{64}\text{Cu}\)]CuS NPs after intratumoral injection

The radio-labeling efficiency of [\(^{64}\text{Cu}\)]CuS NPs was extremely high; more than 99% of the radioactivity was incorporated to [\(^{64}\text{Cu}\)]CuS NPs after synthesis (Supporting Information: Figure S2). In addition to the high labeling efficiency and fast (20 min) preparation of [\(^{64}\text{Cu}\)]CuS NPs, direct incorporation of \(^{64}\text{Cu} \) into CuS NPs resulted in [\(^{64}\text{Cu}\)]CuS NPs with high stability under a wide range of conditions.\(^\text{12}\) The tissue distribution of [\(^{64}\text{Cu}\)]CuS NPs was investigated by a micro-PET/computed tomography (CT) (µPET/CT) camera after intratumoral (i.t.) injection. Mice (n=3 mice/group) with BT-474 breast tumors were administrated with either 7.4 MBq \(^{64}\text{CuCl}_2\) or [\(^{64}\text{Cu}\)]CuS NPs. Most of the radioactivity was retained in the tumor 24 h after intratumoral injection with [\(^{64}\text{Cu}\)]CuS NPs (Figure 2a). However, radioactivity was leaked from the tumor and distributed to other organs after intratumoral injection of an aqueous solution of \(^{64}\text{CuCl}_2\). The biodistribution data were
consistent with our imaging results (Figure 2b). For $[^{64}\text{Cu}]\text{CuS}$ NPs, greater than 90% of radioactivity remained in the tumor at 24 h after injection, but only ~25% of radioactivity was still in the tumor after injection of $[^{64}\text{Cu}]\text{Cl}_2$. Figure 2c compares autoradiographs of tumors from mice injected with $[^{64}\text{Cu}]\text{CuS}$ NPs and $[^{64}\text{Cu}]\text{Cl}_2$ at 24 h. Again, tumors from the $[^{64}\text{Cu}]\text{CuS}$ NPs group showed much higher radioactivity than those from the $[^{64}\text{Cu}]\text{Cl}_2$ group. These data indicate that $[^{64}\text{Cu}]\text{CuS}$ NPs is suitable for local radiotherapeutic applications.

Tumor growth curves of BT-474 subcutaneous breast tumor model

Figure 3a shows the experimental design used to test the in vivo anticancer effects of various treatments with $[^{64}\text{Cu}]\text{CuS}$ in a subcutaneous BT-474 breast cancer model. Infrared thermal images showed that the temperature of the tumor elevated from ~32°C to ~52°C within 3 minutes after exposure to an 808 nm continuous laser (power density: 1.5 W/cm2) for tumors that had injected with either CuS NPs (PTT) or $[^{64}\text{Cu}]\text{CuS}$ NPs (RT/PTT). By comparison, tumors in the control group and RT alone group injected with $[^{64}\text{Cu}]\text{CuS}$ NPs but without exposure to laser did not show any change in temperature (Figure 3b, 3c).

Figure 4a shows tumor growth curves for the four treatment groups. Compared with the untreated control, tumor growths were delayed for mice in the RT, PTT, and RT/PTT groups. The mean tumor volume in the untreated control mice reached 998 ± 354 mm3 by day 30. For the mice treated with RT, PTT, and RT/PTT, the mean tumor volumes were 392 ± 96 mm3, 264 ± 345 mm3, and 75 ± 105 mm3, respectively, at 30 days after treatment. The tumor volume in the combination treatment (RT/PTT) group was approximately 14, 5, and 3.5 times smaller than those in the control group ($p = 0.003$), RT group ($p = 0.02$), and PTT group ($p = 0.2$), respectively. Similarly, the tumor weight at 30 days after initiation of treatment in the RT/PTT group was 14.4 ± 26.3 mg, which was significant smaller than tumors in the untreated control group (773.7± 238.9 mg, $p<0.0001$), the RT alone group (279.0 ± 73.2 mg, $p<0.005$), and the PTT alone group (176.4 ± 126.3 mg, $p<0.05$) (Figure 4b). Figure 4c show representative photo images of the tumor in different treatment group. Notably, 3 of 6 mice in the RT/PTT group did not have tumor at day 30.
Histological evaluation of treated BT-474 tumors

Histological examination of the tumor tissues removed at 30 days post-treatment further confirmed the successful killing of tumor cells with $^{64}\text{Cu}}$CuS NP-mediated RT/PTT therapy (Figure 4d). For the control group, tumor mass was localized in the subcutaneous tissue and covered by the epidermis. At higher magnification, the tumors demonstrated a solid growth pattern, with a vague nesting formation. No unequivocal intracellular mucin or glands were present. The tumors were high-grade breast carcinomas with metaplastic features. Tumor cells displayed marked pleomorphism, with enlarged nuclei and prominent nucleoli. Typical mitotic figures were readily seen. In the RT group, the tumor showed remarkable degenerative and necrotic changes. At higher magnification, the tumors displayed an array of treatment effects characterized by clear cell/ballooning degeneration and coagulative tumor necrosis. In the PTT group, general features of ablation necrosis including cell coagulation and nucleus loss were observed. The tumor mass was shrunken, with a small focus of tumor nests that occupied <10% of the nodule. At higher magnification, the nodule mainly consisted of fibroblasts, histiocytes, and lymphoplasmocytes, which surrounded a small focus of tumor nests. Tumor cells revealed degenerative changes and single-cell necrosis. In both the RT alone and PTT alone treatment groups, however, residual tumor lesions were present, and the tumors were not completely eradicated.

In the RT/PTT group, residual tissues removed from 3 of the 6 treated area displayed features similar to those of normal skin tissue. A rounded cellular nodule was present in the subcutaneous tissue, with surrounding adipose tissue and hair sheaths. At higher magnification, the nodule consisted of reactive mesenchymal cells, small vessels, and dense plasma cells and lymphocytes. No tumor cells were present. The absence of tumor cells in the reactive nodule represents a complete response.

Evaluation of toxicity of BT-474 subcutaneous breast tumor model

Total body weight and general well-being of the BT-474 tumor bearing mice without treatment and with treatments by RT, PTT, and RT/PTT were used as measures for toxicity.
In all treatment groups, no significant signs of toxic effects were observed in the CuS NP-injected mice within 30 days after injection. Neither mortality nor noticeable loss of body weight was observed in the untreated control or treatment groups (Figure 5a). Histopathologic analysis (Figure 5b) of major organs (liver, spleen, and kidney) did not show any significant histological changes. Further work is needed to systematically study the potential short- and long-term toxicity of CuS NPs after intravenous and intratumoral injections.

Antitumor activity against orthotopic 4T1 breast tumor

Survival probability was another metric used to evaluate the therapeutic effects of RT/PTT mediated by \[^{64}\text{Cu}]\text{CuS}. Figure 6 shows Kaplan–Meier survival curves for female Mice (Balb/c) bearing 4T1 tumors in the mammary fat pads following treatments with RT, PTT, and RT/PTT. Tumors progressed rapidly in the untreated control group and none of the ten mice survived beyond 10 days (mean survival = 6.4 days). For mice treated with RT, PTT, and RT/PTT, the mean survival time were 16.8 days, 20.3 days, and 48.7 days, respectively. Analysis with a log-rank test revealed that combined RT/PTT significantly prolonged the life of tumor-bearing mice. The mean animal survival time in the RT/PTT treatment group was approximately 7.6, 2.9, and 2.4 times longer than those in the control group (p<0.0001), RT group (p<0.001), and PTT group (p=0.003), respectively. Two of the ten mice in the RT/PTT treatment group were tumor free at 60 days after treatment. Therefore, the inhibition of tumor growth in mice treated with RT/PTT translated into a significant survival advantage.

Lethal lung metastasis is one of the main causes of mortality breast cancer. In our study, a large number of metastatic lesions in the lungs of mice in the control group were observed at the time of euthanization when tumors at the primary site had grown to be 12 mm or larger (Figure 7a). Metastatic lesions were also seen in groups of mice treated with RT alone or PTT alone, indicating that monotherapy was not able to control tumor spread. However, we did not observe any visible sign of lung metastasis for all surviving mice treated by combined RT/PTT up to 60 days when mice were euthanized. Quantitative analysis show that RT/PTT
significantly reduced the number of lung metastatic nodules compared to the control, RT, and PTT groups (all comparison $p<0.001$) (**Figure 7b**).

RT/PTT combination therapy depleted TICs

The mammosphere assay is one of the most used methods to evaluate the effect of anti-TIC therapies. Tumor treated with RT/PTT exhibit significant decrease of mammospheres formation efficiency compared to all other treatment groups (mammospheres number/5000 tumor cells: RT/PTT, 2.9 ± 0.8; PTT, 9.3 ± 3.2; RT, 10.7 ± 3.1; Control, 22.9 ± 9.0). The mammospheres number is approximately 31.2%, 27.1%, and 12.7% of that of the PTT group ($p<0.001$), the RT group ($p<0.001$), and the no treatment control group ($p<0.001$), respectively (**Figure 8**). These data suggest that dual modality RT/PTT treatment potentiated the killing effect against TICs compared to RT or PTT alone mono-therapy.

Our findings indicate that combined RT/PTT mediated by a single-compartment nanoparticle system, [64Cu]CuS NPs, resulted in synergistic antitumor activity compared to either RT or PTT therapy alone. The RT/PTT also prolongs the animal survival significantly. The combined RT/PTT efficiently eradicated breast TICs and inhibited the lung metastasis. Furthermore, this higher antitumor activity was achieved without causing apparent systemic toxicity, as indicated by minimal changes in body weight for the mice in all treatment groups. Although further studies are needed to document both the short- and long-term systemic toxicity of [64Cu]CuS NPs after intratumoral injection, [64Cu]CuS NPs are a promising candidate for cancer thermal therapy owing to their several characteristics. First, these nanoparticles display strong absorbance and high thermal conducting efficiency in the NIR region. Second, the incorporation of 64Cu into CuS NPs permits PET imaging and quantification of the NPs’ retention in the tumor. This feature should aid future radiation dosimetry calculation if this treatment is translated into the clinic. Third, beta radiation emitted from [64Cu]CuS NPs is suitable for effective radiotherapy of relatively large tumors after intratumoral injection. In general, the depth of tissue penetration increases with increasing beta particle energy. This implies that beta-emitting radionuclides with relatively high energy
are more effective in treating larger tumors. The penetration depth of 64Cu (β^- energy: 573 keV) is expected to be greater than 1 mm, which is longer than that of commonly used beta emitters such as Lu-177 (β^- energy: 147 keV; penetration depth: <0.2 mm) and I-131 (β^- energy: 192 keV; penetration depth: 0.2-1 mm); but shorter than that of Re-188 (β^- energy: 778 keV; penetration depth: 3 mm).

Many breast cancer patients eventually develop lung metastasis after treatment.\(^{31}\) About 60% - 70% of breast cancer patients died because of the lung metastasis.\(^{32}\) TICs are considered as the possible reason for the tumor recurrence and metastasis due to their resistance to therapy.\(^{33, 34}\) In ours studies, moderate reduction of lung metastasis was found after RT and PTT. A highly significant reduction for lung metastasis was observed when RT/PPT was instituted in murine 4T1 model. The enhanced antitumor activity and TICs killing effect observed with $[^{64}\text{Cu}]-\text{CuS NPs}$ in combination with NIR laser treatment could be attributed to (i) prolonged retention of beta-emitting nanoparticles retained in the tumors, (ii) an efficient photothermal ablation effect mediated by CuS NPs, and (iii) the synergistic interaction between radiotherapy and heat. Hyperthermia has been shown to potentiate effect of radiotherapy owing to re-oxygenation of hypoxic tumor tissues after heating.\(^{14, 15}\) The non-discriminating effect of hyperthermia on both cancer cells and TICs is also proposed as a possible mechanism for the radiosensitizing effect of heat.\(^{17}\) Clearly, more investigations are required to further understand the mechanism(s) of action for enhanced cell killing effect mediated by $[^{64}\text{Cu}]\text{CuS NPs}$.

Conclusions

In this study, we showed that tumor growth in the subcutaneous BT-474 tumor-bearing mice was inhibited by combined RT/PTT mediated by $[^{64}\text{Cu}]\text{CuS NPs}$ as compared to treatments with RT or PTT alone. Moreover, the combined RT/PTT significantly prolonged the survival of orthotopic 4T1 breast tumor-bearing mice. Importantly, we demonstrated that the combinational therapy could effectively kill the breast TICs, resulting in prevention of lung
metastasis. In addition, tissue distribution of 64CuCuS NPs could be imaged and quantified by PET, thus providing opportunity for calculating dosimetry and predicting thermal dose for individual patients.

Materials and Methods

Preparation and characterization of CuS NPs

CuS NPs were prepared following our previously published method.12 In brief, 1.0 mg of methoxy-PEG-thiol (mPEG-SH; 5000 Da, Sigma-Aldrich) was added into 10.0 mL aqueous solution of CuCl$_2$ (4 mM) upon stirring at room temperature. Ten minutes later, 40 µL sodium sulfide solution (Na$_2$S, 1M) was added to the solution. Then, the reaction solution was heated to 90 ºC until the color changed to dark green. The mixture solution was moved to ice water. Finally, the as-prepared CuS NPs were purified by a Centrifugal Filter Units (Amicon Ultra 15a, Millipore) and stored at 4°C till use. The morphology and size of the CuS NPs particle were measured by transmission electron microscopy (JEOL JEM-2010) and dynamic light scattering analysis (ZetaPLUS, Brookhaven Instruments Corp., Holtsville, NY). The optical property of the CuS NPs was monitored by a UV−vis spectrometer (Beckman Coulter DU-800, Brea, CA). TGA was performed using a thermogravimetric analyzer (TGA-50, Shimadzu Inc., Columbia, MD, USA). Samples were heated from 25°C to 600°C at an increase rate of 20°C per minute.

Radiolabelling

Radiolabeled 64CuCuS NPs were prepared following previously published protocol.10 Briefly, a trace amount of radioactive 64CuCl$_2$ (10 µL, 148 MBq) was mixed with non-radioactiveCuCl$_2$ solution (190 µL, 4 mM) containing 0.2 g/L of PEG-SH. After 10 minutes, sodium sulfide (10 µL, 100 mM) was added to the 64Cu-CuCl$_2$ mixture. Then, the mixture was heated to 90 ºC for 15 min. The solution was put on ice-water to obtain radioactive 64CuCuS NPs. The labeling efficiency of the 64CuCuS NPs were tested using instant thin-layer chromatography (ITLC, IAR-2000, Bioscan). Aliquot of 64CuCuS NPs was dropped on a ITLC strip. The strip
was then developed with a phosphate-buffered saline (PBS) containing ethylenediaminetetraacetic acid (4 mM). Radioactivity on the strip was read and quantified by a radio-TLC imaging scanner (model IAR-2000, Bioscan, Washington, DC). To investigate the radiolabeling stability, 64CuCuS NPs were incubated in PBS or mouse serum at 37 °C for 24 h. The solution was then re-analyzed using ITLC.

Photothermal Effect in CuS NPs solution

A 808-nm NIR laser (continuous-wave, 15PLUS Laser, Diomed) was used to record temperature change in the presence of CuS NPs. The laser light (1.5 W/cm²) was passed through a quartz cuvette containing either an aqueous solution of CuS NPs (100 µg/mL, 400 µL) or pure water (control). The temperature of the samples were monitored by a thermocouple over a period of 4 min.

Micro-PET/CT imaging, biodistribution, and autoradiography

All experiments involving animals were approved by the MD Anderson Institutional Animal Care and Use Committee (IACUC). All mice were supplied by Charles River Laboratories (Wilmington, MA). The BT-474 tumor models were generated by subcutaneous injection of 2×10^6 BT-474 (American Type Culture Collection, Manassas, VA) into the right front arms of female nude mice. Each mice were supplemented with 0.72 mg of 17β-estradiol pellets (Innovative Research of America, Sarasota, FL) 3 days prior to tumor cells inoculation. The tumor-bearing mice were randomly divided into two groups (n = 3 mice/group) when the tumor size reached 50-150 mm3. Mice in Group 1 were intratumorally injected with 64CuCuS NPs (2 mM, 0.2 mg/mL, 4 OD, 10 µL, 7.4 MBq/mouse). Mice in group 2 were intratumorally injected with 64CuCl$_2$ (2 mM, 10 µL, 7.4 MBq/mouse). Twenty-four hours later, the mice were anesthetized, and PET/CT images were obtained by a µPET/CT scanner (Inveon, Siemens). All the mice were sacrificed by CO$_2$ exposure at the end of the imaging session. Major organs including blood, heart, liver, spleen, kidney, lung, stomach, intestine, muscle, bone, brain, bladder, and tumor were removed and weighed. The radioactivities of the organs were
counted by a gamma counter (Packard Cobra). Uptake of $[^{64}\text{Cu}]\text{CuS}$ NPs or $[^{64}\text{Cu}]\text{CuCl}_2$ in different organs was defined as a percentage of the injected dose per gram of tissue (%ID/g). For autoradiography, tumor tissues were resected and cryosectioned into 20-µm slices. Then, the slices were exposed on a Fuji film (BAS-SR 2025) for 24 h. The film was scanned by a Multifunctional Imaging System (Fuji Film FLA5100 Life Science, Valhalla, NY).

Tumor growth delay in subcutaneous BT-474 breast tumor model

Twenty-four BT-474 mice were randomly arranged into 4 groups ($n = 6$ mice/group) when the tumor volume reached 50 to 150 mm3. Mice in the PTT group were intratumorally injected with nonradioactive CuS NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL) followed by NIR laser light exposure. Mice in the RT group were intratumorally injected with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL, 7.4 MBq/mouse). Mice in the RT/PTT group were intratumorally injected with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL, 7.4 MBq/mouse) followed by NIR laser treatment. Laser treatment was instituted 24 h after NP injection with a 808-nm NIR laser beam at 1.5 W/cm2 for 3 min. Mice in the control group were not treated. Thermographic photos were acquired by a Flir i7 thermal camera (Flir Systems Inc., Portland, OR). The tumor sizes were monitored 2 or 3 times a week using a caliper and were calculated as follows: $(\text{tumor length}) \times (\text{tumor width})^2/2$. All mice were killed on day 30. The tumor tissues were removed, snapfrozen, and sectioned into 5-µm slices. The slices were stained with hematoxylin & eosin (H&E) for histology analysis.

Antitumor activity against orthotopic 4T1 breast tumors in Balb/c mice

To established orthotopic breast tumor, 4T1 cancer cells (5×10^6, American Type Culture Collection) were inoculated into mammary fat pads of female Balb/c mice. When the tumor volume reached 50 to 150 mm3, 4T1 tumor–bearing mice were randomly divided into 4 groups ($n = 10$ mice/group). Mice in the control group were not treated. Mice in the RT and RT/PTT groups were injected intratumorally with $[^{64}\text{Cu}]\text{CuS}$ NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL, 7.4 MBq/mouse). Mice in the PTT group were injected intratumorally with nonradioactive CuS NPs (2 mM, 0.2 mg/mL, 4 OD; 10 µL). Mice in PTT and RT/PTT treatment groups were
also treated with NIR laser (808 nm, 1.5 W/cm² for 3 min) 24 h after NP injection. The animals were monitored daily for survival. The mice were sacrificed when one dimension of tumor reached 15 mm.

Assessment of lung metastasis

For the assessment of lung metastasis, female Balb/c mice bearing 4T1 tumors were treated as described in the previous section (n = 3 mice/group). Mice were killed when tumor size at the primary sites had reached 15 mm. Lungs were removed, fixed in formalin, sectioned to 5-µm slices, and stained with H&E for histology analysis.

Tumorsphere formation assay

A fraction of harvested 4T1 tumor tissues (~0.5 g) was washed with PBS, and minced in digestion solution (RPMI 1640 medium with 0.2% collagenase-II and 1.5% bovine serum albumin fraction V) into 1 mm³ slices. The minced tumor was then added to 10 mL digestion solution and shaken vigorously at 37 °C for 45 min. After digestion, the mixture was filtered through 100-µm strainer to remove acellular debris. The resultant cell suspension was then centrifuged at 900 RPM for 5 min and washed again with RPMI 1640 with 1% bovine serum albumin. Red blood cells were removed by pipetting the cell pellet in RBC lysis buffer. The resultant cells were washed again, resuspended in RPMI 1640 (1% BSA), and counted. Tumorspheres were grown in 24-well ultralow attachment plates (sigma-aldrich). Each well was added with 5000 tumor cells and 0.5 mL sphere-forming medium (RPMI-1640, 10 ng/mL β-FGF, 10 ng/mL EGF, and 4 µg/mL heparin). Cells were cultured for 7 days at 37 °C. The suspension was collected into Eppendorf tubes and pipetted to disperse cell aggregates. Tumorspheres were collected by centrifugation at 200 g for 5 min, and fixed with 4% formalin in PBS. The number of tumorspheres was counted under a microscope.

Statistical analysis

Quantitative data analysis were defined as mean ± standard deviation (SD). Student’s t-test
was used to compare mean value. A logrank test was used to determine significance of survival.

\[p < 0.05 \] was considered statistically significant.

Supporting Information

Details on methods used for radiolabeling efficiency and stability of \(^{64}\text{Cu} \)-labeled CuS NPs.

Acknowledgements

We acknowledge Dawn Chalaire for help editing this paper. This work was supported by John S. Dunn Research Foundation, National Cancer Institute Grant U54CA151668, and DoD Breast Cancer Innovator Award W81XWH-09-1-0212 (MF). We also thank the NCI Cancer Center Support Grant CA016672, which supports MD Anderson’s Small Animal Imaging Facility, High Resolution Electron Microscopy Facility, and the Research Animal Support Facility.
References

Biomacromolecules, 2007, **8**, 3126-3134.

Figure Legends

Figure 1. a) Scheme illustrates the structure of $[^{64}\text{Cu}]\text{CuS NPs}$. b) Transmission electron microscopic image of CuS NPs. c) Hydrodynamic size of CuS NPs measured by dynamic light-scattering. d) Ultraviolet-visible spectrum of CuS NPs. e, f) Temperature change curves and thermal images of aqueous CuS NPs solution and pure water under the NIR laser irradiation at 808 nm.

Figure 2. a) Typical µPET/CT images of subcutaneous BT-474 tumor-bearing mice treated with $[^{64}\text{Cu}]\text{CuS NPs}$ or $^{64}\text{CuCl}_2$ at 24 h after intratumoral injection. b) Biodistribution of $[^{64}\text{Cu}]\text{CuS NPs}$ and $^{64}\text{CuCl}_2$ in mice bearing BT474 tumors at 24 h after intratumoral injection. * indicates $p<0.001$. c) Autoradiographs of BT474 tumors from mice treated with $[^{64}\text{Cu}]\text{CuS NPs}$ or $^{64}\text{CuCl}_2$ 24 h post-injection.

Figure 3. a) Scheme of the experimental design of the antitumor activity study in nude mice bearing subcutaneous BT474 tumors. b) Temperature change curves and c) thermal images of mice in different groups under the NIR laser irradiation.

Figure 4. a) Tumor growth curves after treatment with radiotherapy (RT), photothermal therapy (PTT), and combined radio-photothermal therapy (RT/PTT). b) Tumor weights and c) representative microphotographs of BT474 tumors after treatments with RT, PTT, and RT/PTT. * $p<0.05$, ** $p<0.01$, *** $p<0.001$. d) Histology analysis of tumors in different groups. Bars: 200 µm (top) and 20 µm (bottom).

Figure 5. a) Body weight changes after treatments with RT, PTT, and RT/PTT. b) Histology analysis of major organs (liver, spleen, and kidney) after different treatments. Bar: 50 µm.

Figure 6. Kaplan–Meier survival curves of 4T1 breast tumor-bearing mice after treatments with RT, PTT, and RT/PTT ($n = 10$). Control mice were not treated. * indicates significant difference between RT/PTT group and the other treatment groups (log-rank test, $p<0.005$).

Figure 7. a) Anti-metastasis effect of RT, PTT, and RT/PTT treatment against 4T1 breast tumor. Lung tissues from the Balb/c mice-bearing tumors were analyzed for the number of
metastatic nodules. Circle: metastatic tumor. Bars: 1 mm, (top row) and 100 µm (bottom row)
b) Quantitative analysis of lung metastasis. * indicates statistical significance between groups
($p< 0.001$).

Figure 8. a) Photographs and b) quantitative analysis of mammospheres formed from tumors of mice subjected to different treatments. * $p<0.001$.