# Nanoscale

# Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/nanoscale

# ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/



Jingyang Su,<sup>a</sup> Ping Geng,<sup>b</sup> Xinyong Li,<sup>c</sup> Qidong Zhao,<sup>c</sup> Xie Quan<sup>c</sup> and Guohua Chen<sup>a, b\*</sup>

Novel phosphorus-doped graphitic-carbon nitride (P-C<sub>3</sub>N<sub>4</sub>) modified vertically aligned TiO<sub>2</sub> nanotube arrays (NTs) were designed and synthesized. They can significantly enhance the conduction and utilization of photogenerated charge carriers of TiO<sub>2</sub> NTs. The heterostructure was successfully fabricated through a three-step process: electrochemical anodization and wet-dipping followed by thermal polymerization. The prepared P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs exhibit enhanced light-absorption characteristics and improved charge separation and transfer ability, thus resulting in a 3-fold photocurrent (1.98 mA cm<sup>-2</sup> at 0 V vs Ag/AgCl) compared with that of pure TiO<sub>2</sub> NTs (0.66 mA cm<sup>-2</sup> at 0 V vs Ag/AgCl) in 1 M NaOH solution. The prepared P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs photoelectrodes also present excellent photocatalytic and photoelectrocatalytic capabilities in the degradation of methylene blue (MB). The kinetics rate of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs in photoelectrocatalytic process for MB is 2.7 times that of pristine TiO<sub>2</sub> NTs. Furthermore, the prepared sample was used as a photoanode for solar-driven water splitting, giving a H<sub>2</sub> evolution rate of 36.6 µmol h<sup>-1</sup> cm<sup>-2</sup> at 1.0 V vs RHE under simulated solar light illumination. This novel structure with the rational design for visible light response shows potential for metal free materials in photoelectrochemical applications.

semiconductors.

investigated to improve the photoresponse of TiO<sub>2</sub> NTs in the

visible region through the formation of a heterostructure coupling  $TiO_2$  with the above-mentioned narrow band gap

Graphitic carbon nitride  $(g-C_3N_4)$  is a new kind of non-metallic

 $\pi$ -conjugated polymeric materials with a band gap of 2.7 eV, as

reported by Wang et al. in 2009.33 Many reports have

demonstrated that it is able to produce hydrogen or oxygen from water splitting and organic degradation under visible light

irradiation.33-35 Especially, g-C<sub>3</sub>N<sub>4</sub> possesses superior reduction

ability due to the high potential of the conduction band (-1.42 V

vs Ag/AgCl, pH 6.6),<sup>36</sup> which makes it a fine material to couple

with TiO<sub>2</sub> for efficient charge transfer and separation. However,

in spite of the advantages of this metal free material as an

excellent semiconductor, the poor adaption of the material

interfaces and grain boundary effects hinder its electric charge

transport.<sup>37-40</sup> To overcome this challenge, chemical doping is

adopted as an effective strategy to improve the performance by

modifying their electronic structure and surface properties. Recently, phosphorus-doped  $g-C_3N_4$  (P-C<sub>3</sub>N<sub>4</sub>) was developed by a co-condensation strategy. As a result, the electronic

features of P-C<sub>3</sub>N<sub>4</sub> were altered by this heteroatom doping,

providing better electric conductivity up to 4 orders of

magnitude.<sup>40</sup> Based on previous studies, a novel heterostructure

will be designed in this study by modifying TiO<sub>2</sub> NTs in-situ

with phosphorus-doped graphitic carbon nitride ( $P-C_3N_4$ ). The

heterojunction built between P-C<sub>3</sub>N<sub>4</sub> and TiO<sub>2</sub> NTs is expected

not only to benefit light absorption, but also to improve

separation of photogenerated electrons and inhibit the electron-

### Introduction

Highly ordered, vertically oriented TiO<sub>2</sub> nanotube arrays (TiO<sub>2</sub> NTs) obtained by Ti metal anodization have attracted wide interest because of their impressive properties. Various applications of TiO<sub>2</sub> NTs have been explored in such fields as pollutants degradation,<sup>1-5</sup> sterilization,<sup>6, 7</sup> water splitting,<sup>8-12</sup> dye-sensitized solar cells <sup>13-16</sup> and gas sensors.<sup>17-19</sup> Compared with traditional TiO<sub>2</sub> nanocrystal-based nanofilms, the unique structure of nanotube arrays provides convenience for the separation and transfer of photo-generated charges and possesses higher photon collection efficiency.<sup>9, 20</sup> However, the practical application of TiO<sub>2</sub> NTs is significantly hindered by its wide band gap (3.2 eV for anatase), which limits the photoresponse of TiO<sub>2</sub> to the UV region ( $\lambda < 385$  nm, less than 5% of the solar spectrum). Recently, semiconductors with narrower band gaps, such as CdS,<sup>21-23</sup> CdSe<sup>24, 25</sup>,<sup>24, 25</sup> Cu<sub>2</sub>O,<sup>26, 27</sup> Fe<sub>2</sub>O<sub>3</sub>,<sup>28, 29</sup> AgBr,<sup>30</sup> ZnFe<sub>2</sub>O,<sup>31</sup> and Fe<sub>2</sub>TiO<sub>5</sub> <sup>32</sup> were

See DOI: 10.1039/x0xx00000x

(AL SOCIETY **CHEMISTRY** 

<sup>&</sup>lt;sup>a.</sup> Environmental Engineering Program, School of Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

<sup>&</sup>lt;sup>b.</sup> Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

<sup>&</sup>lt;sup>c</sup> Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

<sup>\*</sup> Email: kechengh@ust.hk

<sup>†</sup> Electronic Supplementary Information (ESI) available:

#### ARTICLE

which hole pair recombination, can enhance the photoelectrochemical activity of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs significantly. Methylene blue (MB) will be used as the model pollutant for photocatalytic and photoelectrocatalytic degradation reactions to evaluate the photoelectrochemical capability of the as-prepared P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs photoelectrodes under solar light irradiation. Moreover, P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs will be employed as photoanode for photoelectrochemical water splitting under solar light illumination. Detailed analysis is given subsequently.

# **Experimental Section**

# Chemicals

All the chemicals are used as received without further treatment. Ammonium fluoride  $[NH_4F]$  (>99.99%), dicyandiamide [CN] (>99.9%), 2-aminobenzonitrile [ABN] (>99.9%), 1-butyl-3-methylimidazolium hexafluorophosphate [BmimPF<sub>6</sub>] (>99.9%) were purchased from Aladdin. Ethylene glycol [EG] (>99.5%) was obtained from Scharlan and methylene blue [MB] (>99%) was procured from Sigma. MilliQ water (deionized water, 18 M $\Omega$ ) was used for the preparation of all the solutions.

# Photoelelctrodes preparation

TiO<sub>2</sub> NTs were fabricated by a two-step anodization process. Prior to anodization, the Ti foils were first degreased by sonicating in acetone, ethanol and DI water, respectively, followed by drying in air stream for 30 minutes. The anodization process was carried out in a conventional twoelectrode system with the Ti foil as the anode and a Pt foil as the cathode. The electrolyte consisted of 0.5 wt%  $NH_4F$  and 2 vol% water in EG solution. All the anodization process was carried out at room temperature of 25 °C. In the first-step anodization, the Ti foil was anodized at 60 V for 60 min, and then the as-grown nanotubes layer was ultrasonically removed in 1 M HCl solution. The produced Ti foil then underwent the second anodization at 60 V for 30 min, producing a nanoringnanotube structure. After the two-step anodization, the prepared TiO<sub>2</sub> NTs samples were cleaned with DI water and dried with nitrogen gas for 30 minutes. Then the anodized TiO<sub>2</sub> NTs samples were annealed in air at 450°C for 2 h with a heating rate of 2°C min<sup>-1</sup> for phase conversion from amorphous to crystalline.

P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs were prepared by a facile wet-dipping method (Scheme 1). CN and ABN were used as precursors to produce graphitic carbon nitride. The incorporation of phenylene groups produced by ABN into g-C<sub>3</sub>N<sub>4</sub> can improve the p-electron delocalization in the conjugated system, and thus changes the intrinsic optical and electronic properties of the resulting CN-ABN polymers, resulting in much enhanced photo-response compared with pristine g-C<sub>3</sub>N<sub>4</sub>.<sup>41</sup> BmimPF<sub>6</sub> was added into the solution as a phosphorous source. In a typical synthetic procedure, the prepared TiO<sub>2</sub> NTs were dipped into solution containing the precursor (CN: ABN: BmimPF<sub>6</sub> = 100: 1: 1) with desired concentration (1 to 5 mg mL<sup>-1</sup>). After 12 h dipping saturation, the electrode was taken out of the solution

and dried in a nitrogen gas stream for 30 minutes. Afterwards, the electrode was heated to 540°C in an argon atmosphere with a heating rate of  $2.3^{\circ}$ C min<sup>-1</sup> and kept at this temperature for another 2 h to produce P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs heterostructure. For comparison, some pure TiO<sub>2</sub> NTs were also treated under the same conditions.

# Characterization

Surface morphologies of TiO2 NTs and P-C3N4/TiO2 NTs were examined by Field Emission Scanning Electron Microscopy (FESEM, JEOL 6700F). The structure and shape of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs were also examined by a High Resolution Transmission Electron Microscope (HRTEM, JEOL JEM2010F), combining with energy dispersive X-ray spectroscopy (EDX) for the determination of element composition. The accelerating voltage was 200 kV in each case. X-ray Diffraction (XRD) analysis was conducted by X-Ray diffractometer (PANalytical, X'pert Pro) equipped with a Cu Ka radiation source (wavelength of 1.54 Å), mainly for the study of structural properties of crystalline materials in modified thin films. The diffractograms were recorded with a 20 range of  $10 \sim 80^{\circ}$  with a normal scan speed of  $0.05^{\circ}$ s<sup>-1</sup>. Xray Photoelectron Spectroscopy (XPS) was recorded on a PHI 5600 (Physical Electronic, USA) equipped with an Al monochromatic X-ray source. C 1s line at 284.6 eV was used as the calibration reference before each measurement. UV-vis Diffuse Reflectance Spectra (DRS) were recorded on a Shimadzu UV-2500PC UV-vis spectrometer with a diffuse reflectance accessory, and BaSO<sub>4</sub> was used as the reference sample (100% reflectance). Photoluminescence spectra (PL) were measured at room temperature of 25 °C on a Shimadzu RF-5301 PC spectrometer using a 325 nm excitation light. **Photoelectrochemical Test** 

Photoelectrochemical measurements were performed using a conventional three-electrode cell system and an electrochemical workstation (PGSTAT 100, Autolab, Netherlands). The prepared electrode was employed as the working electrode. Meanwhile, a saturated Ag/AgCl electrode and a platinum electrode served as the reference and counter electrode, respectively. All the potentials were referred to the saturated Ag/AgCl unless otherwise stated. Some 1 M NaOH was used as



Scheme 1 Synthesis procedure of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs photoelectrode

the electrolyte. A 300 W high-pressure Xenon short arc lamp (Newport) was used as the simulated solar light source to provide a light intensity of 100 mW cm<sup>-2</sup>, which was calibrated prior to every photoelectrochemical test using a calibrated Si photodiode. I-V curves were measured at a scanning rate of 50 mV s<sup>-1</sup>. Electrochemical impedance spectroscopy (EIS) was documented in the frequency range of 0.01 to  $10^5$  Hz with an AC voltage amplitude of 10 mV at a bias of 0 V (vs the Ag/AgCl) in 1 M NaOH solution.

#### Photoelectrochemical performance test

Photoelectrocatalytic degradation of MB was performed in a standard three-electrode configuration and an electrochemical workstation (PGSTAT 100, Autolab, Netherlands). P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs photoelectrode was employed as the working electrode, Pt foil as the counter electrode, and a saturated Ag/AgCl as the reference electrode. A 300 W high-pressure Xenon short arc lamp (Newport) was used as the simulated solar light source to provide a light intensity of 100 mW cm<sup>-2</sup>. All the experiments were performed using 0.1 M Na<sub>2</sub>SO<sub>4</sub> as the electrolyte with magnetic stirring. The initial concentration of the MB aqueous solution was 10 mg L<sup>-1</sup>. The changes in MB concentration were monitored by measuring the maximal absorption at  $\lambda = 664$  nm using an UV-vis spectrophotometer (Unico UV-2102 PC, USA). Photoelectrochemical water splitting reaction for hydrogen and oxygen production was conducted in a three electrode system where the reaction vessel was connected to a glass-closed gas-circulation system. The reaction solution was maintained at room temperature using a flow of cooling water during the reaction. The evolved gases were analyzed using a gas chromatograph (GC, Tianmei GC-7900T) equipped with a thermal conductive detector. All the data were obtained after repeating the same experiments for at least 3 times with insignificant difference observed.

#### **Results and discussion**

Figure 1A presents the top-down SEM image of TiO<sub>2</sub> NTs after the second anodization. The nanorings structure on the top is uniform in a large scale, with a smooth surface observed. Typical top-view and side-view images of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs were displayed in Figure 1B and inset, respectively, indicating that P-C<sub>3</sub>N<sub>4</sub> was dispersed uniformly without blocking the channels. The pore diameter of TiO2 NTs became smaller after P-C<sub>3</sub>N<sub>4</sub> modification, revealing a tube-in-tube structure formed after P-C<sub>3</sub>N<sub>4</sub> deposition. The length of NTs was determined as around 5 µm, which can guarantee an effective light absorption and efficient charge separation.<sup>42, 43</sup> The microscopic structure of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs heterostructure was further investigated by TEM and HRTEM. Figure 1C is a typical TEM image of the TiO<sub>2</sub> NTs after the modification of P-C<sub>3</sub>N<sub>4</sub>, showing that the P-C<sub>3</sub>N<sub>4</sub> formed from thermal polymerization is dispersed on the inner walls of the TiO2 NTs, which is consistent with the FESEM images. After P-C<sub>3</sub>N<sub>4</sub> thermal polymerization, the TiO<sub>2</sub> NTs still show good crystallization (Figure 1E). The observed lattice plane is 0.351 nm, which is consistent with (101) plane of anatase TiO<sub>2</sub>. Moreover, an obvious boundary of P-C<sub>3</sub>N<sub>4</sub> layer and TiO<sub>2</sub> layer is revealed in Figure 1F. TEM-EDX mapping spectrum (SI, Figure S1) presents a uniform distribution of titanium, oxygen, carbon, nitrogen and phosphorus, demonstrating the presence of P-C<sub>3</sub>N<sub>4</sub>. In addition, the TEM line-EDX (Figure 1D) clearly shows that there is considerable inner diffusion of the elements across the interface over P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs structure. Moreover, there is a concentration gradient of Ti and O in the walls of nanotubes, with the average distribution of C and N in the inner walls of nanotubes, demonstrating uniform dispersion of P-C<sub>3</sub>N<sub>4</sub> in the inner wall.

The elemental compositions and chemical status of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs were further analyzed by XPS. The XPS survey spectrum (Figure 2A) of the  $P-C_3N_4/TiO_2$  NTs confirmed the existence of Ti, O, C, N and P elements. Figures 2 B-C indicate the presence of Ti 2p and O 1s in the prepared samples with corresponding peaks at 459.0 eV and 464.8 eV for Ti 2p, and 530.1 eV for O 1s. It is notable that after  $P-C_3N_4$  deposition, a small negative shift (ca. 0.15 eV) of Ti  $2p_{3/2}$  can be identified, which is due to the electron transfer from P-C<sub>3</sub>N<sub>4</sub> to TiO<sub>2</sub> NTs, indicating a heterojunction formed successfully between TiO<sub>2</sub> and P-C<sub>3</sub>N<sub>4</sub>. Figure 2D shows the high-resolution C 1s XPS spectra of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs. As can be seen from this figure, the C 1s peak at 284.6 eV can be ascribed to carbon and defectcontaining sp<sup>2</sup>-hybridized carbon atoms present in graphitic domains. The C 1s peak at 286.1 eV is assigned to the C-C bond in the turbostratic CN structure. The peak at 288.1 eV is



Figure 1 SEM images of pristine  $TiO_2$  NTs (A) and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs (B); representative TEM images (C, D) and line-EDX of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs (D); HRTEM images of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs showing the good crystallinity of TiO<sub>2</sub> (E, inset is corresponding SAED) and interface between TiO<sub>2</sub> and P-C<sub>3</sub>N<sub>4</sub>(F)

A Ti: •

Anatase: •

g-C3N4: ∇



Figure 2 XPS survey spectrum (A) and corresponding core levels of Ti 2p (B), O 1s (C), C 1s (D), N 1s (E) and P 2p (F) of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs

ascribed to the sp<sup>3</sup> C-N bond of the sp<sup>3</sup> bonded composition. Figure 2E shows the high-resolution N 1s XPS spectra of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs. The asymmetrical and broad features of the observed N 1s XPS peaks suggest the coexistence of distinguishable models. The main N 1s peak at the binding energy of 399.0 eV can be assigned to sp<sup>2</sup>-hybridized nitrogen (C-N-C). The two weak peaks at about 399.8 and 401.1 eV can be attributed to tertiary nitrogen (N-(C)<sub>3</sub>) and amino functional groups having a hydrogen atom (C-N-H), respectively.<sup>44</sup> The presence of the N-(C)<sub>3</sub> groups confirms the polymerization of dicyandiamide. The existence of amino functional groups suggests that the g-C<sub>3</sub>N<sub>4</sub> product prepared by pyrolysis of dicyandiamide was incompletely condensed, which is consistent with the previous reports.44, 45 Moreover, the area ratio of N-(C)3 and C-N-H peaks also suggests that the degree of condensation reaction and the molar percentage are about 85% and 15%, respectively. Also, the structural details on the incorporation of P into the g-C<sub>3</sub>N<sub>4</sub> scaffold were obtained with XPS measurements (Figure 2F). The P 2p binding energy peaks of P-C<sub>3</sub>N<sub>4</sub> are centered at 134.0 eV, which is typical for a P-N coordination, while that of pristine TiO<sub>2</sub> NTs shows negligible contributions.40

The crystal structure of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs heterostructure was revealed by XRD analysis (Figure 3A). For comparison, the XRD patterns from pure TiO<sub>2</sub> NTs and P-C<sub>3</sub>N<sub>4</sub> bulk are also shown. All peaks in the curve can be well-indexed by TiO<sub>2</sub> anatase phase (JCPDS No. 71-1167) and Ti metal phase (JCPDS No. 44-1294), which are originated from the TiO<sub>2</sub> NTs





Figure 3 (A) XRD patterns of TiO<sub>2</sub>, P-C<sub>3</sub>N<sub>4</sub> and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub>; (B) DRS spectra of TiO<sub>2</sub> and P-C<sub>3</sub>N<sub>4</sub> modification with different precursor solutions

and Ti substrate, respectively. Compared to the TiO<sub>2</sub> NTs, the XRD pattern of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs shows that there are two additional peaks at 13.2° and 27.6° corresponding to the (110) and (200) crystal planes of g-C<sub>3</sub>N<sub>4</sub>, respectively.

DRS spectra obtained from the pure TiO<sub>2</sub> NTs show that TiO<sub>2</sub> primarily absorbs ultraviolet light with a maximum absorption wavelength of around 360 nm, which is ascribed to the charge transfer process from the valence band formed by the 2p orbital of the oxide anions to the conduction band formed by the  $3d_{12g}$  orbital of the Ti<sup>4+</sup> cations. The as-prepared P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> decorated TiO<sub>2</sub> NTs are denoted as P-C<sub>3</sub>N<sub>4</sub>-X/TiO<sub>2</sub> (with X being precursor concentration). It is notable that with the increase in precursor concentration, the absorption in the visible region of P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs increased significantly, revealing the excellent light absorption ability of g-C<sub>3</sub>N<sub>4</sub> under visible light illumination. The result indicates that visible-light absorption of the TiO<sub>2</sub> NTs is obviously enhanced by introducing P-C<sub>3</sub>N<sub>4</sub>.

Figure 4 shows the *J*-V curves of photocurrent density versus the applied potential for the TiO<sub>2</sub> NTs, and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs prepared under different concentrations. It is obvious that the maximum photocurrent density of 1.98 mA cm<sup>-2</sup> (P-C<sub>3</sub>N<sub>4</sub>-3/TiO<sub>2</sub> NTs) is obtained at 0 V vs Ag/AgCl for the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs electrode, while only 0.66 mA cm<sup>-2</sup> for pure TiO<sub>2</sub> NTs is observed. This result indicates that the separation rate of photogenerated holes and electrons increased due to the formation of a heterostructure. It is notable that although light absorption of P-C<sub>3</sub>N<sub>4</sub>-5/TiO<sub>2</sub> is a little higher than that of P-C<sub>3</sub>N<sub>4</sub>-3/TiO<sub>2</sub>, the formed thick and dense P-C<sub>3</sub>N<sub>4</sub> layer blocks some light absorption of TiO<sub>2</sub> NTs (as indicated



Figure 4 Photoelectrochemical properties of  $P-C_3N_4/TiO_2$  NTs and  $TiO_2$  NTs photoelectrodes: (a) *J*-V collected with a scan rate of 20 mV s<sup>-1</sup> in the dark and under illumination; (b) photoconversion efficiency as a function of the applied potential

Journal Name

4 | J. Name., 2012, 00, 1-3

by the decreased light absorption in the UV region of DRS spectra) and hinder the electron transport ability of  $TiO_2$  NTs. Thus, P-C<sub>3</sub>N<sub>4</sub>-3/TiO<sub>2</sub> gives the optimal photocurrent.

The photoconversion efficiency of the  $P-C_3N_4/TiO_2$ photoelectrode was calculated using the following equation (1): where  $\eta$  is the photoconversion efficiency, I is the photocurrent density (mA cm<sup>-2</sup>), J<sub>light</sub> is the incident light irradiance (mW cm<sup>-</sup> <sup>2</sup>),  $E_{rev}^{0}$  is the standard reversible potential which is 1.23 V vs. RHE, and V is the applied bias potential vs RHE. Figure 4B presents the plots of the photoconversion efficiency vs. applied bias potentials. The optimal photoconversion efficiency can be up to 0.71% at -0.3 V vs Ag/AgCl for P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs, while pristine TiO<sub>2</sub> NTs can only achieve photoconversion efficiency of 0.23% at -0.35 V vs Ag/AgCl. Furthermore, photoelectrochemical stability of prepared samples was also demonstrated by testing their chopped transient photocurrent density versus time at 0 V (SI, Figure S3). It is clearly that nearly no decrease of photocurrent was observed for all the prepared samples. Especially, P-C<sub>3</sub>N<sub>4</sub>-3/TiO<sub>2</sub> generated the highest photocurrent of 1.96 mA cm<sup>-2</sup> among all the samples, which was around 3.0 times greater than the values obtained on TiO<sub>2</sub> NTs.

In order to explore the effect of incorporation of phenylene groups from ABN into g-C<sub>3</sub>N<sub>4</sub>, DRS spectra of g-C<sub>3</sub>N<sub>4</sub> prepared from different precursors of CN and CN: ABN = 100: 1 were provided for comparison (SI, Figure S4). As one can see, after introduction of ABN, optical absorption of the resulted CN-ABN<sub>0.01</sub> was enhanced in the visible region, which benefits photo-response due to the improvement of  $\pi$ -electron delocalization in the formed CN-ABN co-polymer.<sup>41</sup>

Furthermore, we compared  $P-C_3N_4/TiO_2$  using CN and  $CN-ABN_{0.01}$  as different precursors. Clearly, much enhanced light absorption both in UV and visible regions can be observed after the incorporation of phenylene groups when using  $CN-ABN_{0.01}$  as precursors (SI, Figure S5), which is beneficial to improved PEC performance of the produced  $P-C_3N_4/TiO_2$ . The prepared  $P-C_3N_4/TiO_2$  NTs with  $CN-ABN_{0.01}$  as precursors exhibit much higher photocurrent than that with CN only. At 0 V vs Ag/AgCl,  $P-C_3N_4/TiO_2$  NTs (CN-ABN<sub>0.01</sub>) show 40% enhancement of photocurrent than that of  $P-C_3N_4/TiO_2$  NTs from CN only (1.4 mA cm<sup>-2</sup> at 0 V vs Ag/AgCl) (SI, Figure S6) To identify the roles of  $g-C_3N_4$  and P doping in the formed P- $C_3N_4/TiO_2$  NTs (without P doping) and  $P-C_3N_4/TiO_2$  NTs were evaluated by EIS and PL (Figure 5). Comparing typical EIS Nyquist plots of the



Figure 5 (A) EIS responses of pristine  $TiO_2 NTs$ ,  $g-C_3N_4/TiO_2 NTs$  and  $P-C_3N_4/TiO_2 NTs$  under dark and with solar light illumination; (B) PL spectra of  $TiO_2 NTs$ ,  $g-C_3N_4/TiO_2 NTs$  and  $P-C_3N_4/TiO_2 NTs$  with excitation light wavelength of 325 nm at room temperature

Nanoscale Accepted Manuscript

TiO<sub>2</sub> NTs, g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs under dark and light irradiation, one can see that both of the radiuses of the arc on the EIS Nyquist plots of the g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs in the dark are much lower than that of pristine TiO<sub>2</sub> NTs. This indicates that the charge transfer resistance decreases after the modification of g-C<sub>3</sub>N<sub>4</sub> and P-C<sub>3</sub>N<sub>4</sub>. The decrease in resistance reveals that the wet-dipping and polymerization technique employed here gives rise to a good interaction between C<sub>3</sub>N<sub>4</sub> (both g-C<sub>3</sub>N<sub>4</sub> and P-C<sub>3</sub>N<sub>4</sub>) and the TiO<sub>2</sub> NTs (with better ohmic contacts), and consequently leads to an efficient and fast charge transfer path from the C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs heterojunction to the Ti substrate. Under light irradiation, the arc radius on the EIS Nyquist plot of the P- $C_3N_4/TiO_2$  NTs is still much smaller than those of pristine TiO<sub>2</sub> and g-C3N4/TiO2, which indicates an effective separation of photogenerated electron-hole pairs and fast interfacial charge transfer to the electron donor/electron acceptor after TiO<sub>2</sub> NTs is modified by P-C<sub>3</sub>N<sub>4</sub> under light irradiation. These results show that after P doping, produced P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs exhibit enhanced charge separation ability than pristine g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs, which is due to significantly enhanced electric conductivity by introduction of P heteroatoms. From PL spectra, one can see that the photoluminescence intensities of TiO<sub>2</sub> NTs decrease with the modification of the g-C<sub>3</sub>N<sub>4</sub>, and it further decreased after P doping, which reveals that the addition of heterojunction and introduction of P heteroatoms decreases the density of the charge recombination for luminescence. The formed P-C<sub>3</sub>N<sub>4</sub> can act as traps to capture the photo-induced electrons from TiO2 NTs, and thus effectively inhibit the recombination of electron-hole pairs, leading to much enhanced photoelectrochemical activity than g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> and pristine TiO<sub>2</sub> NTs (SI, Figure S7).

To gain more in-depth understanding of the charge-transport properties of  $P-C_3N_4/TiO_2$  and pristine  $TiO_2$  NTs, the electron recombination kinetics of these two types of NTs were further investigated by monitoring the transient open-circuit voltage ( $V_{oc}$ ) as a function of time upon turning off the illumination. Under open-circuit conditions, electrons accumulate within the nanostructured semiconductor films following solar light irradiation and shifting the apparent Fermi level to negative potentials. Once the illumination is stopped, the accumulated electrons are slowly discharged because they are scavenged by redox species in the electrolyte. The electron density in the conduction band decays sharply due to charge recombination, with the  $V_{oc}$  decay rate directly determined by the recombination rate. Figure 6A depicts the  $V_{oc}$  decay as a



Figure 6 (A) Open circuit potential of the pristine  $TiO_2$  and P- $C_3N_4/TiO_2$  NTs under simulated solar light irradiation. (B) The corresponding electron lifetimes as a function of open circuit potential

#### ARTICLE

function of time measured on the pristine and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs anodes. It is evident that the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs electrode has a significantly slower V<sub>oc</sub> decay rate than that of pristine TiO<sub>2</sub> NTs, suggesting slower recombination kinetics in P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs. Based on the V<sub>oc</sub> decay rate, the lifetime of photogenerated electrons ( $\tau_n$ ), i.e. the average time that the photogenerated electrons exist before they recombine, can be calculated by the following expression:  $\tau_n = -(k_BT/e)(dV_{oc}/dt)^{-1}$  (2)

where  $k_{\rm B}$  is Boltzmann's constant, T the temperature, and e the elementary charge. The calculated  $\tau_{\rm n}$  is plotted in Fig. 6B as a function of V<sub>oc</sub> for the two types of anodes. It is observed that  $\tau_{\rm n}$  of the P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs is longer than that of pristine TiO<sub>2</sub> NTs. The extended  $\tau_{\rm n}$  observed in P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs compared with that of TiO<sub>2</sub> NTs may be attributed to surface defects, which act as adsorption sites benefiting charge carrier transportation.

Methylene blue (MB) was selected as a target pollutant to evaluate the photocatalytic performance of  $P-C_3N_4/TiO_2$ heterostructure. Figure 7A presents MB removals in various degradation processes, i.e. the photoelectrocatalytic (PEC) process, the photocatalytic (PC) process, the electrochemical (EC) process, the direct photolysis and dark control processes. As shown in Figure 7, 92.8% of MB removal rate was obtained after 60 min of PEC process, while only 52% and 1.8% of MB were removed in PC and EC process within the same time, respectively. The kinetic constant is 0.040 min<sup>-1</sup> for PEC process, 2.4 times of that in PC process (0.017 min<sup>-1</sup>). The PEC removals of MB on P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs and TiO<sub>2</sub> NTs were also performed and the results are shown in Figure 7B. About 92.8% MB was removed on P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs after only 60 min, with a corresponding kinetic constant being 0.040 min<sup>-1</sup>, 2.7 times of that of TiO<sub>2</sub> NTs. The results show that P-C<sub>3</sub>N<sub>4</sub>, as a charge collector, can improve the charge transfer and separation in a PEC process.

Figure 8A shows the TOC removal efficiency during MB degradation over  $P-C_3N_4/TiO_2$  NTs and  $TiO_2$  NTs. For  $P-C_3N_4/TiO_2$  NTs, the initial TOC value of MB is 4.77 mg L<sup>-1</sup>, which reduced to 2.16 mg L<sup>-1</sup> after 1 h degradation, and further decreased to only 1.07 mg L<sup>-1</sup> at 2 h reaction. The TOC removal efficiency was 77.6%, nearly 3 times of that observed for pure TiO<sub>2</sub> NTs (26.3%), demonstrating better mineralization ability of  $P-C_3N_4/TiO_2$  NTs as a photocatalyst than pure TiO<sub>2</sub> NTs. The stability of  $P-C_3N_4/TiO_2$  NTs was tested by degrading MB with the same electrode for 5 consecutive times. During 5



Figure 7 (A) Degradation of MB solutions by different processes with the as-prepared  $P-C_3N_4/TiO_2$  NTs electrode (B) Degradation of MB solutions by TiO<sub>2</sub> and prepared  $P-C_3N_4/TiO_2$  with the bias of 0.5 V under solar light illumination (light intensity is 100 mW cm<sup>-2</sup>)



Figure 8 (A) TOC removal efficiency of MB on TiO<sub>2</sub> and P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> during PEC degradation process at different time; (B) Removal efficiency of MB with one P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs photoelectrode for 5 consecutive times over 60 min (0.5 V vs Ag/AgCl, light intensity is 100 mW cm<sup>-2</sup>)

repeated PEC cycles, the MB removal efficiency remained almost unchanged (Figure 8B), indicating good stability of P- $C_3N_4/TiO_2$  photoelectrode when applied as an anode for degradation of pollutants. Additionally, the produced OHunder solar light illumination over P- $C_3N_4/TiO_2$  was captured using DMPO and recorded by ESR spectra at ambient temperature in an aqueous dispersion (SI, Figure S9). Four characteristic peaks of DMPO-OH- with intensity 1:2:2:1 can be clearly observed showing that efficient hydroxyl radicals were produced on P- $C_3N_4/TiO_2$  under solar light irradiation, while no peaks observed in dark. The results display that hydroxyl radicals can be generated efficiently on the prepared samples under solar light, which is beneficial to MB removal and mineralization with high efficiency.

It is important to directly examine the evolution of  $H_2$  and  $O_2$  for the prepared samples in a PEC water-splitting process. For this purpose, photoelectrocatalytic water splitting reaction for hydrogen and oxygen production was conducted in a three electrode system under vacuum atmosphere. The evolved gases were sampled and injected into a gas chromatograph in-situ for quantitative analysis. The results showed that under simulated solar light irradiation  $H_2$  was evolved on the surface of electrode with a generation rate of 36.6 µmol h<sup>-1</sup> within the testing period of 5 h (Figure 9). The photocurrent was also given in the inset of Figure 9, demonstrating excellent stability of the prepared sample in aqueous solution. Additionally, even after 6 months storage, the prepared samples show nearly the same performance as observed from the chopped *J*-V current under solar



Figure 9 Time courses of hydrogen evolution for the  $P-C_3N_4/TiO_2$  NTs and  $TiO_2$  NTs electrodes at 0 V vs Ag/AgCl under illumination of simulated solar light

light (SI, Figure S11), showing good chemical stability of  $P-C_3N_4/TiO_2$  NTs in the air.

Conclusions

Journal Name

P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs was successfully synthesized by a facile method: electrochemical anodization and wet-dipping followed by a thermal polymerization. The prepared P-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> NTs showed a remarkably enhanced photocurrent and improved photoconversion efficiency due to better charge separation and collection efficiency under solar light irradiation. Also, it showed much improved performance photoelectrocatalytic degradation of MB, with 2.7 times of degradation kinetic rate and 3.0 times TOC removal efficiency of pristine TiO<sub>2</sub>, respectively. The prepared sample was further used for H<sub>2</sub> evolution, achieving a generation rate of 36.6  $\mu$ mol h<sup>-1</sup> cm<sup>-2</sup> at 0 V vs Ag/AgCl with excellent stability up to 5 h. The composite materials are expected to have promising applications in photocatalysis, solar cells and other light harvesting devices.

# Acknowledgements

The authors would like to thank the financial support from RGC with N HKUST646/10 Joint Project.

#### Notes and references

- 1 P. Roy, S. Berger and P. Schmuki, *Angew. Chem. Int. Ed.*, 2011, **50**, 2904.
- 2 X. Quan, S. Yang, X. Ruan and H. Zhao, *Environ. Sci. Technol.*, 2005, **39**, 3770.
- 3 N. Lu, X. Quan, J. Li, S. Chen, H. Yu and G. Chen, J. Phys. Chem. C, 2007, 111, 11836.
- 4 C. Liu, Y. Teng, R. Liu, S. Luo, Y. Tang, L. Chen and Q. Cai, *Carbon*, 2011, **49**, 5312.
- 5 Z. Zhang, Y. Yuan, G. Shi, Y. Fang, L. Liang, H. Ding and L. Jin, *Environ. Sci. Technol.*, 2007, **41**, 6259.
- 6 Y. Hou, X. Li, Q. Zhao, G. Chen and C. L. Raston, *Environ. Sci. Technol.*, 2012, **46**, 4042.
- 7 S. C. Hayden, N. K. Allam and M. A. El-Sayed, J. Am. Chem. Soc., 2010, 132, 14406.
- 8 J. H. Park, S. Kim and A. J. Bard, Nano Lett., 2006, 6, 24.
- 9 K. Shankar, J. I. Basham, N. K. Allam, O. K. Varghese, G. K. Mor, X. Feng, M. Paulose, J. A. Seabold, K.-S. Choi and C. A. Grimes, *J. Phys. Chem. C*, 2009, **113**, 6327.
- 10 H. Zhang, X. Quan, S. Chen, H. Yu and N. Ma, Chem. Mater., 2009, 21, 3090.
- 11 Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, Nano Lett., 2013, 13, 14.
- 12 M. Ye, J. Gong, Y. Lai, C. Lin and Z. Lin, J. Am. Chem. Soc., 2012, 134, 15720.
- 13 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, *Nano Lett.*, 2006, 6, 215.
- 14 D. K. Roh, W. S. Chi, H. Jeon, S. J. Kim and J. H. Kim, Adv. Funct. Mater., 2014, 24, 379.
- 15 O. K. Varghese, M. Paulose and C. A. Grimes, Nat. Nanotechnol., 2009, 4, 592.
- 16 K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. Latempa, M. Thelakkat and C. A. Grimes, *Nano Lett.*, 2008, 8, 1654.
- 17 R. Lü, W. Zhou, K. Shi, Y. Yang, L. Wang, K. Pan, C. Tian, Z. Ren and H. Fu, *Nanoscale*, 2013, 5, 8569.

- 18 G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko and C. A. Grimes, *J. Mater. Res.*, 2004, **19**, 628.
- 19 S. Joo, I. Muto and N. Hara, J. Electrochem. Soc., 2010, 157, J221.
- 20 A. Zhang, M. Zhou, L. Han and Q. Zhou, *Appl. Catal. A: Gen.*, 2010, **385**, 114.
- 21 W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, *J. Am. Chem. Soc.*, 2008, **130**, 1124.
- 22 X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li and L. M. Peng, *J. Phys. Chem. C*, 2009, **113**, 20481.
- 23 G. Li, L. Wu, F. Li, P. Xu, D. Zhang and H. Li, *Nanoscale*, 2013, 5, 2118.
- 24 H. Yang, W. Fan, A. Vaneski, A. S. Susha, W. Y. Teoh and A. L. Rogach, *Adv. Funct. Mater.*, 2012, **22**, 2821.
- 25 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 2008, **130**, 4007.
- 26 M. Wang, L. Sun, Z. Lin, J. Cai, K. Xie and C. Lin, *Energy Environ. Sci.*, 2013, 6, 1211.
- 27 Y. Hou, X. Li, X. Zou, X. Quan and G. Chen, *Environ. Sci. Technol.*, 2008, **43**, 858.
- 28 A. I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze and P. Schmuki, *Chem. Mater.*, 2009, **21**, 662.
- 29 S. Kuang, L. Yang, S. Luo and Q. Cai, *Appl. Surf. Sci.*, 2009, 255, 7385.
- 30 Y. Hou, X. Li, Q. Zhao, X. Quan and G. Chen, J. Mater. Chem., 2011, 21, 18067.
- 31 Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan and G. H. Chen, *Adv. Funct. Mater.*, 2010, **20**, 2165.
- 32 Q. Liu, J. He, T. Yao, Z. Sun, W. Cheng, S. He, Y. Xie, Y. Peng, H. Cheng, Y. Sun, Y. Jiang, F. Hu, Z. Xie, W. Yan, Z. Pan, Z. Wu and S. Wei, *Nat. Commun*, 2014, 5, 5122.
- 33 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen and M. Antonietti, *Nat. Mater.*, 2009, 8, 76.
- 34 G. Liao, S. Chen, X. Quan, H. Yu and H. Zhao, J. Mater. Chem., 2012, 22, 2721.
- 35 J. Sun, J. Zhang, M. Zhang, M. Antonietti, X. Fu and X. Wang, *Nat. Commun.*, 2012, 1139.
- 36 J. Zhang, X. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Fu, M. Antonietti, and Wang X., Angew. Chem. 2010, 49, 441.
- 37 C. Pan, J. Xu, Y. Wang, D. Li and Y. Zhu, Adv. Funct. Mater., 2012, 22, 1518.
- 38 S. C. Yan, S. B. Lv, Z. S. Li and Z. G. Zou, *Dalton Trans.*, 2010, **39**, 1488.
- 39 Y. Zhang and M. Antonietti, Chem. Asian J., 2010, 5, 1307.
- 40 Y. Zhang, T. Mori, J. Ye and M. Antonietti, J. Am. Chem. Soc., 2010, 132, 6294.
- 41 J. Zhang, G. Zhang, X. Chen, S. Lin, L. Mohlmann, G. Dolega, G. Lipner, M. Antonietti, S. Blechert and X. Wang, *Angew. Chem.*, 2012, **124**, 3237.
- 42 L. Yang, S. Luo, R. Liu, Q. Cai, Y. Xiao, S. Liu, F. Su and L. Wen, *J. Phys. Chem. C*, 2010, **114**, 4783.
- 43 D. Wang, Y. Liu, B. Yu, F. Zhou and W. Liu, *Chem. Mater.*, 2009, **21**, 1198.
- 44 Q. Xiang, J. Yu and M. Jaroniec, J. Phys. Chem. C, 2011, 115, 7355.
- 45 S. Martha, A. Nashim and K. M. Parida, J. Mater. Chem. A, 2013, 1, 7816.