Nanoscale

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/nanoscale

Nanoscale

ARTICLE

COYAL SOCIETY OF CHEMISTRY

Received 00th January 20xx, Accepted 00th January 20xx Tu

DOI: 10.1039/x0xx00000x

www.rsc.org/

Anisotropic Photocurrent Response at Black Phosphorous-MoS₂ pn Heterojunctions

Tu Hong,^a Bhim Chamlagain,^b Tianjiao Wang,^a Hsun-Jen Chuang,^b Zhixian Zhou,^{*b} and Ya-Qiong Xu^{*a, c}

We investigate the photocurrent generation mechanisms at a vertical p-n heterojunction between black phosphorus (BP) and molybdenum disulfide (MoS₂) flakes through polarization-, wavelength-, and gate-dependent scanning photocurrent measurements. When incident photon energy is above the direct band gap of MoS₂, the photocurrent response denmonstrates a competitive effect between MoS₂ and BP in the junction region. In contrast, if the incident photon energy is below the band gap of MoS₂ but above the band gap of BP, the photocurrent response at the p-n junction exhibits the same polarization dependence as that at the BP-metal junction, which is nearly parallel to the MoS₂ channel. This result indicates that the photocurrent signals at the MoS₂-BP junction primarily result from the direct band gap transition in BP. These fundamental studies shed light on the knowledge of photocurrent generation mechanisms in vertical 2D semiconductor heterojunction junctions, offering a new way of engineering future two-dimensional materials based optoelectronics devices.

Introduction

Heterostructures based on two-dimensional (2D) materials have evolved into a thriving research field in the past few years. While the in-plane covalent bonds provide strong connections within each layer, van-der-Waals-like forces bond different layers together, enabling the artificial stacking of 2D crystals on top of each other without the constraint of atomic commensurability. This vertical integration of layered materials has opened up new horizons for future optoelectronic devices such as photovoltaics, light-emitting diodes, and photodetectors.¹⁻⁵ By choosing 2D materials with different band gaps and workfunctions, vertical heterostructures with tunable carrier concentrations can be precisely engineered to meet specific needs.^{1, 6} In particular, van der Waals heterostructures consisting of transition metal dichalcogenides (TMDCs) are ideal candidates due to their unique optical properties and strong light-material interactions.⁷⁻¹¹ For example, 2D p-n heterojunctions can be realized by simply stacking two TMDC materials together.^{6, 12-14} In contrast to conventional chemically doped p-n homojunctions, this 2D structure provides an abrupt transition between the p-type and the n-type materials while concerns of lattice mismatches between materials are eliminated,⁵ offering new possibilities for designing semiconductor devices.

Recently, black phosphorous (BP) has been demonstrated as a novel 2D material for electronics and optoelectronics.¹⁵⁻¹⁸ While the band gap of bulk BP is 0.3 eV, its few-layer structures have a thickness-dependent direct band gap ranging from 0.3 eV to 2 eV.¹⁹⁻²² Few-layer BP based field-effect transistor and phototransistor have been demonstrated to have a mobility up to $10000 \text{ cm}^2/\text{V}$ ·s and photoresponsivity up to 4.8 mA/W, respectively.^{15, 17, 23} By stacking few-layer BP and molybdenum disulfide (MoS₂), a vertical p-n junction can be built to achieve a maximum photocurrent response of 418 mA/W,¹³ much larger than the photoresponsivity of photodetectors based on only BP or MoS₂.²⁴⁻²⁶ To further improve its photoresponsivity, it is important to investigate the photocurrent generation mechanisms of this novel heterostructure.

Here, we demonstrate a vertical p-n heterojunction between BP and MoS_2 flakes. The photocurrent response at this p-n junction has been investigated through spatially resolved photocurrent measurements. If the photon energy is above the direct band gap of MoS_2 , the photocurrent signal at the p-n junction shows a competitive effect between BP and MoS_2 . In contrast, upon 1550 nm laser illumination, the maximum photocurrent occurs when the excitation laser is polarized nearly along the MoS_2 channel (or perpendicular to the BP channel), similar to the photoresponse behaviour at the BP-metal junction. This result indicates that the relatively low energy photons can only excite the electrons in the valence band of BP into its conduction band, which are subsequently injected into the MoS_2 channel to induce photocurrent signals at the junction.

^{a.} Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.

^{b.} Department of Physics and Astronomy, Wayne State University, Detroit, MI, USA.

^c Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.
* Address correspondence to <u>yaqiong.xu@vanderbilt.edu</u> and zxzhou@wayne.edu.

Journal Name

Results and discussion

To fabricate BP-MoS₂ junction devices, MoS₂ thin flakes were first mechanically exfoliated from a bulk MoS₂ crystal onto a degenerately doped 290 nm SiO₂/Si substrate, while BP flakes were mechanically exfoliated from a BP crystal onto a PDMS stamp. Next, a selected BP thin flake on the PDMS stamp was placed on top of a selected MoS₂ flake on the SiO₂/Si substrate to form a BP-MoS₂ heterojunction in the overlap region using a home-built precision transfer stage. Finally, metal electrodes were defined by electron beam lithography and subsequent deposition of 5 nm Ti and 40 nm Au. Figure 1a shows the schematic illustration of a BP-MoS₂ junction device along with its optical image. The thickness of the MoS₂ and BP layers are 4.8 nm and 10.0 nm, respectively, as determined by Park-Systems XE-70 noncontact atomic force microscopy. In each MoS₂ layer, hexagonally packed molybdenum atoms are sandwiched between two layers of sulphur atoms," whereas each phosphorous atom is bonded with three neighbouring atoms to form a puckered layer (Figure 1b).²⁷ We measure the electrical property of the junction in high vacuum ($\sim 10^{-6}$ torr) with the gate voltage $V_{\rm g}$ applied to the Si substrate to adjust the carrier concentration in each material. Figure 1c presents the gate-dependent transport characteristics of the individual MoS₂ and BP layers while its semilog plot is shown in the inset. At zero gate bias, the MoS₂ and BP flakes display n-type and ptype characteristics, respectively, forming a p-n junction in the overlap region. As the gate voltage increases to 60 V, the BP crystal becomes n-doped whereas the MoS₂ layers witness an elevated electron concentration. The mobility values of MoS₂ and BP are estimated to be ~43 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$ and ~38 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$, respectively. The I-V characteristics of the BP-MoS₂ junction

Figure 1. (a) Schematic illustration of a BP-MoS₂ p-n junction. The junction area is marked by the white rectangle. Top: optical image of the junction. The electrodes are defined as E1 – E4 as marked in the image. (b) Schematic illustration of the crystal structure of the junction. (c) Gate-dependent transport characteristics for BP (red curve, measured between E3 and E4) and MoS₂ (blue curve, measured between E1 and E2) at $V_{ds} = 100$ mV, respectively. Inset: the same gate-dependent transport characteristics in a semilog plot. (d) I-V curves at various gate voltages measured between E2 and E3.

measured between electrode E2 and E3 are shown in Figure 1d at various gate voltages. Consistent with the gate-tunable transport curves, the unintentional doping at zero gate bias allows for strong rectification of drain current. This rectification ratio reduces when the carrier concentrations in the junction region are electrostatically modified. Although the observed I-V characteristics are similar to conventional p-n junctions, the electronic tunability of vertical p-n heterostructures are likely to be attributed to tunnelling-assisted interlayer recombination due to the absence of a depletion region.⁶

Besides the transport characteristics of the BP-MoS₂ p-n heterojunction, we explore its optoelectronic properties. A diffraction-limited 532 nm (2.33 eV) laser spot was focused in the p-n junction area to evaluate its performance in photocurrent response under drain bias. The size of the laser spot is about 1 μ m, which is much smaller than the BP-MoS₂ overlapped region. The photon energy is above the direct band gap of both few-layer MoS₂ (~ 1.9 eV) and BP (0.3 eV), providing high efficiency of photocurrent generation.²⁸ Figure 2a presents the I-V characteristics of the p-n junction in dark state and under various laser illumination intensities in the reverse bias region from -2 V to 0.5 V. At V_g = 0 V, the photocurrent I_{pc} (defined as $I_{illumination}$ – $I_{\text{dark}})$ generated at the p-n junction strongly depends on both drain bias and incident laser power. The highest photoresponsivity is ~ 170 mA/W at V_{ds} = -2 V and 30 μ W laser power, which is comparable to the photoresponsivity at a BP-MoS₂ p-n junction in a previous report¹³ and nearly 40 times higher than the reported BP phototransistors.¹⁵ As shown in Figure 2b, I_{nc} has a superlinear relationship with increasing laser power at a reverse drain bias, which is possibly due to nonequilibrium occupancy of intragap recombination centers at low laser powers.²⁹

Moreover, scanning photocurrent microscopy was utilized to obtain spatially-resolved photocurrent mapping of the BP-MoS₂ device to investigate the photocurrent generation process. In our experiments, a diffraction-limited 785 nm laser spot was scanned over the sample by a piezo-controlled mirror with nanometer-scale spatial resolution. Figure 3a shows the reflection image of the p-n junction between BP and MoS₂ flakes, where the edges of the electrodes are marked by grey dashed lines. The blue and purples dashed lines in these

Journal Name

Figure 3. (a) The reflection and (b) scanning photocurrent images of the BP-MoS₂ p-n junction (measured between E2 and E3) under zerogate bias. The light dashed lines mark the position of the electrode, whereas the blue and purple dashed lines mark the outline of the BP crystal and MoS₂ crystal, respectively. (c) The photocurrent intensity in the p-n junction region as a function of gate voltage. The scale bars are 4 μ m and illumination wavelength is 785 nm.

images outline BP and MoS_2 crystals, respectively. At zero gate bias, a p-n junction is formed at the BP-MoS₂ interface, leading to strong electron-hole pair separation at the junction. Separated electron-hole pairs induce remarkable photocurrent signals (Figure 3b), which can be suppressed when modulating the electrostatic gating in either the positive or negative direction (Figure 3c). This result may be attributed to the increase of the interlayer recombination rate due to the accumulation of one type of majority carriers.⁵ In addition, electrostatic gating can also modulate the build-in electric field at the MoS_2 -BP interface, which may also contribute to the gate-dependent photocurrent. To further explore the relative contributions of different photocurrent generation mechanisms to the overall photocurrent response, we performed polarization-dependent photocurrent measurements of the BP-MoS₂ p-n junction under laser illumination with different wavelengths. The direction of the polarization is defined as shown in Figure 4a, where 0° and 90° denote the directions parallel to the edge of electrodes at MoS₂ and BP sides, respectively. As shown in Figure 4b, when the $\mathsf{BP}\text{-}\mathsf{MoS}_2$ p-n heterojunction is excited by 532 nm laser, the photocurrent signals are maximized when the laser polarization direction is perpendicular to the MoS₂ channel or nearly along the edge of electrodes on the MoS₂ side (-30°). The photocurrent response at the metal contacts with 532 nm illumination can hardly be identified. These signals may be overshadowed by the strong photocurrent response at the junction region. Interestingly, the photocurrent response displays a different signature under 1550 nm illumination, where the maximum photocurrent signals are observed when the laser polarization direction is perpendicular to the electrode edges on the MoS_2 side (90°) and parallel to the electrode edges on the BP side (Figure 4c and 4d). Raman spectroscopy was performed to determine the orientation of the BP flake.³⁰ The x direction of BP is at about 30°, indicating the intrinsic anisotropy of BP absorption does not dominate the polarization-dependent photocurrent generation at the junction.

Different polarization dependences of the photocurrent

Figure 4. Photocurrent images of the BP-MoS₂ junction upon illumination with different wavelength (measured between E1 and E4 electrodes): (a) 532 nm and (c) 1550 nm. The direction of 0° and 90° are defined as marked in the image, where 0° is the direction parallel to MoS₂ electrode edge. Normalized photocurrent intensities in the BP-MoS₂ p-n junction area when illuminated with linearly-polarized (b) 532 nm and (d) 1550 nm laser. (e) Photocurrent image and (f) normalized photocurrent intensity at the BP-metal junction (measured between E3 and E4 electrodes). Schematic diagrams show photocurrent generation mechanisms when the junction is excited by (g) 532nm laser and (h) 1550 nm laser, respectively. The scale bars are 4 μ m. The powers for 532 nm and 1550 nm lasers are 1 μ W and 35 μ W, respectively.

Nanoscale Accepted Manuscrip

response at the $BP-MoS_2$ are attributed to different under 1550 nm illumination. Although photothermoelectric photocurrent generation mechanisms. As shown in Figure 4g, effect also contributes to the photocurrent generation, this when the BP-MoS₂ junction is excited by 532 nm (2.33 eV) effect is only expected to play a negligible role.⁶ Another issue to consider is that the absorption of BP is polarization-sensitive laser, the electrons in the valence bands of both MoS₂ and BP depending on its crystal axis.^{30, 32} However, in our experiment, can be excited to their conduction bands, respectively. As a the polarization directions that generate the maximum result of the Fermi level alignment at the BP-MoS₂ junction, a type-II heterostructure is formed with the valence band photocurrent signals in the junction region are different for maximum of MoS₂ much lower than that of BP, leading to a 532 nm and 1550 nm illumination, whereas the BP crystal axis much larger valence band offset than conduction band offset. orientation stays the same. This result may indicate that the Both photogenerated electron-hole pair dissociation and direction-dependent absorption of BP is not likely a dominant tunneling-mediated interlayer recombination factor that determines the photocurrent polarization between majority carriers at bottom (top) of the conduction (valence) dependence at the MoS₂-BP junction. band of MoS₂ (BP) are expected to contribute the photocurrent generation at the BP-MoS₂ junction. However,

Conclusions

To sum up, we fabricated a vertical heterostructure based on BP and MoS₂ Flakes. This structure displays strong current rectifying characteristics similar to a conventional p-n junction at zero gate bias. The photocurrent generation mechanisms at the BP- MoS₂ p-n heterojunction is further investigated by gate-, wavelength-, and polarization-dependent scanning photocurrent microscopy. When the incident photon energy is above the direct band gap of MoS₂, the photocurrent generation in the junction region depends on a competitive effect between BP and MoS₂. In contrast, if the incident photon energy is below the band gap of MoS₂ but above the band gap of BP, the photocurrent response at the p-n junction primarily results from the direct band gap transition in BP. Our studies suggest that we may develop high-performance optoelectronic devices by further optimizing the junction structure and improve light-matter interactions by changing its

Acknowledgements

This work was supported by the National Science Foundation (ECCS-1055852 and CBET-1264982 to YX; ECCS-1128297 and DMR-1308436 to ZZ).

Notes and references

- 1. W. J. Yu, Y. Liu, H. L. Zhou, A. X. Yin, Z. Li, Y. Huang and X. F. Duan, Nat Nanotechnol, 2013, 8, 952-958.
- 2. Y. Li, F. Qian, J. Xiang and C. M. Lieber, Materials today, 2006, 9, 18-27.
- 3. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian and A. Javey, Proceedings of the National Academy of Sciences, 2014, 111, 6198-6202.
- 4. W. J. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou and L. J. Li, Sci Rep, 2014, 4, 3826.
- 5. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam, Acs Nano, 2014, 8, 1102-1120.

photogenerated electron-hole pair at the BP-MoS₂ junction: 1) Photogenerated holes in MoS₂ drift to BP since the valence band maximum of MoS_2 is much lower than that of BP and 2) photogenerated electrons flow either from BP to MoS₂ or from MoS_2 to BP that depends on the polarity of the conduction band offset. The polarization-dependent photocurrent at the junction area is a competitive effect between BP and MoS₂. In this typical device, the first pathway is dominant under the illumination of 532 nm laser. Photogenerated holes in the valence band of MoS₂ can flow to BP through a large band offset across the sharp interface, leading to strong photocurrent response. Indeed, this expectation has been confirmed by our polarization-dependent photocurrent polarization. measurements, where the photocurrent response at the MoS₂-BP junction is polarized to the direction perpendicular to the MoS₂ channel. This is similar to the phenomenon observed at MoS₂-metal junctions, where the maximum photocurrent response occurs for the light polarized perpendicularly to the MoS₂ channel when incident photon energy is above its band Upon illumination of 1550 nm (0.8 eV) laser, the photocurrent signals primarily result from the direct band gap transition in BP since the incident photons cannot provide enough energy to excite electrons of MoS₂ from its valence band to its conduction band. Under this circumstance, the second pathway will become important (Figure 4h). Moreover, the photocurrent signals induced by two different pathways have

the same polarity (Figure 4a and 4c), suggesting electrons flow

from BP to MoS_2 in the second pathway. In addition, the

maximum photocurrent response occurs when the incident

light is polarized along the direction of electrode edges at the

BP side (90°) , which follows the polarization dependence of

photocurrent response at the BP-metal junctions (Figure 4e

and 4f). This further confirms that the photocurrent response

at the BP-MoS₂ junction primarily results from the

photogenerated electrons in BP. All the devices we tested

display the same polarization dependency in the junction area

gap due to photovoltaic effect.³¹

the recombination induced photocurrent response has an opposite photocurrent polarity in the junction region

compared to the measured photocurrent signals. Therefore,

photogenerated electron-hole pair dissociation becomes

important. There are two pathways that can separate a

Journal Name

- Journal Name
- C. H. Lee, G. H. Lee, A. M. van der Zande, W. C. Chen, Y. L. Li, M. Y. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone and P. Kim, *Nat Nanotechnol*, 2014, 9, 676-681.
- L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto and K. S. Novoselov, *Science*, 2013, **340**, 1311-1314.
- A. Kumar, J. Kumar and P. K. Ahluwalia, AIP Conference Proceedings, 2012, 1447, 1269-1270.
- Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, *Nat Nanotechnol*, 2012, 7, 699-712.
- A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao and X. Xu, *Nat Phys*, 2014, **10**, 130-134.
- D. Jariwala, V. K. Sangwan, C.-C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon and M. C. Hersam, *Proceedings of the National Academy of Sciences*, 2013, **110**, 18076-18080.
- 12. R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang and X. Duan, *Nano Letters*, 2014, **14**, 5590-5597.
- Y. X. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. J. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. F. Xu and P. D. Ye, Acs Nano, 2014, 8, 8292-8299.
- 14. M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdorfer and T. Mueller, *Nano Letters*, 2014, **14**, 4785-4791.
- M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H.
 S. J. van der Zant and A. Castellanos-Gomez, *Nano Letters*, 2014, 14, 3347-3352.
- 16. T. Hong, B. Chamlagain, W. Lin, H. J. Chuang, M. Pan, Z. Zhou and Y. Q. Xu, *Nanoscale*, 2014, **6**, 8978-8983.
- L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen and Y. B. Zhang, *Nat Nanotechnol*, 2014, **9**, 372-377.
- 18. H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. F. Xu, D. Tomanek and P. D. D. Ye, Acs Nano, 2014, 8, 4033-4041.

- 19. Y. Takao and A. Morita, *Physica B & C*, 1981, **105**, 93-98.
- 20. M. Baba, F. Izumida, A. Morita, Y. Koike and T. Fukase, *Jpn J Appl Phys* 1, 1991, **30**, 1753-1758.
- 21. Y. Akahama, S. Endo and S. Narita, *J Phys Soc Jpn*, 1983, **52**, 2148-2155.
- 22. A. Morita, Appl Phys a-Mater, 1986, 39, 227-242.
- 23. J. Qiao, X. Kong, Z.-X. Hu, F. Yang and W. Ji, *Nature Communications*, 2014, **5**, 4475.
- 24. M. Engel, M. Steiner and P. Avouris, *Nano Letters*, 2014, **14**, 6414-6417.
- 25. W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena and J. Joo, *Advanced Materials*, 2012, **24**, 5832-5836.
- 26. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic and A. Kis, *Nat Nanotechnol*, 2013, **8**, 497-501.
- H. Asahina, K. Shindo and A. Morita, J Phys Soc Jpn, 1982, 51, 1193-1199.
- 28. C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam and L. J. Lauhon, *The Journal of Physical Chemistry Letters*, 2013, 4, 2508-2513.
- V. Klee, E. Preciado, D. Barroso, A. E. Nguyen, C. Lee, K. J. Erickson, M. Triplett, B. Davis, I. H. Lu, S. Bobek, J. McKinley, J. P. Martinez, J. Mann, A. A. Talin, L. Bartels and F. Léonard, *Nano Letters*, 2015, **15**, 2612-2619.
- 30. X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu and F. Xia, *Nat Nanotechnol*, 2015, **10**, 517-521.
- T. Hong, B. Chamlagain, S. Hu, S. M. Weiss, Z. Zhou and Y.-Q. Xu, Acs Nano, 2015, 9, 5357-5363.
- 32. H. Yuan, X. Liu, F. Afshinmanesh, W. Li, G. Xu, J. Sun, B. Lian, A. G. Curto, G. Ye, Y. Hikita, Z. Shen, S.-C. Zhang, X. Chen, M. Brongersma, H. Y. Hwang and Y. Cui, *Nat Nanotechnol*, 2015, **10**, 707-713.