Nanoparticles Speckled by Ready-to-Conjugate Lanthanide Complexes for Multimodal Imaging

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Nanoscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>NR-ART-02-2015-000959.R1</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Paper</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>27-Apr-2015</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Biju, Vasudevan; National Institute of Advanced Industrial Science and Technology, Japan, Health Technology Research Center
| | Hamada, Morihiko; AIST, Health Research Institute
| | Ono, Kenji; Nagoya University, Department of Brain Life Science, Research Institute of Environmental Medicine
| | Sugino, Sakiko; National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute
| | Ohnishi, Takashi; National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute
| | Edakkattuparambil, Shibu; IIT Madras, Chemistry
| | Yamamura, Shohei; AIST, Health research institute
| | Sawada, Makoto; Nagoya University, Department of Brain Life Science, Research Institute of Environmental Medicine
| | Nakanishi, Shunsuke; Kagawa University, Department of Advanced Materials Science
| | Shigeri, Yasushi; AIST, AIST Kansai
| | Wakida, S; National Institute of Advanced industrial Science and Technology (AIST), Human Stress Signal Research Center |
Nanoscale Speckled by Ready-to-Conjugate Lanthanide Complexes for Multimodal Imaging

Vasudevanpillai Biju a,b,∗ Morihiko Hamada a,c Kenji Ono d, Sakiko Sugino a, Takashi Ohnishi a,c Edakkattuparambil Sidharth Shibu a, Shohei Yamamura a, Makoto Sawada, Shunsuke Nakanishi, Yasushi Shigeri a, Shin-ichi Wakida a

Multimodal and multifunctional contrast agents receive enormous attention in the biomedical imaging field. Such contrast agents are routinely prepared by the incorporation of organic molecules and inorganic nanoparticles (NPs) into host materials such as gold NPs, silica NPs, polymer NPs, and liposomes. Despite their non-cytotoxic nature, the large size of these NPs limits the in vivo distribution and clearance and inflames complex pharmacokinetics, which hamper the regulatory approval for clinical applications. Here we report a unique method that brings magnetic resonance imaging (MRI) and fluorescence imaging modalities together in nanoscale entities by the simple, direct and stable conjugation of novel biotinylated coordination complexes of gadolinium (III) to CdSe/ZnS quantum dot (QD) and terbium (III) to super paramagnetic iron oxide NP (SPION), but without any host material. Successively, we evaluate the potentials of such lanthanide-speckled fluorescent-magnetic NPs for bioimaging at single-molecule, cell and in vivo levels. The simple preparation and small size make such fluorescent-magnetic NPs promising contrast agents for biomedical imaging.

I. Introduction

In vivo multimodal imaging has the potentials to precisely pinpoint the anatomy and physiology associated with the onset and progression of diseases such as cancer. With the infiltration of molecular and nanomaterials contrast agents into the clinical settings, the quality and precision of biomedical imaging technology have significantly refined in the recent past. Integration of two or even more contrast agents of individual imaging modalities, each complementing the limitation of other agents, into a nanoscale entity is fundamental to multimodal technologies. Such contrast agents are routinely prepared by the combination of techniques such as magnetic resonance imaging (MRI), ultrasonography, positron and single photon emission tomography (PET/SPECT), and X-rays-based computed tomography (CT). Nonetheless, some of these techniques pose radiation hazard. Thus, nanomaterials incorporated with contrast agents for fluorescence and magnetic resonance attract much attention for non-invasive in vivo multimodal imaging, but without any concern about hazardous radiation.1–5

Fluorescent and paramagnetic materials for the construction of multimodal NPs are routinely recruited from among visible/NIR dyes, semiconductor quantum dots (QDs),7,26 upconversion NPs (UCNPs)27–29 carbon NPs,30,31 noble metal QCs,32–35 lanthanide ions,31,32 SPION,11–14,24,25,32 oxide36–39 or vanadate40,41 of gadolinium, and coordination complexes of lanthanides6,10,17,22. Host materials such as NPs of silica,42 polymers,43 lipids44 and carbon45 have been extensively exploited for accommodating two or more such contrast agents into nanoscale entities through host-guest interactions involving hydrogen bonding,46 hydrophobicity,47 π-stacking,48 nanopore-filling,49 covalent or coordinate bonding,50 and stimuli-responsive molecular gates51. Additionally, the large surface area, unique pores, and versatile chemistry of the host materials allow one for recruiting drugs/genes, molecules such as antibodies and peptides for targeted labelling, and certain stimuli for the release/delivery of contrast agents or drugs/genes.52,53 Nonetheless, the large size of the final product, which is largely contributed by the host material, poses a major challenge in both their distribution to the parenchymal target organ/lesion and clearance from the body. Therefore, simple and small-size multimodal contrast agents are constantly sought-after towards practical applications in the clinical settings by the direct doping, co-precipitation, adsorption, or non-covalent or covalent conjugation of a fluorophore to a paramagnetic agent or vice versa.

The covalent conjugation offers stability to multimodal contrast agent when compared with those prepared by doping, co-precipitation, or adsorption. For example, stable contrast agents for MRI and fluorescence imaging are prepared by the conjugation of Gd(III) complexes to organic dyes such as porphyrins,5,6,7,24,25,26,28,31,32,46,47,48,51 fluorescent9 and Cy5.5,9,10 QDs such as CulnS2/ZnS,17,18 silicon,19 InP,20 CdSeTe/CdS,21 CdSe/ZnS22 and CdTe/ZnS23 persistent luminescence NPs,34 UCNP,27–29 and gold QCs.32–35 Similarly, fluorescent-magnetic bimodal NPs were prepared by the conjugates of dye molecules such as Cy5.5,11 rhodamine,1,2,13 Congo red13 and Eu (III) complex,14 QDs such as CdSe/ZnS24 and CdTe25 and Au QCs25 to SPION have been
found attractive for the combined MRI and fluorescence imaging. Gd(III) complexes employed in multimodal NPs are prepared using ligands such as 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or diethyltriamine pentaacetic acid (DTPA) functionalized with N-hydroxysuccinimide (NHS) or biotin for the successive conjugation to amine or streptavidin functionalized fluorophores. Although the synthesis of such ligands are doable in a typical organic chemistry laboratory, simple and cost-effective preparation of ready-to-conjugate complexes of lanthanides such as Gd (III), Eu (III) and Tb (III) is highly desirable for biomedical applications. Here we report simple and small-size fluorescent-magnetic bimodal NPs prepared by the direct conjugation of novel biotinylated DOTA-Gd(III) complexes to streptavidin-functionalized CdSe/ZnS QDs and biotinylated DOTA-Tb(III) complexes to streptavidin-functionalized SPION, but without any sophisticated chemical reaction or host material. A simple biotinylated-DOTA derivative prepared by the direct condensation between one of the carboxylic acid groups in DOTA and o-bromopropyl ester of biotin is utilized in the preparation of the complexes and the fluorescent-magnetic NPs. Successively, these NPs were conjugated by epidermal growth factor (EGF), and the potentials of the EGF-conjugated NPs for single-molecules, cells and in vivo imaging were evaluated in human lung epithelial adenocarcinoma (H1650) cells or B6 mice.

3. Results and Discussion

Two types of novel fluorescent-magnetic NPs prepared by the direct tethering of coordination complexes of biotinylated Gd(III)-DOTA complexes to streptavidin functionalized CdSe/ZnS QDs and biotinylated Tb(III)-DOTA complex to SPION enabled us for obtaining the combined MRI and fluorescence images in vitro and in vivo. The biotinylated complexes are prepared by the simple chemical reactions shown in Fig. 1. At first, a o-bromopropyl ester of biotin (2), which was prepared by the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-catalyzed reaction between 1,3-dibromopropane and biotin, was conjugated to one of the carboxylic groups of 1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid (DOTA) to provide the biotinylated ligand 3. Successively, biotinylated Gd (III)-DOTA complex (4) was prepared by the reaction of 3 with GdCl₃. Similarly, biotinylated Tb(III)-DOTA complex (5) was prepared using TbCl₃·6H₂O. The complexes were prepared by a procedure similar to that reported by Brittain and Desreux. We followed the formation of 5 by recording the absorption and fluorescence spectra (Fig. 2A) of the reaction mixture at different time intervals. Also, MALDI-TOF mass spectra was employed in the characterization of the complex. The characteristic fluorescence band of Tb(III) complex with the main band ca 545 nm, which is due to the 5D₄→7F₅ transition in Tb (III) was helpful for the detection of 5. Further, we confirmed the formation of 5 from an increase and saturation in the fluorescence intensity (Inset of Fig. 2A) of 5 with time under reaction, which is due to the replacement of water ligands of Tb (III) by oxygen (COOH groups) and nitrogen (cyclen ring) atoms of 3 and the associated absorption-energy transfer-emission (AETE) mechanism. On the other hand, the fluorescence intensity of an aqueous solution of Tb (III) ions, but without 3, remained intact upon heating. These results confirm the formation of 4 and 5. Details of preparation and characterization of 2-5 are provided in the experimental section. The fluorescent-magnetic NPs, 6 and 7, were prepared by the direct tethering of 4 and 5 to the biotin-binding sites of streptavidin moieties on QD and SPION, respectively (Fig. 1). Fig. 2B and C shows the TEM images of 6 and 7.

Fig. 1. Preparation of biotinylated DOTA (3) and ready-to-bioconjugate complexes of Gd(III) (4) and Tb(III) (5), and illustration of lanthanide-speckled fluorescent-magnetic NPs (6 and 7) prepared by the conjugation of biotinylated Gd(III)-DOTA to streptavidin-functionalized CdSe/ZnS QDs or biotinylated Tb(III)-DOTA to streptavidin-functionalized SPION.

Fig. 2. (A) Absorption and (inset) fluorescence spectra of 260 nM aqueous solution of 5 recorded at 20 min intervals under continuous heating during the preparation of the complex. (B,C) TEM images of 6 (B) and 7 (C). The wavelength of excitation light was 230 nm in A.
To evaluate whether or not the conjugation of 4 to QDs affects the properties of QDs, we recorded and analyzed the steady-state absorption (traces a-d in Fig. 3A) and photoluminescence (PL, traces a’-d’ in Fig. 3A) spectra and the nanosecond PL decay profiles (inset of Fig. 3A) of QD655 and QD705 before and after the conjugation of 4. As seen in Fig.3A, the absorbencies of QDs (QD655 or QD705) are not affected by 4. The slight difference in the optical density (<300 nm) of 6 when compared with that of pristine QD is attributed to the absorption of UV light by 4. Further, the changes in the PL quantum efficiencies \(\Phi_{PL} \) of QD655 and \(\Phi_{PL} \) = 51% for QD705 and PL lifetimes \(\tau_{PL} \) = 12 ns for QD655 and \(\tau_{PL} \) = 41 ns for QD705) of QDs after conjugation of 4 were negligible. Here, the \(\Phi_{PL} \) values of QDs were provided by the manufacturer; whereas, the PL lifetime values were experimentally determined by fitting the PL decay profiles to the third order kinetics. We assume that the spatial separation between the complex and the QD, which is provided by the polymer and streptavidin coating on QD, preserves the physical properties of the QD core in 6. These observations suggest that stable multimodal NPs can be routinely constructed by the direct tethering of ready-to-conjugate lanthanide complexes to NPs such as QDs and SPIONs, but without considerably affecting the size or properties of the NPs.

Lanthanide-speckled fluorescent-magnetic NPs for cell labeling and in vivo applications were prepared by the recruitment of 1 equivalent of biotinylated EGF ligand to the surface of QD or SPION, which was prior to the tethering of multiple coordination complexes (4 or 5). Here, EGF is selected by considering the over-expression of EGF receptors (EGFR) in the cell line used, which is human lung epithelial adenocarcinoma cells (H1650). At first, human recombinant EGF was biotinylated using biotin sulfo-NHS ester, and purified by gel-filtration on a Sephadex G25 column. The biotinylated EGF molecules were tethered (at 1:1 EGF-biotin:QD/SPION) to streptavidin on QD/SPION over 30 min at room temperature, which was followed by the conjugation of 4 to QD and 5 to SPION at 1:1 equivalents (4:QD and 5:SPION).

The binding of biotinylated EGF molecules to streptavidin on the NPs was tested by Förster resonance energy transfer (FRET) measurements. Here, a FRET system was constructed using CdSe/ZnS QD as the energy donor and AlexaFluor633 as the acceptor. At first, AlexaFluor633-labeled EGF was prepared by the reaction between biotinylated EGF (50 µM, 6 µM) and NHS ester of AlexaFluor633 (50 mL, 30 µM) over 1h at room temperature. The labeled EGF molecules were purified by repeated (3 times) dialysis against a membrane for 2kDa, during which low molecular mass compounds such free AlexaFluor633 NHS ester were eliminated. The binding of biotinylated EGF-AlexaFluor633 conjugate to streptavidin-QD conjugate (\(\text{Em}_{\text{max}} = 605 \text{ nm} \)) was analyzed by obtaining the fluorescence spectra of mixtures of the two at different concentrations. As the concentration of EGF-AlexaFluor633 was increased in the mixture, the PL intensity of QDs (energy donor) was decreased, which was associated with the appearance and enhancement of the characteristic fluorescence band of AlexaFluor633 (Fig. 3B). These results suggest FRET from QD to AlexaFluor633, which is due to the binding of biotinylated EGF to streptavidin on QDs.

The potential of EGF-conjugated fluorescent-magnetic NPs for bioimaging in vitro is tested in H1650 cells. The cells cultured up to 70% confluence were washed with phosphate buffered saline (PBS) and treated with 1 nM solutions of EGF-QD, EGF-6 or EGF-7 conjugate for 1h at ice-cold conditions. During this step, the cells were labeled by the conjugate, which is due to the specific binding of EGF ligands to EGFR molecules over-expressed in the plasma membrane of H1650 cells. The labeled cells were copiously washed with PBS, harvested using trypsin, and made into pellets for MRI and fluorescence imaging. We selected cell pellets instead of single cells because of the technical challenge associated with MRI of single cells. MRI of cell pellets labeled with biomarker-specific contrast agents has been exploited in the characterization of biomolecules, tumor cells, and apoptosis. The fluorescence image and MRI of QDs, SPION, 4-7, and H1650 cell pellets with or without labeling using EGF-6 or EGF-7. The NIR (705 nm) PL of QDs, (Figs. 3A and 4B), and the enhancement of T1- and T2-weighted MRI contrasts of cells labeled with EGF-6 show the potentials of NIR QD specked by Gd(III) complex for multimodal bioimaging. The bright MRI contrast of labeled cells (Fig. 4C), when compared with cells that are not labeled (Fig. 4C) and solutions of 4 (Fig. 4Cd) and 6 (Fig. 4Ca) is attributed to the changes in the magnetic relaxation of the proto-organelles such as EGFR and endosomes of labeled cells. Nonetheless, the T1-weighted contrasts of 4 and 6 in the solution phase are comparable to that of a QD solution (Fig. 4Ce) or the buffer (Fig. 4Dh). The poor contrast of samples when compared with the labeled cells is attributed to the free diffusion of molecules or NPs in the solution phase. Enhancement in the T1-weighted MRI contrast was also observed for cells labeled with EGF-7. As SPION-based particles are ideal T2-contrast agents,
we have recorded and analyzed the T2-weighted MRI of sample solutions (5, SPION, and 7) and H1650 cells labeled with EGF-7. Interestingly, an enormous increase in the MRI (T2) contrast (darkening) of labeled cells [Fig. 4D (T1) to Fig. 4E (T2)] was observed, which is comparable to the darkening of T2-weighted MRI contrasts of a solution of SPION [Fig. 4D (T1) to Fig. 4E (T2)]. Nevertheless, the absorption band in the UV region (Fig. 3A) and prominent fluorescence bands in the blue-green regions of 5 are major limitations of 7 for fluorescence-based bioimaging. Thus, we focus our further studies on EGF-6, where the properties of QDs such as exceptional brightness and photostability, broad absorption of light in the Vis-NIR region, large Stokes shift and NIR PL (655 or 705 nm) are combined with the MRI contrast of Gd(III) complex for bioimaging.

Fluorescence microscopy was employed in the single-molecule detection of EGF-6 conjugate in living cells. Here, H1650 cells cultured up to 70% confluence in 60 mm tissue culture plates were labeled using a 1 nM solution of EGF-6 or EGF-QD conjugate. The labeling was carried out at ice-cold conditions, which minimizes the endocytosis of the conjugate during the labeling step. Further, the nuclei of the cells were stained with Syto21 or Syto13 dye by following the methods reported in the literature.24,32 The labeled cells were copiously washed with PBS, the medium was changed to Dulbecco’s Modified Eagles Medium (DMEM), excited with 400 nm (for Syto dyes) or 532 nm (for QDs) laser beam, and observed in an inverted optical microscope. Fluorescence image of the cells labeled using EGF-6 conjugate (Fig. 5A) indicates efficient intracellular delivery of the conjugate, which is comparable to the endocytosis of EGF-QD conjugate (Fig. 5B, C). On the other hand, control cells incubated with 6 or QD, but without any EGF do not show any intracellular fluorescence. The intracellular delivery of the conjugate takes place by binding to EGFR, which is over-expressed in the plasma membrane of H1650 cells, and subsequently, the EGFR-EGF-6 assembly is engulfed by receptor-mediated endocytosis.

To analyse the binding of EGF to EGFR and the subsequent intracellular pathway of EGF-6/EGF-QD conjugates, H1650 cells were labeled with simple EGF-QD conjugate and the time- and intensity- gated single-molecule fluorescence of EGF-EGF-6 complexes were recorded. Here, EGFR in the plasma membrane of H1650 cell was activated by applying a solution (1 nM) of EGF-QD conjugate. As seen in Fig. 5C, immediately (<15 min) after the activation, EGF-EGFR complexes were present
preferentially in the cell membrane, mostly attached to the filopodia or lamellipodia. The blinking and PL intensities of individual fluorescence spots in the cell membrane were comparable to that of pristine QDs tethered on a glass substrate (Fig. 5D, E), validating the detection of EGFR single-molecules. Fig. 5F shows PL intensity histograms of fluorescence spots detected at different time intervals after the activation of EGFR with EGF-QD conjugate. Interestingly, a uniform distribution of EGFR molecules, with fluorescence intensities equivalent to 1 or 2 QDs, was detected immediately (<15 min) after the activation (Fig. 5Fb). However, brighter fluorescence spots were emerged with time under incubation. Temporal changes in the intensities of fluorescence spots, which are assigned to the dimerization and clustering of receptors, was examined by the correlation of the time- and intensity-gated fluorescence images of >500 single molecule receptors in the cell membrane with that of QDs tethered on a glass substrate. Within 15 min of post activation of EGFR, majority (>80%) of the receptors were bound with one or two EGF-QD conjugates (Fig. 5Fb). During the next 15 to 30 min, the occurrences equivalent to dimers and larger clusters were increased. As a result of this increase, the histogram shifted to the higher intensity side (Fig. 5Fc,d). The fluorescence spots with intensity equivalent to that of a single QD are attributed heterodimers of EGFR, i.e. EGFR pre-dimers (Fig. 5Fe) ligated by only one EGF-QD conjugate (Fig. 5FF). An increase in the number of fluorescence spots with intensity equivalent that of two QDs suggests the formation of signaling dimers (Fig. 5Fg and h) as a result of either the activation of each pre-dimer by two EGF-QD conjugates (Fig. 5Fg) or association and disproportionation of two heterodimers (Fig. 5Ff) into a signaling dimer and a pre-dimer, which is indicated in Fig. 5FF-h. The high intensity fluorescence spots, which dominated with time under incubation, suggest clustering of dimers.

The larger clusters are eventually transported into the cytoplasm and subsequently accumulated in the perinuclear lysosome organizing region (Fig. 5A,B). These results suggest that EGF-QD and EGF-6 conjugates allow us for detecting and following single-molecules, dimers and clusters of EGFR in living cells.

Despite the unique optical and magnetic properties of nanomaterials, toxicity is an unsolved central issue that hampers their biological applications. Toxicity of nanomaterials can be size-, surface- or materials-related. Therefore, a general solution to the toxicity of nanomaterials is far from reality, and case-by-case analysis is often necessary. We examined the cytotoxicity of EGF-6 conjugate by the assay of mitochondrial reductase enzyme activity (MTT assay) in H1650 cells labeled with the conjugate and compared the results with that of unlabeled cells and cells labeled with EGF-QD conjugates. The viability of cells is retained above 90% (Fig. 5FfOh). The high intensity fluorescence spots, which dominated with time under incubation, suggest clustering of dimers.

This journal is © The Royal Society of Chemistry 2012

Fig. 6. Cytotoxicity assay and in vivo imaging. (A, B) Histograms of MTT assays for H1650 cells labeled with different concentrations of (A) 6-EGF and (B) QD-EGF conjugates. (C-H) Images of a B6 mouse: (C) bright-field optical and (D) fluorescence images recorded before injection of EGF-6 conjugate. (E-H) fluorescence images and MRI recorded after the intravenous injection of a 20 nM solution of EGF-6 conjugate: (E) fluorescence image acquired immediately after the injection, (F) fluorescence image acquired at ca 30 min post injection, (G) T1-weighted MRI acquired at ca 30 min post injection, and (H) fluorescence image acquired at ca 2 h post injection.
biocompatibility make NPs decorated with multiple coordination by DBU (980 µL, 6.55 mmol). Here, biotin was dissolved in NPs are summarized in Fig. 1. First, ω- bromopropyl ester of biotin purification and characterization of the complexes and fluorescent therapy.

2. Experimental Section

2.1. Materials

All the chemicals and solvents used in the preparation, purification and characterization of the complexes and fluorescent-magnetic NPs were analytical grade. Streptavidin-functionalized CdSe/ZnS QD samples (Em\text{max} = 605/655/705 nm) and AlexaFluor633- NHS ester were obtained from Life Technologies and SPION was from NANOCS. Biotin and DOTA were obtained from Wako Chemicals, lanthanide salts and DBU were from Sigma-Aldrich, and 1,3-dibromopropane was from Tokyo Chemical Industries.

Steps involved in the preparation of biotinylated Gd(III) and Tb(III) complexes and the lanthanide speckled fluorescent-magnetic NPs are summarized in Fig. 1. First, ω-bromopropyl ester of biotin (2) was prepared by the reaction between biotin (1 g, 4.09 mmol) and 1,3-dibromopropane (2.42 g, 12.0 mmol), which was catalyzed by DBU (980 µL, 6.55 mmol). Here, biotin was dissolved in acetonitrile (25 mL) by the addition of DBU, which was followed by the addition of 1,3-dibromopropane. This reaction mixture was heated at 82 °C for 12 h with vigorous stirring. Successively, the reaction mixture was cooled at room temperature, during which a light white precipitate was formed. The amount of the precipitate was increased with the drop-wise addition of n-hexane (less than 4 mL) to the crude reaction mixture. The white precipitate was collected by filtration through a Whatman grade 1 filter paper, redissolved in chloroform and purified by column chromatography on silica gel (200-400 mesh) using dichloromethane as the eluent to yield 2 in 80 %. 1H NMR (400 MHz, CDCl3): \(\delta = 1.46 \) (m, 2H), 1.70 (m, 4H), 2.18 (m, 2H), 2.35 (t, 2H), 2.74 (m, 1H), 2.94 (m, 1H), 3.16 (m, 1H), 3.47 (t, 2H), 4.21 (t, 2H), 4.34 (m, 1H), 4.56 (m, 1H), 5.16 (s, 1H), 5.56 (s, 1H); 13C NMR (100 MHz, CDCl3): \(\delta = 29, 32.5, 34, 36, 38, 45, 53, 59, 64.5, 66.5, 101, 167, 178; \) MALDI-TOF (C\text{34}, 36, 38, 45, 53, 59, 64.5, 66.5, 101, 167, 178) m/z = 689.

Ready-to-biocojugate complexes of Gd(III) and Tb(III) were prepared by the reactions of GdCl\text{3} or TbCl\text{3}, 6H\text{2}O with 3. We followed a literature method for the preparation of DOTA complexes.15 At first, aqueous solutions (1 mL each) of 3 (4.1 mg, 5.95 µmol) and GdCl\text{3} (36.9 mg, 140 µmol) were prepared and the pH of the solutions was adjusted to 8 by the addition of dil. (10 mM) NaOH solution. Next, these two solutions were mixed and heated at 60 °C for 2 h to obtain 4. Similarly, 5 was prepared from a mixture of solutions of 3 (1 mg, 1.45 µmol) and TbCl\text{3} (2 mg, 5.36 µmol), each in 1 mL water. We employed absorption, fluorescence and MALDI-TOF mass spectroscopy in the characterization of these complexes. 4: m/z (845.8) and 5: m/z (846.4).

2.2. Methods

1H and 13C NMR spectra were acquired in a JEOL 400 MHz spectrometer and MALDI/TOF mass spectra were recorded in a Bruker Microflex spectrometer. Fluorescence images of labeled H1650 cells were acquired in an inverted optical microscope (Olympus IX70) equipped with a 40x objective lens, long-pass or band-pass filters for Syto dyes and QDs, and an iXon3 EMCCD camera. Steady-state fluorescence/PL spectra were recorded using a steady-state fluorescence spectrophotometer (Hitachi FL4500). PL decay profiles were recorded using an assembly of a polychromator (Chromex-2501S) and a streak-scope (Hamamatsu-C4334). Details of PL lifetime measurements are reported elsewhere.72,73 Fluorescence images and MRI of sample solutions, cell pellets and mice were acquired using a small animal imaging system (Maestro, Perkin-Elmer) and a MRI machine (MR Technology, Inc., Japan). Fluorescence images of samples, cell pellets and mice were analyzed using the Maestro or Image-Pro Plus software (Roper Industries, Inc., USA).

Steady-state fluorescence/PL spectra were recorded using a fluorescence spectrophotometer (Hitachi FL4500). PL decay profiles were recorded using an assembly of a polychromator (Chromex-2501S) and a streak-scope (Hamamatsu-C4334). Details of PL lifetime measurements are reported elsewhere.72,73 The samples were excited using 400 nm pulses generated from the SHG crystal of an optical parametric amplifier (Coherent OPA 9400) and the fluorescence signals collected through suitable band-pass or long-
pass filters were focused at the entrance slit of the polychromator and recorded using the streak-camera.

Cytotoxicity Assay: Cytotoxicity of NPs was evaluated by MTT assay (MTT cell proliferation kit, Roche Diagnostics). Here, ca. 1 million H1650 cells/plate were inoculated into 96-well tissue culture plates (FALCON) containing DMEM supplemented with 10% FBS, and cultured at 37°C for 48 h. After the cells were copiously washed with PBS, the medium was exchanged with DMEM (without FBS) supplemented with different concentrations (0.1 to 10 nM) of EGF-QD or EGF-6 conjugate. After 1 h incubation, the cells were copiously washed with PBS and supplemented with MTT solution (10 µL/well, 5 mg/mL) and DMEM medium supplemented with 10% FBS, and cultured at 37°C for 48 h. The viabilities of unlabeled cells and those labeled with EGFOQD or EGFO were determined by the measurement of the absorbance of formazan enzyme, were dissolved overnight at 37°C.

Acknowledgements

This work was carried out under the Precursory Research for Embryonic Science and Technology (PRESTO) program of Japan Science and Technology Agency (JST). Also, this work was supported by the Japan Society for the Promotion of Science under the Kaken-hi Grant 24750029. We thank Ayami Nishioka of Kagawa University for TEM experiments.

Notes and references