Natural Product Reports

Synthetic Approaches towards Alkaloids Bearing a-Tertiary Amines

Journal:	Natural Product Reports
Manuscript ID	NP-REV-08-2015-000096.R1
Article Type:	Review Article
Date Submitted by the Author:	16-Oct-2015
Complete List of Authors:	Trauner, Dirk; University of Munich, Chemistry Hager, Anastasia; University of Munich, Chemistry Vrielink, Nina; University of Munich, Chemistry Hager, Dominik; University of Munich, Chemistry Lefranc, Julien; University of Munich, Chemistry

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

REVIEW

Synthetic Approaches towards Alkaloids Bearing α-Tertiary Amines

Anastasia Hager,[‡] Nina Vrielink,[‡] Dominik Hager, Julien Lefranc and Dirk Trauner*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

s Fakultät für Chemie und Pharmazie, Ludwig-Maximilians-Universität München, and Munich Center for Integrated Protein Science, Butenandtstr. 5 – 13, 81377 München, Germany. E-mail: <u>Dirk.Trauner@lmu.de</u>

[‡]The authors contributed equally to the review.

Alkaloids account for some of the most beautiful and biologically active natural products. Although they are usually classified along biosynthetic criteria, they can also be categorized according to certain ¹⁰ structural motifs. Amongst these, the α -tertiary amine (ATA), *i.e.* a tetrasubstituted carbon atom surrounded by three carbons and one nitrogen, is particularly interesting. A limited number of methods have been described to access this functional group and fewer still are commonly used in synthesis. Herein, we review some approaches to asymmetrically access ATAs and provide an overview of alkaloid total syntheses where those have been employed.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

- 1 Introduction
- 2 Methods used for the installation of α-tertiary amines
- **3** Homotropane Alkaloids
- 4 Histrionicotoxins
- 5 5 Lycopodium Alkaloids
- 6 Hasubanan Alkaloids
- 7 Stemona Alkaloids
- 8 Indole Alkaloids
- 9 Cephalotaxines
- 10 10 Erythrina Alkaloids
 - 11 Indolizidine and Quinolizidine Alkaloids
 - 12 Lactacystine and Salinosporamide
 - 13 Manzacidines
 - 14 Tetrodotoxin
- 15 15 Miscellaneous Alkaloids
 - 16 Conclusions
 - 17 Acknowledgements
 - 18 Notes and references

1 Introduction

- ²⁰ Alkaloids have played an important role in the development of synthetic organic chemistry, pharmacology and medicine. Once considered to be metabolic waste products, they are now known to benefit their producers in various ways, e.g. as antimicrobials, antifeedants or as mediators of ecologically beneficial
- ²⁵ interactions.¹ Though a limited number of amino acids are involved in their biosynthesis, alkaloids exhibit enormous structural variability, which is often increased through the incorporation of terpenoid and polyketide components and latestage oxidative transformations.² Reflecting their structural
- ³⁰ diversity and relatively weak basicity, alkaloids interact with a large variety of biological targets and have found many uses in human medicine.^{3, 4} In addition, they have provided inspiration for countless synthetic drugs that borrow structural motifs from their natural counterparts.
- ³⁵ The α -tertiary amine (ATA) stands out among the structural features frequently found in alkaloids.⁵⁻⁸ For the purposes of this review and in keeping with the literature, we define an ATA as a nitrogen atom bound to a sp³-hybridized carbon that bears three additional carbon-carbon bonds. The nitrogen itself can be sp³-
- ⁴⁰ hybridized as part of a primary, secondary and tertiary amine. Broadening our definition, it can also be sp²- or sp-hybridized, e.g. in an amide or isonitrile. The tetrasubstituted carbon from which the C,N-bond branches out is often stereogenic, which makes ATAs particularly interesting from a synthetic point of
- ⁴⁵ view. Our definition puts emphasis on this particular C,N-bond and avoids the confusion that is often associated with the term 'quaternary stereocenter', which, strictly speaking, refers only to a carbon atom surrounded by four other carbons.

Figure 1 shows some alkaloids and drugs with alkaloid-like ⁵⁰ properties that illustrate our definition and demonstrate that the nitrogen in ATAs (highlighted in red) can be substituted to various degrees. Memantine and huperzine A contain primary ATAs, whereas ketamine, MK-801 and histrionicotoxin 283A (HTX 283A) feature secondary ATAs, and lycopodine is representative of molecules containing a tertiary ATA. 2,2,6,6-Tetramethylpiperidine (TMP) and the alkaloid porantherine are examples for molecules featuring a twofold ATA. The dimeric alkaloid stephacidin B contains no fewer than four ATAs. Notably, the α -carbons are stereogenic in the majority of these 60 compounds.

Fig. 1 Alkaloids and synthetic molecules that contain the ATA motif.

In this review, we wish to provide a brief survey of synthetic 65 methods used to install the ATA motif and discuss their application in the total synthesis of alkaloids. The syntheses included here have been selected based on their historical significance, the intriguing structure of their target molecule, and the elegance and efficiency of the method used. The order of their 70 presentation is somewhat arbitrary, mixing biosynthetic and taxonomic categories (such as Lycopodium alkaloids), with purely structural ones (such as quinolizidine alkaloids). Generally, we have aimed to proceed from simpler target molecules to more complex ones. While our review is by no means comprehensive, 75 we hope to feature the most instructive examples for the establishment of ATAs and thus provide inspiration and valuable lessons for future work. We also hope that this review will benefit the design of synthetic pathways toward drugs and synthetic building blocks that contain α -tertiary amines.

This journal is © The Royal Society of Chemistry [year]

REVIEW

2 Methods used for the installation of α tertiary amines

Many approaches toward the installation of ATAs have been developed but only a relatively small subset of these has proven 5 popular in alkaloid total synthesis. Here, we provide a brief survey of these methods, discussing them in general terms. We classify them according to the bond that is formed in the key step and the electronic nature of the nitrogen and carbon, respectively. However, it should be noted that not all of the syntheses discussed 10 in this review fall into this simplified organizational scheme.

a) A C,C-bond is formed in the step that generates the ATA.

- The α -carbon is electrophilic. Some of the most commonly encountered methods involve the addition of carbon 15 nucleophiles to activated imines and iminium ions (Scheme 1). They include Mannich reactions, Strecker reactions, Aza-Prins reactions and the 1,2-addition of organometallic reagents to C,N-double bonds. N-Acyliminium ions are particularly powerful electrophiles in reactions of this type. A variant of the
- Heck olefination that involves enamines also falls into this category.

Scheme 1 C,C-bond formation involving electrophilic a-carbons.

• The α -carbon is nucleophilic. In an Umpolung of the above situation, the α -carbon can also serve as a nucleophile (Scheme 2). For instance, the alkylation of branched nitroalkanes or of deprotonated amino acid derivatives can be used to establish ATAs. Insertions of carbons into nucleophilic

C,H-bonds next to a C,N-bond are a member of this general category as well. α-alkylation of branched nitroalkanes:

 α -alkylation of amino acid derivatives

25

−ŃE

Scheme 2 C,C-bond formation involving nucleophilic α-carbons.

35 • Pericyclic reactions. Pericyclic reactions that form a C,C-bond in the key step have occasionally been employed to form ATAs (Scheme 3). They include Diels-Alder cycloadditions involving

1-aminodienes or 2-azadienes, as well as certain amino dienophiles, [2+2]-cycloadditions, and 1,3-dipolar cycloadditions involving nitrones and azomethine imines.

Scheme 3 C,C-bond formation involving pericyclic reactions.

• Radical reactions. Radical reactions establishing ATAs are relatively rare, but not unprecedented (Scheme 4). 5-Endo-trig and 6-endo-trig cyclizations as well as radical transfer allylations belong to this category.

Scheme 4 C,C-bond formation via radical reactions

50 b) A C,N-bond is formed in the step that generates the ATA.

• The nitrogen is electrophilic. Rearrangements that involve electron-deficient nitrogen atoms are often encountered in the formation of ATAs (Scheme 5).

This journal is © The Royal Society of Chemistry [year]

25

Scheme 5 C,N-bond formation involving electrophilic nitrogens.

They include the Curtius, Schmidt, Hofmann, Beckmann and Stieglitz rearrangements.⁵ Often, these reactions can be classified as 1,2-sigmatropic rearrangements. Related nucleophilic substitutions involving N-haloamines have been used as well. An electron-deficient nitrogen atom also plays a role in the insertion of nitrenes into C,H-bonds.

The nitrogen is nucleophilic. The formation of ATAs through nucleophilic additions or substitutions involving nitrogen is 10 fairly common (Scheme 6). The classical Michael addition falls into this category, as do $S_N 2$ ' reactions and haloaminations. For obvious reasons, S_N2 reactions are rare and mostly confined to intramolecular cases. Carbocations that react with nucleophilic nitrogen occur in the aza-Prins

reaction and the Ritter reaction. Oxidative dearomatizations have also been used in a few cases to establish ATAs.

5

15

20

1.4-addition (Michael addition) FWG oxidative dearomatization S_N2' reaction [O] aza-Prins

Scheme 6 C,N-bond formation involving nucleophilic nitrogens. EWG = electron-withdrawing group.

• Pericyclic reactions. Pericyclic reactions in which a C,N-bond is formed provide powerful means to establish ATAs (Scheme 7). Overman, Kazmaier-Claisen and 3,3-sigmatropic rearrangements of allylic isocyanides belong to this category.

4 | Journal Name, [year], [vol], 00-00

Divinyl cyclopropane rearrangements have also been used to establish ATAs.5

Overman rearrangement:

propyl-accelerated Cope rearrange

Scheme 7 A C,N-bond formation involving pericyclic reactions.

Many more methods have emerged in recent years that can be 30 used to create ATAs, such as reactions proceeding via C,Hactivation⁹ and hydroaminations.¹⁰ Since they have not yet been employed in the total synthesis of alkaloids, they are not featured in this review. Other methods, such as the Mannich reaction, Curtius rearrangement and Michael reaction, have proven to be so 35 popular in the total synthesis of alkaloids that we cannot include all instances where they have been employed in this review.

3 Homotropane Alkaloids

45

One of the first applications of Mannich reactions in the construction of ATAs occurred during the synthesis of certain 40 homotropane alkaloids. Three representatives, euphococcinine, Nmethyl euphococcine and adaline, feature an ATA in the bridgehead position of a bicyclic framework (Figure 2). These simple natural products are excreted by lady beetles (coccinellids) when threatened.^{11, 12}

Fig. 2 Representative ATA-containing homotropane alkaloids.

In 1959, Alder synthesized N-methyl-euphococcinine using a protocol analogous to the famous tropinone syntheses of Robinson^{13, 14} and Schöpf¹⁵ (Scheme 8a).¹⁶ Dehydropyrane 1 was 50 converted into ketoaldehyde 2, which was then transformed into N-methyl-euphococcinine in a one-pot process (via iminiumintermediate 3).¹⁷⁻¹⁹ A similar strategy was later adopted to synthesize the structurally related alkaloid adaline.²⁰

Throughout the years, this biomimetic Mannich strategy was adopted in other syntheses of euphococcinine and adaline.²¹⁻²³ Alternative approaches involved a 1,3-dipolar cycloaddition,²⁴ addition to an N-acyliminium ion,²⁵ Michael addition^{26, 27} and

allylic rearrangement of a cyanate to an isocyanate.28, 29

In 2010, Davis published a biomimetic synthesis of (-)euphococcinine and (-)-adaline in enantiopure form (Scheme 8b).³⁰ The key steps of these syntheses involved the s stereoselective formation of piperideine **6** and **7** from the enantiomerically pure *N*-sulfinyl aminoketones **4** and **5**, respectively.³¹ An ensuing intramolecular Mannich reaction afforded the azabicyclononane natural products.

b) Davis' synthesis of (-)-euphococcinine and (-)-adaline

10 Scheme 8 Homotropane alkaloid syntheses by Alder (1959) and Davis (2010). Ac = acetyl.

4 Histrionicotoxins

25

- In 1971, Daly isolated six different alkaloids, termed histrionicotoxins (HTXs), from skin extracts of the Colombian ¹⁵ poison arrow frog *Dendrobates histrionicus* (Figure 3).^{32, 33} They all contain a unique spirocyclic piperidine core and differ mostly in the length and the degree of saturation of the two side chains. Several histrionicotoxins were identified as inhibitors of nicotinic acetylcholine receptors,³⁴⁻³⁸ which, together with their attractive
- ²⁰ structures, prompted significant attention from the synthetic community.³⁹ The low natural abundance of these alkaloids and the fact that the frogs do not secrete HTXs in captivity made an efficient synthetic approach all the more desirable.

Fig. 3 The major members of the histrionicotoxin family.

The first total synthesis of histrionicotoxin alkaloids was reported by Kishi in 1975 (Scheme 9a).⁴⁰⁻⁴² His synthesis of octahydrohistrionicotoxin (oHTX) utilized an intramolecular acidcatalyzed aza-Michael addition to set the ATA. Amide **8** was

³⁰ converted to a 2:1 mixture of epimeric spiroketolactams 9 and 10. It was possible to transform 9 into the desired diastereoisomer 10 upon treatment with sodium methoxide.

In the same year, Corey reported the first racemic synthesis of perhydrohistrionicotoxin (pHTX), a synthetic HTX derivative

³⁵ (Scheme 9b).⁴³ For the installation of the ATA, Corey used a Beckmann rearrangement that expanded spirocyclic oxime **11** to spirocyclic amide **12**. Several other groups subsequently

This journal is © The Royal Society of Chemistry [year]

employed related ring expansion strategies.44-48

a) Kishi's synthesis of (±)-octahydrohistrionicotoxin

40 Scheme 9 Early synthetic approaches to HTXs by Kishi (1975) and Corey (1975). CSA = camphorsulfonic acid, HTX = histrionicotoxin, p-TsCl = para-toluenesulfonyl chloride.

Stork reported a synthesis of HTX 283A using a Hofmann rearrangement to set the ATA (Scheme 10a)⁴⁹ During this ⁴⁵ transformation, amide **13** was oxidized with bis(trifluoroacetoxy)iodobenzene to promote the alkyl migration, giving amine **14** after decarboxylation. More recently, Fukuyama reported an asymmetric synthesis of HTX 283A (Scheme 10b).⁵⁰, ⁵¹ The key carboxylic acid **15** underwent a stereospecific Curtius ⁵⁰ rearrangement to yield bicyclo[5.4.0]undecane **16** which could be converted into HTX 283A.

a) Stork's synthesis of (±)-HTX 283A

b) Fukuyama's synthesis of (-)-HTX 283A

Scheme 10 HTX 283A syntheses by Stork (1990) and Fukuyama (2011). HTX = histrionicotoxin, Ac = acetyl, Boc = *tert*-butyloxycarbonyl, *t*-Bu = *ss tert*-butyl, DPPA = diphenylphosphoryl azide, MOM = methoxymethyl, PIFA = (bis(trifluoroacetoxy)iodo)benzene.

A particularly short and efficient synthesis of racemic HTX 283A was reported in 2006 by Stockman and Fuchs (Scheme 11).⁵² In their approach, the key intermediate **21** was formed from the ⁶⁰ symmetric ketodinitrile **17** using a cascade reaction. Ketone **17** was condensed with hydroxylamine yielding nitrone **18** after intramolecular Michael addition. Subsequent intramolecular [3+2] cycloaddition afforded isoxazolidine **19**. Following its isolation, **19** was converted to its more stable regioisomer **21** ⁶⁵ through a retro-[3+2]/[3+2] cycloaddition process (*via* intermediate **20**). This so-called 'Holmes dinitrile' (**21**) had been previously converted into HTX 283A.^{53, 54}

Journal Name, [year], [vol], 00–00 | 5

Scheme 11 HTX 283A synthesis by Stockman and Fuchs (2006). HTX = histrionicotoxin.

Additional strategies to set the ATA in the histrionicotoxins ⁵ involved Michael reactions,^{41, 55, 56} Tsuji-Trost amination,^{57, 58} iodoetherification,⁵⁹⁻⁶¹ oxidative dearomatizations,⁶² Henry reactions,⁶³ diastereoselective aziridation,⁶⁴ 1,2-carbon migration of hydroxyimines,⁶⁵ [2,3]-sigmatropic rearrangements,⁶⁶ [3,3]sigmatropic rearrangements (Kazmaier-Claisen rearrangement)⁶⁷ ¹⁰ and [2+2]-cycloadditions.^{68, 69}

5 Lycopodium Alkaloids

Fig. 4 Representative Lycopodium alkaloids.

The genus *Lycopodium* comprises more than 200 species of mosslis like plants that have been used in traditional Chinese medicine for centuries.⁷⁰ They have yielded a variety of ATA-containing alkaloids, most of which are featured in Fig. 4. Lycopodine, the first member of the family described in the literature,⁷¹ has proven to be a particularly attractive target for chemical synthesis. In

²⁰ 1968, only seven years after its structural elucidation, Stork⁷² and Ayer^{73, 74} simultaneously published the first syntheses of this natural product. Ayer established the ATA using an intermolecular addition of a racemic Grignard reagent to tricyclic, C_{v} -symmetric iminium ion **22** to obtain **23** (Scheme 12a).

c) Wiesner's synthesis of (±)-12-epi-lycopodine

Scheme 12 Representative lycopodine syntheses by Ayer (1968), Stork (1968) and Wiesner (1967). Bn = benzyl.

Stork's synthesis involved a Pictet-Spengler type reaction, furnishing tetracyclic amide **25** ($24 \rightarrow 25$, Scheme 12b). A similar ³⁰ cyclization approach was also utilized almost 30 years later in Padwa's asymmetric synthesis of lycopodine (not shown).⁷⁵ Wiesner published a synthesis of 12-*epi*-lycopodine and annotinine using an innovative photochemical strategy (Scheme 12c).⁷⁶⁻⁷⁹ This work involved the conversion of vinylogous imide ³⁵ **26** into *exo*-methylene cyclobutane **27** *via* a photochemical [2+2]cycloaddition of allene.

Heathcock established one of the most elegant and influential routes to lycopodine in 1982 (Scheme 13a).⁸⁰⁻⁸² In a remarkable sequence, intermediate **28** underwent deprotection, condensation and intramolecular Mannich reaction to yield secondary amine **30**, presumably *via* iminium ion **29**. The installation of the α -tertiary amine and the formation of two out of four rings thus occurred in a single step, mimicking the proposed biosynthesis of this natural product. Subsequent optimization led to the shortest synthesis of lycopodine to date, consisting of only eight steps.⁸² Using a similar sequence, lycodine and lycodoline were prepared as well.⁸²

a) Heathcock's synthesis of (±)-lycopodine

Scheme 13 Lycopodine syntheses by Heathcock (1982) and Carter (2008). ⁵⁰ OTf = trifluoromethanesulfonate, TBS = *tert*-butyldimethylsilyl.

Variations of Heathcock's strategy have been used in other synthetic approaches toward *Lycopodium* alkaloids, e.g. in

syntheses of clavolonine by Evans (2005)⁸⁴ and Fujioka (2011).⁸³ One drawback of intramolecular Mannich reactions, however, is the need to simultaneously form an iminium ion and an enol. Thus, long reaction times of up to 18 days were needed.⁸²

- ⁵ Recently, this problem was solved in an elegant way by Carter (Scheme 13b).^{85, 86} Using an aza-Wittig approach, Carter was able to prepare and isolate the TBS-enol ether imine **31**. Treatment of **31** with zinc triflate furnished the ATA and concomitantly resulted in the rearrangement of the sulfinyl residue yielding ¹⁰ lycopodine precursor **32**.
- In 1985, Kraus published a route towards lycopodine that was based on the formation of a bridgehead olefin (Scheme 14a).⁸⁷ Tertiary alkyl bromide **33** was treated with DBU and 3-amino-1-propanol to install amino ketone **34**, which could be further
- ¹⁵ transformed into the natural product in two additional steps using Heathcock's protocol. An equally unusual approach was reported by Grieco, who employed a Stieglitz rearrangement (Scheme 14b).⁸⁸ To effect the reaction, *N*-chloroamine **35** was treated with silver tetrafluoroborate followed by cyanoborohydride. Many
- ²⁰ other syntheses of lycopodine have been accomplished utilizing different strategies, such as Michael additions, for the assembly of the ATA.⁸⁹⁻⁹¹

a) Kraus' synthesis of (±)-lycopodine

Scheme 14 Lycopodine syntheses by Kraus (1985) and Grieco (1998). 25 DBU = 1,8-diazabicyclo[5.4.0]undec-7-en.

Members of the lycodine class of natural products feature an ATA and a pyridine or pyridone moiety. The parent compound, lycodine,⁹² was first isolated from *L. annotinum* in 1958.⁹³ Apart from the Heathcock synthesis mentioned above,⁸² several ³⁰ additional syntheses of lycodine have been achieved to date.⁹⁴⁻⁹⁷

Schumann used a classical Mannich strategy to access racemic lycodine, α -obscurine and *N*-acetylflabellidine (Scheme 15).⁹⁸⁻¹⁰⁰

Schumann's syntheses of (±)-lycodine, (±)- $\alpha\text{-obscurine}$, (±)-N-acetylflabellidine and Sarpong's synthesis of (+)-complanadine A

Scheme 15 Synthesis of various *Lycopodium* alkaloids by Schumann $_{35}$ (1982) and Sarpong (2010). Ac = acetyl.

The mechanism of the key double Mannich reaction cascade was further explored almost 30 years later by Sarpong.⁹⁴ He used the same cascade as an opening sequence in an asymmetric synthesis of enantiomerically pure (+)-complanadine A, a lycodine dimer, ⁴⁰ which was shown to enhance expression of nerve growth factor in human cells.¹⁰¹ It was found that cyclic enamide **36** opens to ketone **37** or enol **38** under acidic conditions, which adds to the unsaturated bicyclic imine **39**. Protonation of the resulting enamine **40** triggers a second, intramolecular Mannich reaction to ⁴⁵ afford tricycle **42** *via* the iminium ion **41**. Finally, an intramolecular enamide formation furnished tetracyclic des-*N*methyl-α-obscurine, containing the entire lycodine framework. In an unusual approach, Tsukano and Hirama applied an

intramolecular palladium-mediated Heck reaction between ⁵⁰ enecarbamate and pyridine triflate **43** to form the ATA, which yielded lycodine precursor **44** (Scheme 16a).⁹⁵

b) Takayama's synthesis of (+)-flabellidine and (-)-lycodine

Scheme 16 Syntheses of various Lycopodium alkaloids by Tsukano (2010) and Takayama (2014). Cbz = carboxybenzyl, CSA = camphorsulfonic acid, Boc = *tert*-butyloxycarbonyl, Bn = benzyl, OTf = 5 trifluoromethanesulfonate.

Recently, another very short synthesis of (-)-lycodine as well as the closely related (+)-flabellidine was accomplished by Takayama (Scheme 16b).⁹⁷ Starting from a linear precursor 45, he was able to assemble the whole tetracyclic skeleton 48 of both

- 10 alkaloids in a cascade reaction involving a double condensation $(45 \rightarrow 46)$, a conjugate addition $(46 \rightarrow 47)$ followed by a Mannich reaction $(47 \rightarrow 48)$. In addition, Shair published an approach towards several members of the 7-membered-ring-containing Lycopodium alkaloids using a transannular Mannich reaction (not 15 shown).^{102, 103}
- One of the rare cases of a $S_N 2$ reaction in ATA formation can be found in Lei's recent synthesis of (-)-8-deoxyserratinine (Scheme 17).¹⁰⁴ Tertiary alcohol **49** was converted into chloride **50**, which was attacked intramolecularly by the free secondary amine
- $_{20}$ (50 \rightarrow 51). In 2014, Lei extended his strategy to a synthesis of the oxidised congener (-)-serratinine.¹⁰⁵ Other approaches towards 8deoxyserratinine and related alkaloids include a Schmidt rearrangement and an intramolecular epoxide opening.106-108

Lei's synthesis of (-)-8-deoxyserratinine

25 Scheme 17 Lei's synthesis of (-)-8-deoxyserratinine (2014). Boc = tertbutyloxycarbonyl.

In contrast to the multiple strategies used for the installation of ATAs in the Lycopodium alkaloids mentioned above, the methods used to access the medicinally important acetylcholine esterase

30 inhibitor huperzine A are less diverse. Since the ATA in huperzine A is primary, it can be efficiently installed using a Curtius rearrangement. Indeed, synthetic efforts towards huperzine A were almost exclusively focused on carboxylic acid precursors, such as 52.109-116

The first synthesis of huperzine A was published by Kozikowski in 1989 (Scheme 18).¹⁰⁹ First, they completed the core 52 wherein the primary amine is replaced by a methyl ester. After saponification, Curtius rearrangement (52→53) followed by double deprotection provided racemic huperzine A. In the 40 following years, many huperzine A syntheses and several semisyntheses were published.^{117, 118} All of them featured a racemic or enantiomerically pure carboxylic acid derivative of precursor 53, keeping the Curtius rearrangement as the key step for the formation of the ATA.¹⁰⁹⁻¹¹⁶ These efforts culminated in the 45 recently published large-scale asymmetric synthesis of huperzine A.¹¹⁹

Kozikowski's synthesis of (±)-huperzine A

Scheme 18 Huperzine A synthesis by Kozikowski (1989).

A few groups, however, have been able to avoid Curtius 50 rearrangements in the synthesis of huperzine A. Sun and Lin accessed the alkaloid using an intramolecular Heck reaction $(54\rightarrow 55)$ (Scheme 19a),¹²⁰ whereas the White group performed an elegant tandem intramolecular aza-Prins cyclization/cyclobutane fragmentation (56 \rightarrow 53) to set the ATA in 53 (Scheme 19b).¹²¹

a) Sun's and Lin's synthesis of huperzine A

b) White's synthesis of (±)-huperzine A

Scheme 19 Huperzine A syntheses by Sun/Lin (2012) and White (2013). Boc = tert-butyloxycarbonyl, p-TsCl = para-toluenesulfonic acid.

Two Lycopodium alkaloids recently isolated from Lycopodium 60 hamiltonii, viz. the nankakurines A and B, have attracted broad interest in the synthetic community (Fig. 4).122, 123 So far, two syntheses of these natural products have been reported. In 2008, Overman published an enantioselective synthesis of the

misassigned original structure of nankakurine A (61) (Scheme 20a) followed by the syntheses of the reassigned structures of nankakurine A and B in 2010 (Scheme 20b).^{124, 125}

b) Overman's synthesis of (+)-nankakurines A and B

5 Scheme 20 Overman's syntheses of misassigned nankakurine A (2008) and revised nankakurines A and B (2010). Bn = benzyl, Bz = benzoyl, TFA = trifluoroacetic acid, Ts = *para*-toluenesulfonyl.

In the case of 5-*epi*-nankakurine (61), an aza-Prins reaction $(59\rightarrow 60)$ was used, which allowed for the direct formation of both

- ¹⁰ piperidine rings in **61** in one step starting from bicycle **59**.¹²⁴ This strategy, however could not be applied for the formation of actual nankakurine A. Its synthesis was accomplished utilizing an intramolecular 1,3-dipolar cycloaddition of an azomethine imine **63**, formed *in situ via* condensation of **62** with formaldehyde. This
- ¹⁵ reaction provided access to tetracyclic pyrazolidine **64**, which, after SmI₂ mediated *N*,*N*-bond cleavage, gave rise to nankakurines A and B.¹²⁵ Two years later, Waters reported a racemic synthesis of nankakurines A and B using a Grignard addition to an iminium species derived from luciduline, which is easily accessible by total ²⁰ synthesis (not shown).¹²⁶

Porantherine, the major alkaloid of the poisonous woody shrub *Poranthera corymbosa*, is structurally similar to the *Lycopodium* alkaloids, although not a member of the family (Fig. 4). ^{127, 128}

- Possessing two tertiary carbons attached to the same amine ²⁵ (twofold ATA), porantherine is a considerable synthetic challenge that has been met only twice thus far.^{129, 130} Both syntheses are racemic and based on similar strategies for the assembly of the ATA motif, namely an addition to a ketimine followed by Mannich reaction. Corey published his synthesis of the natural
- ³⁰ product in 1974 (Scheme 21),¹²⁹ only three years after its isolation. The first ATA was installed through addition of an organolithium compound to imine **65** to form **66**, which then cyclized to the corresponding enamine **67** upon treatment with acid. The formation of the second ATA center through an ³⁵ intramolecular Mannich addition (*via* iminium ion **68**) furnished
- ketone **69**, which was eventually converted to the natural product.

Scheme 21 Porantherine synthesis by Corey (1974). *p*-TsOH = *para*-toluenesulfonic acid.

⁴⁰ A second synthesis of porantherine, published by Stevens in 1987, involved the addition of two alkyllithium compounds to an iminoether (not shown).¹³⁰

6 Hasubanan Alkaloids

- The hasubanan alkaloids, isolated from various plant sources, are ⁴⁵ structurally related to the better-known morphine alkaloids but feature a pyrrolidine ring instead of a piperidine ring. They are comprised of over 40 family members, all of which share the same aza-propellane skeleton (Fig. 5).¹³¹
- Although the physiological effects of the hasubanans are of ⁵⁰ limited significance, their beautiful structures stimulated numerous synthetic studies and several total syntheses have been reported to date.¹³²⁻¹⁴⁶

- ⁵⁵ The first successful syntheses of (±)-cepharamine,^{132, 135} (±)hasubanonine,^{134, 137} (±)-aknadilactam¹³⁴ and (±)-metaphanine^{136, 138} were published by Inubushi in the 1970s (Scheme 22a). Starting from tricyclic β -tetralone **70**, the ATA was set *via* a cascade reaction involving an aza-Michael addition (**71** \rightarrow **74**). ⁶⁰ Almost 30 years later, Schultz prepared (+)-cepharamine using a Hofmann-type rearrangement to introduce the ATA (not
- Hofmann-type rearrangement to introduce the ATA (not shown).¹³⁹ Recent years have seen revived interest in hasubanans. An elegant method for the installation of the ATA was developed by Castle,
- s who closed the pyrrolidine ring of isohasubanonine through a S_N2 '-reaction.^{140, 147} Subsequently, this strategy was adapted to access (–)-acutumine (Scheme 22b).¹⁴² To this end, amine **75** was exposed to a Lewis acid to generate an allylic cation that was intercepted by the appended secondary amine. The resulting

ATA-containing pyrrolidine 76 was then converted into (-)-acutumine.

a) Inubushi's synthesis of (±)-cepharamine OMe OMe NaOEt OMe ЭМе OMe CN č HO ΘN Me 70 71 72 OMe OMe OMe OM OMe HN Θ Ö ÓMe 73 (±)-cepharamine 74

b) Castle's synthesis of (-)-acutumine

Scheme 22 Synthesis of hasubanan alkaloids by Inubushi (1969) and s Castle (2009). Bn = benzyl, TBS = *tert*-butyldimethylsilyl.

In contrast to this approach, which sets the ATA at a relatively late stage in the synthesis, Reisman installed it at the beginning (Scheme 23a).¹⁴⁴ Reaction of the chiral *N-tert*- hasubanan butanesulfinimine **78** with phenethyl Grignard **77** provided ¹⁰ sulfinamide **79** with a high degree of diastereoselectivity.

Subsequently, **79** was converted into a series of hasubanan alkaloids such as (–)-8-demethoxyrunanine.

The first enantioselective synthesis of hasubanonine was published by Herzon (Scheme 23b).¹⁴³ Methylation of ¹⁵ iminoquinone Diels-Alder adduct 80 ($80 \rightarrow 81$), followed by addition of alkynyl lithium 82 gave amine 83, which was

- eventually transformed into optically pure (-)-hasubanonine. This strategy proved to be versatile, as many more hasubanan alkaloids, including (-)-runanine, (-)-delavayine, (+)-periglaucine ²⁰ B and (-)-acutumine, could be accessed by variation of the
- alkynyl species.^{143, 145, 146}

Scheme 23 Synthesis of hasubanan alkaloids by Reisman (2011) and Herzon (2011). t-Bu = tert-butyl, TMS = trimethylsilyl, OTf = 25 trifluoromethanesulfonate.

ÓМе

(-)-hasubanonine

7 Stemona Alkaloids

83

Fig. 6 Representative Stemona alkaloids.

Plants belonging to the family *Stemonaceae*, which are mostly ³⁰ found in Southeast Asia, have been used for centuries as insecticides and for the treatment of respiratory diseases.¹⁴⁸⁻¹⁵⁰ Phytochemical investigations led to the isolation of a variety of natural products known as *Stemona* alkaloids (Fig. 6).^{151, 152} These polycyclic natural products possess highly complex structures ³⁵ weaving together pyrrolidines and butenolides, often through *spiro* fusions that contain ATAs.

The structural beauty of these molecules generated considerable interest in the synthetic community and stimulated the development of new synthetic methods for the installation of ⁴⁰ ATAs.^{151, 152} The strategies employed range from classical additions to imines,^{153, 154} to radical cyclization cascades,^{155, 156} radical allylations,¹⁵⁷ semipinacol-Schmidt cascades,^{158, 159} Schmidt reactions,¹⁶⁰ aza-Cope-Mannich reactions,¹⁶¹ cyclopropane-Cope rearrangements¹⁶² and catalytic 1,3-dipolar ⁴⁵ cycloadditions.¹⁶³

The first synthesis of a *Stemona* alkaloid, *viz.* isostemofoline, was published by Kende in 1999 and employed a highly unusual and elegant approach.¹⁶² The ATA was formed *via* rhodium-catalyzed

10 | Journal Name, [year], [vol], 00–00

reaction of pyrrole **84** with vinyl diazoester **85**. The resultant divinyl cyclopropane **86** underwent Cope rearrangement *in situ* to afford bicycle **87**, which was then used as a key intermediate in the further assembly of the natural product (Scheme 24a).

Scheme 24 Syntheses of *Stemona* alkaloids by Kende (1999), Ishibashi (2008) and Zhang (2011). ABCN = 1,1'-azobiscyclohexacarbonitrile, Boc = *tert*-butyloxycarbonyl, MOM = methoxymethyl, TBS = *tert*-butyldimethylsilyl, TMS = trimethylsilyl.

- ¹⁰ More recently, two synthetic approaches aimed at members of the stemonamine group were published. Ishibashi developed an entry to racemic stemonamide and isostemonamide as well as their reduced derivatives stemonamine and isostemonamine, based on a radical cascade as the key step for the formation of the ATA
- ¹⁵ (Scheme 24b).^{155, 156} Treatment of the achiral precursor **88** with tributyltin hydride and 1,1'-azobis(cyclohexacarbonitrile) (ABCN) at elevated temperatures effected a 7-*endo-trig* cyclization that likely yielded radical **89** as the proposed intermediate, which in turn underwent an unusual 5-*endo-trig* cyclization providing
- ²⁰ access to a separable mixture of isomers **90** and **91**. Further transformations of these tricyclic compounds furnished stemonamide and some of its congeners.

An alternative approach to stemonamide and related *Stemona* alkaloids was published by Zhang (Scheme 24c).¹⁵⁹ Based on his ²⁵ systematic studies on the reactivity of α -hydroxy epoxides such as

- 92,¹⁶⁴ he developed a powerful cascade that combines a semipinacol rearrangement with an Aubé-Schmidt reaction (92→94). The resulting amide 94 was obtained as a 5:1 mixture of diastereomers, reflecting the diastereomeric mixture of
- ³⁰ propargylic azides employed as substrates. Using this strategy and variations thereof, Zhang was able to synthesize stemonamide and three additional *Stemona* alkaloids, *viz.* maistemonine, stemonamine, and isomaistemonine.¹⁵⁸⁻¹⁶⁰

a) Overman's synthesis of (±)-asparagamine A

35 Scheme 25 Syntheses of *Stemona* alkaloids by Overman (2003) and Huang (2015). ABCN = 1,1'-azobiscyclohexacarbonitrile, Bn = benzyl, TBDPS = *tert*-butyldiphenylsilyl, TIPS = triisopropylsilyl.

(+)-methoxystemofoline

The only synthesis of asparagamine A, an unsaturated derivative of stemonamide, was achieved by Overman in 2003.¹⁶¹ He ⁴⁰ installed the ATA using his signature aza-Cope-Mannich cascade (Scheme 25a). The synthesis of a precursor molecule suitable for this transformation commenced with a Diels-Alder reaction, forming an ATA that later took part in the rearrangement. Treatment of **95** with excess paraformaldehyde at elevated ⁴⁵ temperatures generated iminium ion **96**, which underwent the aza-Cope-Mannich sequence to afford the ATA of asparagamine A (**98**, *via* intermediate **97**). More recently, a radical allylation (**99** \rightarrow **100**) was utilized by Huang to set the ATA in (+)-methoxystemofoline at an early stage of the synthesis (Scheme ⁵⁰ 25b).¹⁵⁷

8 Indole Alkaloids

Indole alkaloids are a structurally and biosynthetically heterogeneous class of natural products characterized by an indole nucleus or derivative thereof. Several of them, albeit not the best ss known ones, contain ATAs (Fig. 7).

Kopsine, the first member of the so-called *Kopsia* alkaloids, was isolated as early as 1890,¹⁶⁵ but it took several decades before its complex structure, and those of its congeners, could be elucidated.¹⁶⁶⁻¹⁷³ All members of this family possess an ATA ⁶⁰ incorporated in a bicyclo[2.2.2]octane system. Thus, the kopsanes seem predestined for Diels-Alder reactions, and few syntheses fail to employ a [4+2]-cycloaddition strategy.¹⁷⁴⁻¹⁷⁶ The routes used can be divided into two main categories: a) intermolecular Diels-Alder reactions.¹⁸¹⁻¹⁸⁵

Fig. 7 Indole alkaloids featuring ATAs.

The very first synthesis of (±)-aspidofractinine, completed in 1976, introduced an intermolecular Diels-Alder reaction to set the ⁵ ATA using nitroethylene as a dienophile (not shown).¹⁷⁷ Over time, phenyl vinyl sulfone emerged as a more practical dienophile^{178, 179} and in 2009 the first enantioselective synthesis of (+)-aspidofractinine was reported by Spino using this reagent (Scheme 26a).¹⁸⁰ In this case, imine **101** thermally isomerized to

¹⁰ diene **102**, which then underwent cycloaddition from the sterically more accessible convex side to afford sulfone **103**. The first successful intramolecular Diels-Alder approach to (\pm) kopsanone and (\pm) -10,22-dioxokopsane was reported in 1983 by Magnus (Scheme 26b).¹⁸¹, ¹⁸² They synthesized sulfide **104** as a ¹⁵ suitable precursor, with the dienophile placed in the concave position. The gualanddition proceeded at 100 °C and

position. The cycloaddition reaction proceeded at $100 \,^{\circ}\text{C}$ and provided intermediate **105**, which was transformed into (±)-

kopsanone in a few steps. Using a similar strategy, other indole alkaloids, (±)-kopsijasmine and (±)-kopsine, were prepared as ²⁰ racemates,^{184, 185} as well as (–)-kopsinilam and (–)-kopsinine in enantiomerically pure from.¹⁸³

b) Magnus' synthesis of (±)-kopsanone

c) Boger's synthesis of (±)-kopsinine

Scheme 26 *Kopsia* alkaloid syntheses by Spino (2009), Magnus (1983) and Boger (2013). Bn = benzyl, Ts = p-toluenesulfonyl.

- ²⁵ In a recent example for an alternative approach by Boger, a powerful radical transannular cyclization was applied to install the ATA of kopsinine (Scheme 26c).¹⁷⁶ Upon treatment of xanthate **106** with SmI₂, ATA **108** was formed as a single diastereomer. Presumably, a primary radical intermediate **107** is formed, which ³⁰ undergoes a radical cyclization followed by reduction and diastereoselective protonation of the ester enolate.
- Lapidilectine B and lundurine A are two structurally related *Kopsia* alkaloids that contain two ATAs. Although not originating from the same organism, they show a similar scaffold with a ³⁵ bridged 8-membered ring fused to an indoline on one side and a 5-membered ring on the other. Lapidilectine A was isolated by

Awang from the leaves of the tree *Kopsia lapidilecta* in 1992.^{186,} ¹⁸⁷ Lundurines A-D were isolated from the Malaysian tree *Kopsia tenuis*,¹⁸⁸ and shown to be effective at bypassing multidrug ⁴⁰ resistance in vincristine-resistant KB cells.¹⁸⁹

Qin accomplished the first enantioselective synthesis of (-)-lundurine A in 2014 (Scheme 27a).¹⁹⁰ The first ATA was established *via* the addition of allylmagnesium bromide to an

iminium ion generated by *in situ* alkylation of imine **109** to form tetracycle **110**. In order to establish the two fully substituted stereocenters on the indoline of **112**, Qin resorted to an unusual intramolecular Simmons-Smith cyclopropanation of diiodide **111**.

⁵ Two other racemic syntheses of lundurine A and B have been reported by Nishida.¹⁹¹⁻¹⁹³ He employed a Curtius rearrangement and a 1,2-addition to an iminium ion for lundurine B¹⁹³ and a Tsuji-Trost amination and an indoxyl bisalkylation for the synthesis of lundurine A (not shown).^{191, 192}

a) Qin's synthesis of (-)-lundurine A

b) Pearson's synthesis of (±)-lapidilectine E

Scheme 27 Syntheses of *Kopsia* alkaloids by Qin (2014) and Pearson (2001). Bn = Benzyl, TBDPS = *tert*-butyldiphenylsilyl, TBS = *tert*-butyldimethylsilyl.

- In 2001, Pearson employed a Smalley cyclization of aryl ketone 15 azide 113 to furnish the spiroindoxyl 114 (Scheme 27b).^{194, 195} In the final steps of his lapidilectine B synthesis, he then used his trademark azaallyl anion [3+2]-cycloaddition to establish the pyrrolidine ring (115 \rightarrow 116) as an inconsequential mixture of regioisomers.
- ²⁰ The cycloaddition approach has not been limited to the kopsane alkaloids. Other indole alkaloids, such as stephacidin A and the notoamides, which bear two ATAs, were prepared by a presumably biomimetic [4+2]-cycloaddition.

Williams synthesized stephacidin A and notoamide B starting ²⁵ from imidate **117**, which underwent base-mediated isomerization

to **118** followed by intramolecular Diels-Alder reaction to afford diazabicyclo[2.2.2]octane **119** (Scheme 28). ¹⁹⁶ This remarkable reaction sets both ATAs in a single step. Later that year, stephacidin B was accessed *via* avrainvillamide using the same

30 strategy.¹⁹⁷

Williams' synthesis of (\pm) -stephacidin A and (\pm) -notoamide B

Scheme 28 Synthesis of prenylated indole alkaloids by Williams (2007).

In 2005, Baran used the α -alkylation of proline derivative **120** with complete chirality transfer, a method developed by ³⁵ Seebach,¹⁹⁸ to set the first ATA of stephacidin A in **121** (Scheme 29).¹⁹⁹ The second ATA present in **123** was installed by an intramolecular, stereocontrolled oxidative enolate coupling starting from diketopiperazine **122**. Baran was then able to convert stephacidin A into avrainvillamide and stephacidin B ⁴⁰ following a biosynthetic proposal.²⁰⁰

Baran' synthesis of (+)-stephacidin A, (+)-avrainvillamide and (-)-stephacidin B

Scheme 29 Synthesis of prenylated indole alkaloids by Baran (2005). acac = acetylacetonate, Boc = *tert*-butyloxycarbonyl, *t*-Bu = *tert*-Butyl, LDA = Lithiumdiisopropylamide.

⁴⁵ A second synthesis of avrainvillamide and stephacidin B was accomplished concurrently by Myers (Scheme 30). In this case, the first ATA was installed by a Strecker-type addition of TMS cyanide to enamine **124** to form the *N*-Boc amino nitrile **125**.²⁰¹ The second ATA was then set by a very unusual radical transfer ⁵⁰ cyclization. Abstraction of a hydrogen atom in **126**, followed by loss of toluene, generates an aminoacyl radical which attacks the

This journal is © The Royal Society of Chemistry [year]

enamide double bond and ejects a phenylthiyl radical to form the diketopiperazine **127**.

Scheme 30 Synthesis of prenylated indole alkaloids by Myers (2005). *t*s amyl = *tert*-amyl (2-methylbutyl), Boc = *tert*-butyloxycarbonyl, HFIPA = 1,1,1,3,3,3-hexafluoroisopropyl acrylate, TBDPS = *tert*butyldiphenylsilyl, TMSCN = trimethylsilyl cyanide.

Several members of a related family of prenylated spirooxindole alkaloids, namely cyclopiamine, citrinadin A and citrinadin B, ¹⁰ also feature an asymmetric ATA.²⁰²⁻²⁰⁴ In 2013, Martin and Wood

- ¹⁰ also feature an asymmetric ATA.²⁰²⁻²⁰⁴ In 2013, Martin and Wood reported the first syntheses of citrinadin A and B.^{205, 206} In the case of citrinadin A, epoxide **128** was heated in the presence of methylamine to provide 1,2-amino alcohol **129** (Scheme 31a).²⁰⁵ Wood's approach employed an azide-mediated opening of
- ¹⁵ epoxide **130** to establish the ATA in **131** (Scheme 31b).²⁰⁶ Both reactions are rare examples where an ATA has been set through a $S_N 2$ reaction.

a) Martin's synthesis of (-)-citrinadin A

b) Wood's synthesis of (+)-citrinadin B

Scheme 31 Syntheses of prenylated indole alkaloids by Martin (2013) and ²⁰ Wood (2013).

More recently, Sarpong published his entry to the prenylated indole alkaloids cyclopiamine B and *ent*-citrinalin B (Scheme 32). The first ATA was set *via* a Hofmann rearrangement (132→133).²⁰⁷ The second, not asymmetric, ATA center was ²⁵ established by treating *ent*-citrinalin B with sodium hydride to effect the rearrangement of the chromanone to the tetrahydroquinolone moiety present in cyclopiamine *via retro*-Michael/Michael addition. Using a similar approach, he was then able to synthesize the structurally related alkaloids stephacidin A ³⁰ and notoamide B. ²⁰⁸

Sarpong's synthesis of (-)-cyclopiamine B

Scheme 32 Synthesis of *ent*-citrinalin B and (–)-cylcopiamine B by Sarpong (2015). PIFA = (Bis(trifluoroacetoxy)iodo)benzene.

- Two alkaloids closely related to notoamide B, marcfortine B and ³⁵ C, were synthesized by Trost using a Michael addition and a radical cyclization to set the two ATAs (not shown).^{209, 210}
- Gelsemoxonine is an indole alkaloid with an ATA that is part of a azetidine, a rare structural motif. It is also a member of the *Gelsemium* spirooxindole family, a large alkaloid family with ⁴⁰ highly compact, strained and complex structures, which have attracted considerable synthetic activity.²¹¹⁻²¹³ In 2011, Fukuyama accomplished a total synthesis of gelsemoxonine that employed an intramolecular epoxide opening of **134** to install the ATA (Scheme 33a).²¹⁴ Recently, Carreira published an elegant entry to ⁴⁵ gelsemoxonine, setting the ATA **136** *via* a diastereoselective propynyllithium addition to isoxazoline **135** (Scheme 33b).²¹⁵

a) Fukuyama's synthesis of (-)-gelsemoxonine

b) Carreira's synthesis of (±)-gelsemoxonine

Scheme 33 Syntheses of gelsemoxonine by Fukuyama (2011) and Carreira (2013). Boc = *tert*-butyloxycarbonyl.

⁵⁰ The welwitindolinones are another class of indole alkaloids with an ATA that is not part of the indole-derived moiety itself. The first welwitindolinone natural products (Fig. 7) were isolated by Moore in 1994 from the cyanobacteria *Hapalosiphom welwitschii*

14 | *Journal Name*, [year], **[vol]**, 00–00

and *Westiella intracta*.²¹⁶ All welwitindolinones known so far feature a [4.3.1] bicyclic framework, which, in some cases, contains a modified ATA that bears an isothiocyanate or isonitrile functional group.^{217, 218}

- ⁵ Being a considerable challenge for total synthesis, the welwitindolinones have become popular targets.²¹⁹ The first total synthesis of *N*-methylwelwitindolinone D isonitrile was accomplished by Rawal in $2011^{220-222}$ using Kim's oxime rearrangement to install the isothiocyanide (137–138, Scheme
- ¹⁰ 34a).^{223, 224} Desulfuration of **138** then gave the naturally occuring isonitrile. Martin completed a synthesis that intercepts Rawal's synthesis in 2012.²²⁵

a) Rawal's synthesis of (-)-N-methylwelwitindolinone D isonitrile

b) Garg's synthesis of (-)-N-methylwelwitindolinone C isothiocyanate

Scheme 34 Syntheses of welwitindolinones by Rawal (2011) and Garg 15 (2011). BAIB = (diacetoxyiodo)benzene, NCS = *N*-chlorosuccinimide, OTf = trifluoro-methanesulfonate, Ph = phenyl.

Garg's total synthesis of *N*-methylwelwitindolinone C isothiocyanate used an intramolecular Ag-mediated nitrene C,H-insertion of amide **139** as the critical step, which furnished ²⁰ carbamate **140** (Scheme 34b).^{226, 227} To improve the regioselectivity and yield of this late stage transformation the

regioselectivity and yield of this late stage transformation, the authors beautifully exploited the deuterium kinetic isotope effect.²²⁸

Both Rawal and Garg were able to subsequently synthesize

- ²⁵ several members of the welwitindolinone family by varying their initial strategies.^{222, 228-230} In addition, Hatakeyama recently accomplished another synthesis of (–)-*N*-methylwelwitindolinone C isothiocyanate using an endgame similar to Rawal's.²³¹
- Two examples of reactions which have been specifically ³⁰ developed to set an ATA, both explored by the Baran laboratory, are shown in Scheme 35. In the synthesis of chartelline C, the ATA was set *via* a cascade

reaction initiated by the bromination of indole **141** at 185 °C resulting in **142** (Scheme 35a). Amide attack furnished

³⁵ intermediate 143, which then rearranged in a 1,5-shift to give the ring contracted spiro-β-lactam 144.^{232, 233} For the synthesis of psychotrimine, a coupling of indole 147 with 2-iodoaniline (146) was developed to yield 148, which then underwent further cyclization to give 149 (Scheme 35b).²³⁴ This method was also
⁴⁰ used for the syntheses of psychotetramine,²³⁵ kapakahine B and

kapakahine F.^{236, 237}

a) Baran's synthesis of (±)-chartelline C

b) Baran's synthesis of (±)-psychotrimine

Scheme 35 Baran's syntheses of chartelline C (2006) and psychotrimine (2008). Bn = benzyl, Boc = *tert*-butyloxycarbonyl, NBS = *N*-45 bromosuccinimide, NIS = *N*-iodosuccinimide, TMSE = 2-(trimethylsilyl)ethyl.

Another interesting way to install an ATA in a structurally complex indole alkaloid was published by Danishefsky (Scheme 36).²³⁸ In his synthesis of the furanobisindole alkaloid phalarine, ⁵⁰ amino acid derivative **150** was treated with formaldehyde and acid to set the ATA in a diastereoselective fashion (**150** \rightarrow **152**). It is not clear, however, whether this reaction proceeds *via* a 1,2-Wagner-Meerwein shift (possible intermediate **153**) or a Pictet-Spengler reaction (possible intermediate **154**) starting from imminium ⁵⁵ intermediate **151**.

Scheme 36 Danishefsky's synthesis of phalarine (2010). Bn = Benzyl, CSA = camphorsulfonic acid.

59 Cephalotaxines

10

Due to their interesting chemical structure and antileukemic activities, the cephalotaxines, isolated from the Japanese plum yew (*Cephalotaxus harringtonii*), have emerged as popular targets for natural product synthesis (Fig. 8).²³⁹

Fig. 8 Cephalotaxines

The first synthesis of cephalotaxine itself was reported by Weinreb²⁴⁰ in 1972 (Scheme 37a). Conversion of enamine **155** into diketone **156** set the stage for a Lewis-acid catalyzed ¹⁵ cyclization to yield tertiary amine **158** (*via* intermediate **157**). Weinreb was able to synthesize cephalotaxine in six additional steps with an overall yield of 20%, setting a high bar for the following syntheses.

20 Scheme 37 Syntheses of Cephalotaxine by Weinreb (1972) and Fuchs (1988).

In 1988, Fuchs utilized an intramolecular [4+2] nitroso-Diels-Alder cycloaddition to assemble the benzazepine **161** from hydroxamic acid **159** (*via* intermediate **160**, Scheme 37b).²⁴¹

- ²⁵ Tietze published a formal asymmetric synthesis of (-)cephalotaxine in 1999 that is based on palladium catalysis (Scheme 38a).²⁴² A Tsuji-Trost allylation on secondary amine **162** established the ATA and afforded **163** which was converted into cephalotaxine *via* a subsequent Heck reaction. A similar Tsuji-
- ³⁰ Trost allylation was used by Stoltz in 2007 in his synthesis of drupacine and cephalotaxine.²⁴³

A [2,3]-sigmatropic rearrangement was ulilized by Li to convert quaternary ammonium ion **165** to the α -tertiary amino ester **166** (**164** \rightarrow **166**, Scheme 38b).²⁴⁴

Scheme 38 Syntheses of Cephalotaxine by Tietze (1999) and Li (2003). Ac = acetyl, TMG = 1,1,3,3-tetramethylguanidine.

- A rather unusual approach for the asymmetric synthesis of (–)s cephalotaxine was pursued by Royer, who introduced the ATA on key intermediate **169** *via* semipinacol rearrangement of chiral α hydroxyiminium **168**. The latter was generated by acid-catalyzed isomerization and protonation of pyrrolinone **167** (Scheme 39a).²⁴⁵
- ¹⁰ Another synthesis was developed by Gin, who transformed vinyligous amide **170** into azomethine ylide **171** which then underwent 1,3-dipolar cycloaddition with phenyl vinyl sulfone to yield **172** (Scheme 39b).^{246, 247} The unexpected yet advantageous stereochemical outcome of this cycloaddition was ¹⁵ confirmed by X-ray analysis.

a) Royer's synthesis of (-)-cephalotaxine

b) Gin's synthesis of (-)-cephalotaxine

Scheme 39 Syntheses of cephalotaxines by Royer (2004) and Gin (2006). Ar = aryl, OTf = trifluoromethanesulfonate, Piv = pivaloyl, TBAT = tetrabutylammonium difluorotriphenyl-silicate.

²⁰ In 2006, Mariano used a photochemical cyclization of a bicyclic pyridinium ion **173** to afford aziridine **174**, which was then transformed into the natural product (Scheme 40a).²⁴⁸ Hayes' synthetic route towards (-)-cephalotaxine made use of an alkylidene carbene 1,5 C,H-insertion starting from ketone **175** to ²⁵ furnish spiro[4.4]azanonane **177**, which corresponds to the skeleton of cephalotaxine (**175→177**, Scheme 40b).²⁴⁹

Ishibashi chose a radical cyclization approach to synthesize cephalotaxine (Scheme 40c).²⁵⁰ Treatment of aryl iodide **178** with tributyltin hydride and a radical initiator resulted in a 7-endo ³⁰ cyclization followed by a 5-endo cyclization that, after hydrogen transfer, yielded **179**. Additional functional group manipulations allowed them to intercept an intermediate that had previously

been used to synthesize (–)-cephalotaxine.²⁵¹ A host of other methods have been used for the installation of the ³⁵ ATA in cephalotaxines.²³⁹ These include alkylation,^{252, 253} Claisen rearrangement,²⁵⁴ Michael addition,^{255, 256} Schmidt reaction,²⁵⁷ addition to an imine,²⁵⁸ transannular cyclization²⁵⁹ and oxidative rearrangement.²⁵¹

a) Mariano's formal synthesis of (-)-cephalotaxine

b) Hayes' formal synthesis of (-)-cephalotaxine

c) Ishibashi's synthesis of (-)-cephalotaxine

⁴⁰ Scheme 40 Syntheses of cephalotaxine by Mariano (2006), Hayes (2008) and Ishibashi (2008). ABCN = 1,1'-azobis(cyclo-hexanecarbonitrile), Boc = *tert*-Butyloxycarbonyl, TBS = *tert*-butyldimethylsilyl, TBDPS = *tert*-butyldiphenylsilyl, TMS = trimethylsilyl.

10 Erythrina Alkaloids

⁴⁵ *Erythrina* alkaloids were discovered at the end of the 19th century, when extracts of *Erythrina* trees were found to possess curare-like neuromuscular activities.²⁶⁰ Due to their biological activities and interesting structures, several total syntheses of these natural products have been carried out and many creative ways to install ⁵⁰ ATAs have been developed in this context.²⁶¹

This journal is © The Royal Society of Chemistry [year]

Fig. 9 Representative Erythrina alkaloids.

In 1990, the group of Ishibashi published the synthesis of (\pm) -3demethoxyerythratidinone using an intramolecular Pummerer-like rearrangement of the enamine **180**, setting the stage for a Pictet-Spengler-type reaction (**181** \rightarrow **182**) to furnish the ATA (Scheme 41a).²⁶² Thirteen years later, the same group published an oxidative radical cyclization starting from enamine **183** to obtain the skeleton of 3-demethoxyerythratidinone **182** (Scheme 41b).²⁶³

¹⁰ Tsuda's approach featured an intermolecular photochemical [2+2]-cyclization to install the ATA, starting from bicycle **184** and diene **185** (Scheme 41c). In the following steps, a ring expansion of the four-membered ring in **186** furnished the sixmembered ring by a formal 1,3-migration of a vinylcylcobutane, ¹⁵ affording the scaffold of erysotrine.²⁶⁴

b) Ishibashi's second synthesis of (±)-3-demethoxyerythratidinone

c) Tsuda's synthesis of (±)-erysotrine

Scheme 41 Syntheses of *Erythrina* alkaloids by Ishibashi (1990 and 2003) and Tsuda (1992). Ac = acetyl, OTf = trifluoromethanesulfonate, TMS = trimethylsilyl, p-TsOH = para-toluenesulfonic acid.

²⁰ Funk accomplished the synthesis of isophellibiline *via* an approach that relies on pericyclic reactions (Scheme 42a).²⁶⁵ Heating of dioxine **187** resulted in retro-Diels-Alder reaction to

afford dehydroalanine derivative **188**, which then underwent intramolecular [4+2]-cycloaddition to yield lactam **189**. The latter ²⁵ was converted into isophellibinine in a few steps.

Recently, Sarpong developed a new methodology to furnish ATAs and applied it to the synthesis of cocculolidine (Scheme 42b).²⁶⁶ Propargylic alcohol **190** underwent cycloisomerization upon heating to form benz[g]indolizinone **191** which was then ³⁰ transformed to cocculidine in two additional steps.

a) Funk's synthesis of (±)-isophellibiline

b) Sarpong's synthesis of (±)-cocculidine

Scheme 42 Syntheses of *Erythrina* alkaloids by Funk (2012) and Sarpong (2013). HFIP = hexafluoroisopropanol, PIFA = (bis(trifluoroacetoxy)iodo)benzene, TMS = trimethylsilyl.

A short and elegant synthesis of 3-demethoxyerythratidinone was accomplished by Streuff in 2015 (Scheme 43a). He used a titanium(III)-catalyzed reductive Umpolung (192→194) to assemble the 1,1-disubstituted tetrahydroisoquinoline core of the *Erythrina* alkaloids.²⁶⁷ In the same year, Ciufolini set the same 40 ATA *via* an oxidative dearomatizative cyclization of an oxazoline 195, yielding spiropiperidine 197 presumably *via* intermediate 196 (Scheme 43b).^{268, 269}

b) Ciufolini's synthesis of (+)-3-demethoxyerythratidinone

Scheme 43 Syntheses of *Erythrina* alkaloids by Streuff (2015) and Ciufolini (2015). HFIP = hexafluoroisopropanol, PIFA = (bis(trifluoroacetoxy)-iodo)benzene, TMS = trimethylsilyl.

Other methods used to install the ATA in *Erythrina* alkaloids include 1,2-addition of organometallic reagents to sulfinimines or iminium ions,²⁷⁰⁻²⁷² Schmidt reaction,²⁷³ Diels-Alder reactions,²⁷⁴ Michael addition,²⁷⁵ *N*-acyliminium Pictet-Spengler reaction,²⁷⁶⁻¹⁰ ²⁷⁸ Heck reaction.²⁷⁹

11 Indolizidine and Quinolizidine Alkaloids

Fig. 10 Selection of quinolizidine alkaloids, including halichlorine and the

- closely related alkaloids tauropinnaic acid and pinnaic acid.
- 15 A range of alkaloids that belong to the indolizidine and

This journal is © The Royal Society of Chemistry [year]

quinolizidine structural class feature an ATA in their carbon skeleton.²⁸⁰ They include natural products as diverse as the cylindricines,^{280, 281} FR901483,²⁸² himandrines, lepadiformines²⁸³ and halichlorine²⁸⁴ (Fig. 10).

²⁰ The first synthesis of cylindricine alkaloids (*viz.* cylindricine A, D and E) was accomplished by Snider utilizing a double Michael addition of ammonia to divinylketone **198** which gave the ATA **199**, a direct precursor of cylindricine A (Scheme 32a).²⁸⁵ Variations of this approach have been used several times in the ²⁵ synthesis of cylindricines.²⁸⁶

a) Snider's synthesis of (±)-cylindricine A

b) Padwa's synthesis of (±)-cylindricine C

Scheme 44 Synthesis of cylindricines by Snider (1997) and Padwa (2003). Boc = *tert*-butyloxycarbonyl, TBDPS = *tert*-butyldiphenyl-silyl.

In 2003, Padwa published a synthesis featuring a Michael ³⁰ addition/dipolar cycloaddition cascade between butadiene **201** and oxime **200** to form **203** *via* intermediate **202** (Scheme 32b). ²⁸⁷

The Hsung synthesis of enantiomerically pure cylindricine C relies on a nucleophilic attack of a diene on *N*-acyliminium ion **205** starting from ketone **204** (Scheme 45). ^{288, 289} This vinylogous ³⁵ aza-Prins approach was based on a synthesis published by Kibayashi in 2005.²⁹⁰

Scheme 45 Synthesis of cylindricine C by Hsung (2004). Boc = tertbutyloxycarbonyl, TBDPS = *tert*-butyldiphenyl-silyl.

- ⁴⁰ Additional strategies to synthesize the ATA in cylindricine alkaloids involve mainly Michael additions,^{286, 291, 292} Grignard additions to an imine,²⁹³ a cycloaddition of an alkyne to a pyrrole derivative,²⁹⁴ and carboazidation.²⁹⁵
- FR901483, an alkaloid isolated from the fermentation broth of a 45 *Cladobotryum* species with an intricate tricyclic structure,²⁸² proved to be an equally popular synthetic target. A biomimetic approach was employed by Sorensen in his enantioselective

Journal Name, [year], [vol], 00–00 | 19

synthesis (Scheme 46a).²⁹⁶

a) Sorensen's synthesis of (-)-FR901483

NH (-)-FR901483

Scheme 46 Syntheses of FR901483 by Sorensen (2000) and Wang (2012). Ar = aryl, BAIB = (diacetoxyiodo)benzene, Bn = benzyl, TBDPS = *tert*s butyldiphenylsilyl.

The oxidative azaspiroannulation of amine **207** promoted by (diacetoxyiodo)benzene resulted in the formation of spiroamine **208**, an intermediate on the way to the natural product. The same year, Ciufolini set the ATA *via* a closely related oxidative ¹⁰ spiroannulation (not shown, for an example of the methodology see Scheme 43b).²⁹⁷

An alternative to this strategy was found by Wang.²⁹⁸ In this case, an Aubé-Schmidt reaction of azide **209** provided access to lactam **212**, featuring the ATA of FR901483 (**209** \rightarrow **212**, Scheme 46b).

- ¹⁵ Additional synthetic strategies to the ATA in FR901483 include a triple Michael addition,²⁹⁹ a one-pot bisalkylation,^{300, 301} an aza-Cope rearrangement/Mannich cyclization^{302, 303} and an oxidative dearomatization.²⁹⁷
- The members of the galbulimima alkaloid family, such as ²⁰ himgaline and himandrine, also possess an ATA-containing quinolizidine core (Figure 10). Exploring a biosynthetic hypothesis, Chackalamannil used an intramolecular Michael addition to convert GB 13 to himgaline *via* ketone **213** (Scheme 47a).^{304, 305} In an interesting variation of this apporach,
- ²⁵ Movassaghi converted enone **214** *via* its α-chloroester **215** to hexacyclic amine **216**, which could then be transformed into himandrine. (Scheme 47b).³⁰⁴

a) Chackalamannil's synthesis of (-)-himgaline

b) Movassaghi's synthesis of (-)-himandrine

Scheme 47 Synthesis of galbulimima alkaloids by Chackalamannil (2009) ³⁰ and Movassaghi (2009). Ac = acetyl, Bz = benzoyl, NCS = Nchlorosuccinimide, OTf = trifluoromethanesulfonate.

In 1996, Uemura disclosed a small series of unusual marine alkaloids featuring ATAs. One of these compounds, halichlorine, was isolated from the marine sponge *Halichondria okadai* and ³⁵ was found to selectively inhibit the induction of vascular cell adhesion molecule-1 (VCAM-1).³⁰⁶ Pinnaic acid and tauropinnaic acid were recovered from bivalve *Pinna muricata*.^{307,308}All three molecules present a challenging 6-aza-spiro[4.5]decane core containing the ATA. The latter two lack a quinolizidine moiety, ⁴⁰ but are included in this chapter due to their close structural relationship.

Danishefsky and Trauner were the first to report the synthesis of (+)-halichlorine in 1999³⁰⁹ followed by a synthesis of pinnaic acid in 2001 (Scheme 48).^{310, 311} They used Meyers' lactam **217** as a ⁴⁵ chiral precursor, which was combined with allyltrimethylsilane in a Sakurai reaction to install the ATA in **218**. Intermediate **219** could be diversified to reach both halichlorine and pinnaic acid. These syntheses established the absolute configuration of halichlorine and confirmed the stereochemistry at C-14 and C-17 ⁵⁰ of pinnaic acid.

Danishefsky-Trauner synthesis of (+)-halichlorine and pinnaic acid

Scheme 48 Synthesis of halichlorine and pinnaic acid by Danishefsky (1999). TBDPS = *tert*-butyldiphenylsilyl, TMS = trimethylsilyl,

A related apporach employing a different type of *N*-acyl iminium ⁵⁵ ion was used by Heathcock in 2004 for the synthesis of halichlorine, pinnaic acid and tauropinnaic acid (Scheme 49a).³¹²

20 | Journal Name, [year], [vol], 00–00

Treatment of carbamate acetal **220** with allyl trimethylsilane and titanium tetrachloride furnished ATA-bearing carbamate **221** with a high degree of stereoselectivity. This key intermediate could be transformed into all three natural products.

Scheme 49 Syntheses of halichlorine, pinnaic acid and tauropinnaic acid by Heathcock (2004) and Arimoto (2007). Cbz = benzyloxycarbonyl, PMP = *p*-methoxyphenyl, TMS = trimethylsilyl.

In 2007, Arimoto reported his version of an asymmetric synthesis ¹⁰ of pinnaic acid using a Beckmann rearrangement to install the ATA (Scheme 49b).³¹³. The enantiomerically pure bicyclic ketone **222** was treated with a bulky hydroxylamine reagent to afford the desired lactam **223**, which was then converted into the natural product.

15 12 Lactacystine and Salinosporamide

In 1991, Omura isolated the unusual natural product lactacystin from *Streptomyces sp.* OM-6519 and identified it as a proteasome inhibitor (Fig. 11). ^{314, 315} A structurally related β -lactone, salinosporamide A, which shows similar biological activity, was ²⁰ subsequently isolated from a marine bacterium, *Salinispora tropica*.³¹⁶

Both compounds possess a densely functionalized γ-lactam core ²⁵ with three contiguous stereocenters, one of which is of the ATA type. Their significant biological activity has stimulated a large number of total syntheses,³¹⁷ and a variety of methods for the installation of the ATA motif have been applied.³¹⁸⁻³⁴⁵ In pioneering work, Corey reported five total syntheses of ³⁰ lactacystin between 1992 and 1998.^{318-320, 326, 327} The Corey group showed that the ATA can be installed using an aldol addition of α-amino acid derivative **224** (*via* intermediate **225**, Scheme 50a). Other groups also contributed to this field in the 1990s.^{321-325, 328} In most cases, the strategy applied for the installation of the ATA ³⁵ motif involved an alkylation or aldol reaction of an α-amino acid derivative.^{318-322, 324, 326-328} By contrast, Shibasaki introduced the ATA with a catalytic enantioselective Strecker reaction (Scheme 50b).^{317, 334} In this work, phosphinoylimine **226** was converted to aminonitrile **227** using a gadolinium catalyst and the chiral ligand ⁴⁰ **A**.

a) Corey's synthesis of (+)-lactacystin

b) Shibasaki's synthesis of (+)-lactacystin

соон

Another unusual approach was taken by Wardrop³⁴⁶ in his formal synthesis and Hayes³³⁸ in his total synthesis of lactacystin (Scheme 50c). Both groups explored an intramolecular carbene insertion into a C,H-bond to form the five-membered heterocyclic ⁵⁰ core. Hayes converted the enantiomerically pure vinyl bromide **229** to the corresponding vinylidene carbene, which underwent cyclization to afford **230** in high yield.

The first synthesis of salinosporamide was reported by Corey in 2004.^{330, 331} In this case, the ATA was installed by alkylation of ⁵⁵ threonine-derived oxazoline **231** with chloromethyl benzyl ether (*via* intermediate **232**, Scheme 51a).

This journal is © The Royal Society of Chemistry [year]

b) Sato's synthesis of (-)-salinosporamide A

Scheme 51 Syntheses of salinosporamide A by Corey (2004) and Sato (2011). Bn = Benzyl, LDA = lithium diisopropylamide, TMS = trimethylsilyl.

- ⁵ A more recent synthesis of salinosporamide A published by Sato and Chid uses a stereoselective Overman rearrangement to install the ATA (Scheme 51b).³⁴³ Heating of the highly functionalized trichloroacetimidate 233 provided trichloroacetamide 234 as a key intermediate.
- ¹⁰ Other syntheses of salinosporamide and lactacystine used different strategies for the formation of the ATA, such as intramolecular aldol reactions,^{336, 337} intramolecular acylations,³³² acid catalyzed cyclizations of malonates,^{335, 339} indium-catalyzed Conia-ene reactions³⁴¹, C,H-alkynylation³⁴⁷ and enzymatic ¹⁵ desymmetrizations of prochiral ATAs.³⁴⁰

13 Manzacidins

25

The manzacidins, a small family of bromopyrrole alkaloids, have attracted considerable attention from the synthetic community despite, or maybe because of their relatively simple structures.

²⁰ Manzacidins A-C (Figure 12) were first isolated form the Okinawan sponge *Hymeniacidon* sp. by Kobayashi in 1991,³⁴⁸ followed by the isolation of manzacidin D from the 'living fossil' sponge *Astrosclera willeyana*³⁴⁹ and *N*-methylmanzacidin C from *Axinella brevistyla*.³⁵⁰

In 2000, Ohfune reported the synthesis of manzacidins A and C *via* a Strecker reaction and assigned the absolute configuration of these natural products (not shown).³⁵¹ In 2002, DuBois ³⁰ synthesized manzazidin C using an elegant oxidative C,H-insertion that involved sulfamate **235** (*via* intermediate **236**, Scheme 52a).³⁵² One year later, he used a similar strategy to set the ATA in tetrodotoxin (see chapter 14, scheme 54c).³⁵³

Scheme 52 Syntheses of manzacidins by DuBois (2002) and Leighton (2008). Ac = acetyl, BAIB = (diacetoxyiodo)benzene, OTf = trifluoromethanesulfonate, i-Pr = iso-propyl, TBDPS = tert-butyldiphenylsilyl.

⁴⁰ Leighton accomplished the synthesis of manzacidin C employing their asymmetric silane-promoted [3+2] cycloaddition methodology (Scheme 52b).³⁵⁴ Exposure of alkene 237 and hydrazone 238 to chiral silane *R*,*R*-B gave pyrazolidine 239, thus setting both stereocenters of the target molecule, including the ⁴⁵ ATA, in a single step. Intermediate 239 was subsequently

converted to manzacidin C *via* reductive *N*,*N*-bond cleavage. A more recent formal synthesis of manzacidins A and C, published by Ichikawa, features a rare allyl cyanate/ isocyanate rearrangement as the key step (Scheme 53).³⁵⁵ To this end, he ⁵⁰ synthesized carbamate **240**, which was converted to allyl cyanate **241** by *in situ* dehydration. The subsequent rearrangement with [1,3]-chirality transfer gave isocyanate **242**, which was then transformed into manzacidin A. The synthesis of manzacidin C was accomplished analogously from a diastereoisomer of ⁵⁵ carbamate **240**.³⁵⁵

Ichikawa's synthesis of (-)-manzacidin A

Scheme 53 Synthesis of manzacidin A by Ichikawa (2012). Boc = *tert*-butyloxycarbonyl, Cbz = carboxybenzyl.

Several other synthetic approaches toward these molecules have ⁶⁰ been reporeted. These strategies for the installation of the ATA moiety involve diastereoselective nitrene insertion,³⁵² 1,3-dipolar cycloaddition,^{356, 357} Hofmann rearrangement,³⁵⁸ diastereoselective iodocyclization,^{359, 360} Grignard addition to an imine³⁶¹ and a variety of other methods.³⁶²⁻³⁶⁶ Indeed, ⁶⁵ Manzacidines remain targets of great interest for synthetic chemists. In 2015, Inoue published a synthesis of manzacidin A

22 | Journal Name, [year], [vol], 00–00

using a radical-based decarbonylative coupling (not shown).³⁶⁷ Recently the relative stereochemistry of manzacidin B, which possesses an additional stereocenter, was revised using total synthesis. 362, 363, 365

5 14 Tetrodotoxin

Tetrodotoxin (TTX) was first isolated from the Fugu puffer fish in 1909.368, 369 Its structure was independently reported by Hirata-Goto,³⁷⁰ Tsuda³⁷¹ and Woodward³⁷² in the 1960s. Their assignment was confirmed by X-ray crystallography, which also 10 established the absolute configuration of the molecule.^{373, 374} TTX features a highly functionalized heteroadamantane framework that contains an ortho-acid and is fused to a cyclic guanidinium moiety via an ATA motif. The molecule is an extremely powerful and selective blocker of voltage-gated sodium channels and is 15 widely used as a research tool in neuroscience.³⁷⁵⁻³⁷⁹ Due to its intriguing structure and bioactivity, attempts to synthesize TTX

have been made from an early stage and activity in this field has

Ĥ

NH ö 247

recently increased significantly.380

Ô۲

20 Scheme 54 Syntheses of tetrodotoxin (TTX) by Kishi (1972), Isobe (2003) and DuBois (2003). Ac = acetyl, BAIB = (diacetoxyiodo)benzene, Ms = methanesulfonyl, Ph = phenyl,.

248

The first total synthesis of TTX was accomplished by Kishi in 25 1972 (Scheme 54a).³⁸¹⁻³⁸⁴ In his approach, the ATA was formed using a Beckmann rearrangement of oxime 243, which was synthesized using a regioselective Diels-Alder reaction. The resulting key intermediate 244 was converted into TTX using a series of stereoselective redox transformations, ring cleavage and 30 the installation of the cyclic guanidine with newly developed methodology. Although the Kishi synthesis was not enantioselective, it still stands as one of the strategically most elegant approaches to a natural product featuring an ATA motif. After a 30 year lull, Isobe published the first enantioselective 35 synthesis of TTX wherein the ATA motif was installed with a

stereoselective Overman rearrangement (Scheme 54b).385-387 To this end, an allylic alcohol was converted to trichloroacetimidate 245, which underwent rearrangement to yield trichloroacetamide 246. Compound 246 bears all the carbon atoms of TTX and could ⁴⁰ be converted into the natural product in a series of steps.

Shortly thereafter, DuBois developed an enantioselective approach to TTX that involved his signature nitrene insertion chemistry (Scheme 54c).³⁵³ Exposure of the key intermediate, carbamate 247, to a hypervalent iodine reagent and magnesium 45 oxide in the presence of a rhodium catalyst led to the formation of oxazolidinone 248, which bears the ATA motif. Insertion into other possible C,H-bonds was largely avoided through careful engineering of the substrate.

15 Miscellaneous Alkaloids

50 ATA's occur in many other alkaloids that cannot easily be categorized along the biosynthetic and structural lines shown above. An example is gracilamine, which was isolated in 2005 by Ünver and Kaya from the Amaryllidacae species Galanthus gracilis.388 In 2012, the first synthesis of gracilamine was 55 disclosed by Ma (Scheme 55a).³⁸⁹ It relies on a potentially biomimetic, stereoselective and intramolecular [3+2]cycloaddition, transforming 249 into the highly functionalized pyrrolidine 250.

In a recent synthesis, Gao set the ATA via an intramolecular ⁶⁰ Mannich annulation (Scheme 55b).³⁹⁰ First, α-ketoester 252 was condensed with amine 251. The resulting iminium ion 253 then underwent a diastereoselective Mannich reaction to furnish the hexacyclic scaffold 254 of gracilamine.

a) Ma's synthesis of (±)-gracilamine

65 Scheme 55 Syntheses of gracilamine by Ma (2012) and Gao (2014). TBDPS = tert-butyldiphenylsilyl, Troc = 2,2,2-trichlorethoxycarbonyl, TFA = trifluoroacetic acid.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 23

The amathaspiramides A-F are a family of marine alkaloids isolated from the bryozoan *Amathia wilsoni* in 1999 (Fig.13).³⁹¹ They feature an unusual spirocyclic core consisting of a pyrrolidine fused to a pyrrolidinone moiety.³⁹¹

The first total synthesis of a member of this family, *viz.* amathaspiramide F, was disclosed by Trauner in 2002 (Scheme 41a).³⁹² In this work, the proline-derived *N,N*-acetal **255** was ¹⁰ converted to the corresponding silyl ketene acetal, which underwent a diastereoselective Michael addition to the nitro olefin **256**, establishing the ATA of **257**. Subsequently, Ohfune published his approach to amathaspiramide F which utilizes an enolate Claisen rearrangement for the same purpose (not ¹⁵ shown).³⁹³

a) Trauner's synthesis of (-)-amathaspiramide F

Scheme 56 Syntheses of amathaspiramides by Trauner (2002) and Fukuyama (2012). Bn = benzyl, t-Bu = tert-butyl, TBS = tert-butyldimethylsilyl.

- ²⁰ In 2012, Fukuyama *et al.* reported the asymmetric synthesis of the entire amathaspiramide family (Scheme 41b).³⁹⁴ In their work, the benzyl ester **258** bearing a quaternary stereocenter was first deprotected and the resulting acid converted to the corresponding amine *via* Curtius rearrangement. After hydrolysis of the resulting
- ²⁵ isocyanate, the intermediate amino ester underwent cyclization to afford the pyrrolidinone **259**, which could be converted into all members of the family.

In Tambar's asymmetric synthesis of amanthaspiramide F, proline derivative **260** underwent a palladium-catalyzed allylic

³⁰ substitution of carbonate **261** to yield an intermediary quarternary ammonium ion **262**, which, after deprotonation, engaged in a stereoselective [2,3]-Stevens rearrangement *via* **263** (Scheme 41c).³⁹⁵ The resulting ATA-containing pyrrolidine **264** was converted into amathaspiramide F.

Scheme 57 Syntheses of amathaspiramides by Tambar (2013) and Lee (2015). Bn = benzyl, t-Bu = *tert*-butyl, dba = dibenzylideneacetone, MOM = methoxymethyl, TBS = *tert*-butyldimethylsilyl.

More recently, Lee used a formal [3+2] cycloaddition between ⁴⁰ lithium(trimethylsilyl)diazomethane **266** and α,β -unsaturated ester **265** to set the ATA in amanthaspiramide C (*via* intermediate **267**, Scheme 41d).³⁹⁶ The N,N-bond in pyrazoline **268** was cleaved by treatment with *p*-TsOH and additional transformations led to the total synthesis of amathaspiramide C and the formal ⁴⁵ synthesis of all the other amathaspiramides.

16 Conclusions

Herein, we have provided a survey of syntheses that feature the installation of an α -tertiary amine (ATA) as a common thread. This structural motif is widespread amongst alkaloids and has ⁵⁰ physicochemical consequences, such as increased lipophilicity and chromatographic mobility that distinguishes its bearers from other basic amines. Since ATAs also occur in drug candidates and building blocks for functional materials, our review is intended to provide a useful reference for medicinal chemists and colleagues ⁵⁵ active in the material sciences. It may also provide a baseline for the development of additional and hopefully more efficient methods for the synthesis of target molecules containing α -tertiary amines.

17 Acknowledgements

⁶⁰ We thank the Deutsche Forschungsgemeinschaft (SFB 749) for financial support. We are also grateful to the Deutsche Telekom Foundation (Ph.D. Scholarship to N.V.). We thank Felix

75

48

49.

50.

51.

53.

55.

56.

57.

59.

60.

62.

125 61.

130

135 66.

68.

69

70.

120 58.

115

100

Hartrampf, Benjamin Williams, Daniel W. Terwilliger, Dr. Henry Toombs Ruane and David Konrad for helpful discussions and for proofreading the manuscript.

18 Notes and references

- 5 1. G. A. Cordell, *The Alkaloids*, Elsevier, London, 1998.
- 2. P. M. Dewick, *Medicinal Natural Products; A Biosynthetic Approach*, Wiley-VCH, Weinheim, third edn., 2009.
- M. Wink, in *Studies in Natural Products Chemistry*, Elsevier, 2000, vol. 21, ch. Interference of Alkaloids with Neuroreceptors and Ion Channels, pp. 3-122.
- G. A. Cordell, M. L. Quinn-Beattie and N. R. Farnsworth, *Phytother. Res.* 2001, 15, 183-205.
- 5. J. Clayden, M. Donnard, J. Lefranc and D. J. Tetlow, *Chem. Commun.*, 2011, **47**, 4624-4639.
- 15 6. G. Dake, *Tetrahedron*, 2006, **62**, 3467-3492.
- 7. S. A. A. El Bialy, H. Braun and L. F. Tietze, *Synthesis*, 2004, 2249-2262.
- S. H. Kang, S. Y. Kang, H.-S. Lee and A. J. Buglass, *Chem. Rev.*, 2005, **105**, 4537-4558.
- 20 9. A. Sharma and J. F. Hartwig, *Nature*, 2015, **517**, 600-604.
- L. Huang, M. Arndt, K. Gooßen, H. Heydt and L. J. Gooßen, *Chem. Rev.*, 2015, **115**, 2596-2697.
- 11. A. Glisan King and J. Meinwald, *Chem. Rev.*, 1996, **96**, 1105-1122.
- 25 12. P. Laurent, B. Lebrun, J.-C. Braekman, D. Daloze and J. M. Pasteels, *Tetrahedron*, 2001, 57, 3403-3412.
 - 13. R. Robinson, J. Chem. Soc., Trans., 1917, 111, 762-768.
 - 14. B. K. Blount and R. Robinson, J. Chem. Soc., 1933, 1511-1512.
- C. Schöpf and G. Lehmann, *Liebigs Ann. Chem.*, 1935, 518, 1-37.
- K. Alder, H. Betzing, R. Kuth and H.-A. Dortmann, *Liebigs* 105 52. *Ann. Chem.*, 1959, 620, 73-87.
- 17. R. I. Longley and W. S. Emerson, *J. Am. Chem. Soc.*, 1950, **72**, 3079-3081.
- 18. K. Alder and H. A. Dortmann, *Chem. Ber.*, 1953, **86**, 1544-1554.
- 19. K. Alder, H. Wirtz and H. Koppelberg, *Liebigs Ann. Chem.*, 1956, **601**, 138-154.
- 40 20. B. Tursch, C. Chome, J. C. Braekman and D. Daloze, *Bull. Soc. Chim. Belg.*, 1973, **82**, 699-703.
- D. H. Gnecco Medina, D. S. Grierson and H.-P. Husson, Tetrahedron Lett., 1983, 24, 2099-2102.
- 22. C. Yue, J. Royer and H.-P. Husson, J. Org. Chem., 1992, 57, 4211-4214.
- 23. M. F. Mechelke and A. I. Meyers, *Tetrahedron Lett.*, 2000, **41**, 4339-4342.
- 24. E. C. Davison, A. B. Holmes and I. T. Forbes, *Tetrahedron Lett.*, 1995, **36**, 9047-9050.
- 50 25. T. Itoh, N. Yamazaki and C. Kibayashi, Org. Lett., 2002, 4, 2469-2472.
- 26. R. K. Hill and L. A. Renbaum, *Tetrahedron*, 1982, **38**, 1959-1963.
- 27. T. C. Coombs, Y. Zhang, E. C. Garnier-Amblard and L. S. Liebeskind, *J. Am. Chem. Soc.*, 2009, **131**, 876-877.
- 28. S. Roy and C. Spino, *Org. Lett.*, 2006, **8**, 939-942.
- 29. M. Arbour, S. Roy, C. Godbout and C. Spino, *J. Org. Chem.*, 2009, **74**, 3806-3814.
- 30. F. A. Davis and R. Edupuganti, Org. Lett., 2010, **12**, 848-851.
- F. A. Davis, J. Org. Chem., 2006, 71, 8993-9003.
 J. W. Daly, I. Karle, C. W. Myers, T. Tokuyama, J. A. Waters and B. Witkop, Proc. Natl. Acad. Sci. U. S. A., 1971, 68, 1870-1875.
- 33. J. W. Daly, J. Nat. Prod., 1998, 61, 162-172.
- 65 34. E. X. Albuquerque, K. Kuba and J. Daly, *J. Pharmacol. Exp. Ther.*, 1974, **189**, 513-524.
- A. J. Lapa, E. X. Albuquerque, J. M. Sarvey, J. Daly and B. 140 Witkop, *Exp. Neurol.*, 1975, **47**, 558-580.
- A. T. Eldefrawi, M. E. Eldefrawi, E. X. Albuquerque, A. C.
 Oliveira, N. Mansour, M. Adler, J. W. Daly, G. B. Brown, W.

Burgermeister and B. Witkop, Proc. Natl. Acad. Sci. U. S. A., 1977, 74, 2172-2176.

- K. Takahashi, A. E. Jacobson, C. P. Mak, B. Witkop, A. Brossi, E. X. Albuquerque, J. E. Warnick, M. A. Maleque, A. Bavoso and J. V. Silverton, *J. Med. Chem.*, 1982, 25, 919-925.
- C. E. Spivak, M. A. Maleque, A. C. Oliveira, L. M. Masukawa, T. Tokuyama, J. W. Daly and E. X. Albuquerque, *Mol. Pharmacol.*, 1982, 21, 351-361.
- A. Sinclair and R. A. Stockman, Nat. Prod. Rep., 2007, 24, 298-326.
- T. Fukuyama, L. V. Dunkerton, M. Aratani and Y. Kishi, J. Org. Chem., 1975, 40, 2011-2012.
- M. Aratani, L. V. Dunkerton, T. Fukuyama, Y. Kishi, H. Kakoi, S. Sugiura and S. Inoue, J. Org. Chem., 1975, 40, 2009-2011.
- 42. S. C. Carey, M. Aratani and Y. Kishi, *Tetrahedron Lett.*, 1985, **26**, 5887-5890.
- E. J. Corey, J. F. Arnett and G. N. Widiger, J. Am. Chem. Soc., 1975, 97, 430-431.
- 90 44. T. Ibuka, H. Minakata, Y. Mitsui, E. Tabushi, T. Taga and Y. Inubushi, *Chem. Lett.*, 1981, **10**, 1409-1412.
 - T. Ibuka, Y. Mitsui, K. Hayashi, H. Minakata and Y. Inubushi, *Tetrahedron Lett.*, 1981, 22, 4425-4428.
 - T. Ibuka, H. Minakata, Y. Mitsui, K. Hayashi, T. Taga and Y. Inubushi, *Chem. Pharm. Bull.*, 1982, 30, 2840-2859.
 - 47. N. Maezaki, H. Fukuyama, S. Yagi, T. Tanaka and C. Iwata, J. Chem. Soc., Chem. Commun., 1994, 1835-1836.
 - D. Kim and C. Won Park, Chem. Commun., 1997, 2263-2264.
 - G. Stork and K. Zhao, J. Am. Chem. Soc., 1990, 112, 5875-5876.
 - Y. Adachi, N. Kamei, S. Yokoshima and T. Fukuyama, Org. Lett., 2011, **13**, 4446-4449.
 - Y. Adachi, N. Kamei, S. Yokoshima and T. Fukuyama, Org. Lett., 2014, 16, 1273-1273.
 - M. S. Karatholuvhu, A. Sinclair, A. F. Newton, M.-L. Alcaraz, R. A. Stockman and P. L. Fuchs, *J. Am. Chem. Soc.*, 2006, **128**, 12656-12657.
 - G. M. Williams, S. D. Roughley, J. E. Davies, A. B. Holmes and J. P. Adams, J. Am. Chem. Soc., 1999, 121, 4900-4901.
- 110 54. E. C. Davison, M. E. Fox, A. B. Holmes, S. D. Roughley, C. J. Smith, G. M. Williams, J. E. Davies, P. R. Raithby, J. P. Adams, I. T. Forbes, N. J. Press and M. J. Thompson, *J. Chem. Soc., Perkin Trans. 1*, 2002, 1494-1514.
 - M. Glanzmann, C. Karalai, B. Ostersehlt, U. Schön, C. Frese and E. Winterfeldt, *Tetrahedron*, 1982, 38, 2805-2810.
 - J. J. Venit, M. DiPierro and P. Magnus, J. Org. Chem., 1989, 54, 4298-4301.
 - S. A. Godleski, D. J. Heacock, J. D. Meinhart and S. Van Wallendael, J. Org. Chem., 1983, 48, 2101-2103.
 - W. Carruthers and S. A. Cumming, J. Chem. Soc., Chem. Commun., 1983, 360-361.
 - D. Tanner and P. Somfai, *Tetrahedron Lett.*, 1985, **26**, 3883-3886.
 - D. Tanner and P. Somfai, Tetrahedron, 1986, 42, 5657-5664.
 - D. Tanner, M. Sellen and J. E. Baeckvall, *J. Org. Chem.*, 1989, **54**, 3374-3378.
 - D. J. Wardrop, W. Zhang and C. L. Landrie, *Tetrahedron Lett.*, 2004, **45**, 4229-4231.
 - 63. R. W. Fitch and F. A. Luzzio, *Ultrason. Sonochem.*, 1997, 4, 99-107.
 - O. Y. Provoost, S. J. Hedley, A. J. Hazelwood and J. P. A. Harrity, *Tetrahedron Lett.*, 2006, 47, 331-333.
 - P. Compain, J. Goré and J.-M. Vatèle, *Tetrahedron*, 1996, 52, 6647-6664.
 - D. Tanner, L. Hagberg and A. Poulsen, *Tetrahedron*, 1999, **55**, 1427-1440.
 - 67. S. Kim, H. Ko, T. Lee and D. Kim, J. Org. Chem., 2005, 70, 5756-5759.
 - D. L. Comins, Y.-m. Zhang and X. Zheng, Chem. Commun., 1998, 2509-2510.
 - J. D. Winkler and P. M. Hershberger, J. Am. Chem. Soc., 1989, 111, 4852-4856.
 - X. Q. Ma and D. R. Gang, Nat. Prod. Rep., 2004, 21, 752-772.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], **[vol]**, 00–00 | **25**

85

100

120

125

135

145

- 71. K. Bödeker, Liebigs Ann. Chem., 1881, 208, 363-367.
- 72. G. Stork, R. A. Kretchmer and R. H. Schlessinger, J. Am. Chem. Soc., 1968, **90**, 1647-1648.
- 73. W. A. Ayer, W. R. Bowman, G. A. Cooke and A. C. Soper, *Tetrahedron Lett.*, 1966, 7, 2021-2026.
- 74. W. A. Ayer, W. R. Bowman, T. C. Joseph and P. Smith, *J. Am. Chem. Soc.*, 1968, **90**, 1648-1650.
- A. Padwa, M. A. Brodney, J. P. Marino and S. M. Sheehan, J. Org. Chem., 1997, 62, 78-87.
- ¹⁰ 76. K. Wiesner and L. Poon, *Tetrahedron Lett.*, 1967, **8**, 4937-4940.
- 77. H. Dugas, M. E. Hazenberg, Z. Valenta and K. Wiesner, *Tetrahedron Lett.*, 1967, **8**, 4931-4936.
- 78. K. Wiesner, V. Musil and K. J. Wesner, *Tetrahedron Lett.*, 1968, **9**, 5643-5646.
- 79. K. Wiesner, L. Poon, I. Jirkovský and M. Fishman, *Can. J. Chem.*, 1969, **47**, 433-444.
- C. H. Heathcock, E. Kleinman and E. S. Binkley, J. Am. Chem. Soc., 1978, 100, 8036-8037.
- E. Kleinman and C. H. Heathcock, *Tetrahedron Lett.*, 1979, 20, 4125-4128.
- 82. C. H. Heathcock, E. F. Kleinman and E. S. Binkley, J. Am. Chem. Soc., 1982, **104**, 1054-1068.
- 83. K. Nakahara, K. Hirano, R. Maehata, Y. Kita and H. Fujioka, 25 Org. Lett., 2011, **13**, 2015-2017.
- D. A. Evans and J. R. Scheerer, Angew. Chem. Int. Ed., 2005, 44, 6038-6042.
- H. Yang, R. G. Carter and L. N. Zakharov, J. Am. Chem. Soc., 2008, 130, 9238-9239.
- 86. H. Yang and R. G. Carter, J. Org. Chem., 2010, **75**, 4929-4938.
 87. G. A. Kraus and Y. S. Hon, J. Am. Chem. Soc., 1985, **107**,
- 4341-4342.
 88. P. A. Grieco and Y. Dai, J. Am. Chem. Soc., 1998, 120, 5128-
- 5129.
 E. Wenkert, B. Chauncy, K. G. Dave, A. R. Jeffcoat, F. M. Schell and H. P. Schenk, J. Am. Chem. Soc., 1973, 95, 8427-8436.
- 90. E. Wenkert and C. A. Broka, J. Chem. Soc., Chem. Commun., 1984, 714-715.
- 40 91. G. A. Kraus and Y. S. Hon, *Heterocycles*, 1987, 25, 377-386.
- W. A. Ayer and L. S. Trifonov, in *The Alkaloids*, eds. G. A. Cordell and A. Brossi, Academic, New York, 1994, vol. 45, pp. 233-266.
- 93. F. A. L. Anet and C. R. Eves, *Can. J. Chem.*, 1958, **36**, 902-45 909.
- 94. D. F. Fischer and R. Sarpong, J. Am. Chem. Soc., 2010, 132, 5926-5927.
- 95. C. Tsukano, L. Zhao, Y. Takemoto and M. Hirama, *Eur. J. Org. Chem.*, 2010, 4198-4200.
- 50 96. C. Yuan, C.-T. Chang and D. Siegel, J. Org. Chem., 2013, 78, 5647-5668.
- 97. M. Azuma, T. Yoshikawa, N. Kogure, M. Kitajima and H. Takayama, *J. Am. Chem. Soc.*, 2014, **136**, 11618-11621.
- 98. D. Schumann, H.-J. Müller and A. Naumann, *Liebigs Ann.* 55 *Chem.*, 1982, 2057-2061.
- 99. D. Schumann, H. J. Muller and A. Naumann, *Liebigs Ann. Chem.*, 1982, 1700-1705.
- 100. D. Schumann and A. Naumann, *Liebigs Ann. Chem.*, 1983, 220-225.
- 60 101. H. Morita, K. i. Ishiuchi, A. Haganuma, T. Hoshino, Y. Obara, N. Nakahata and J. i. Kobayashi, *Tetrahedron*, 2005, **61**, 1955-1960.
- 102. B. B. Liau and M. D. Shair, J. Am. Chem. Soc., 2010, 132, 9594-9595.
- 65 103. A. S. Lee, B. B. Liau and M. D. Shair, J. Am. Chem. Soc., 2014, 136, 13442-13452.
- 104. H. Li, X. Wang and X. Lei, *Angew. Chem. Int. Ed.*, 2012, **51**, 491-495.
- 105. J. Zhang, J. Wu, B. Hong, W. Ai, X. Wang, H. Li and X. Lei, *Nat Commun*, 2014, **5**.
- 106. Y.-R. Yang, Z.-W. Lai, L. Shen, J.-Z. Huang, X.-D. Wu, J.-L. Yin and K. Wei, *Org. Lett.*, 2010, **12**, 3430-3433.

- 107. Y.-R. Yang, L. Shen, J.-Z. Huang, T. Xu and K. Wei, J. Org. Chem., 2011, 76, 3684-3690.
- 75 108. S.-H. Hou, Y.-Q. Tu, L. Liu, F.-M. Zhang, S.-H. Wang and X.-M. Zhang, Angew. Chem. Int. Ed., 2013, 52, 11373-11376.
 - 109. Y. Xia and A. P. Kozikowski, J. Am. Chem. Soc., 1989, 111, 4116-4117.
 - 110. L. Qian and R. Ji, *Tetrahedron Lett.*, 1989, **30**, 2089-2090.
- A. P. Kozikowski, Y. Xia, E. R. Reddy, W. Tuckmantel, I. Hanin and X. C. Tang, *J. Org. Chem.*, 1991, 56, 4636-4645.
 - A. P. Kozikowski, G. Campiani, P. Aagaard and M. McKinney, J. Chem. Soc., Chem. Commun., 1993, 860-862.
 - I. Y. C. Lee, M. H. Jung, H. W. Lee and J. Y. Yang, *Tetrahedron Lett.*, 2002, 43, 2407-2409.
 - 114. T. Koshiba, S. Yokoshima and T. Fukuyama, *Org. Lett.*, 2009, **11**, 5354-5356.
 - M. K. M. Tun, D.-J. Wüstmann and S. B. Herzon, *Chem. Sci.*, 2011, 2, 2251-2253.
- 90 116. S. M. A. Sohel and T. Opatz, *Arkivoc*, 2014, i, 92-108.
 - Y. Hirasawa, J. Kobayashi and H. Morita, *Heterocycles*, 2009, 77, 679-729.
 - G. T. Ha, R. K. Wong and Y. Zhang, *Chem. Biodiversity*, 2011, 8, 1189-1204.
- 95 119. S. R. Tudhope, J. A. Bellamy, A. Ball, D. Rajasekar, M. Azadi-Ardakani, H. S. Meera, J. M. Gnanadeepam, R. Saiganesh, F. Gibson, L. He, C. H. Behrens, G. Underiner, J. Marfurt and N. Favre, Org. Process Res. Dev., 2012, 16, 635-642.
 - 120. R. Ding, B.-F. Sun and G.-Q. Lin, Org. Lett., 2012, 14, 4446-4449.
 - J. D. White, Y. Li, J. Kim and M. Terinek, Org. Lett., 2013, 15, 882-885.
 - 122. Y. Hirasawa, H. Morita and J. Kobayashi, Org. Lett., 2004, 6, 3389-3391.
- 105 123. Y. Hirasawa, J. Kobayashi, Y. Obara, N. Nakahata, N. Kawahara, Y. Goda and H. Morita, *Heterocycles*, 2006, 68, 2357-2364.
 - 124. B. L. Nilsson, L. E. Overman, J. R. de Alaniz and J. M. Rohde, J. Am. Chem. Soc., 2008, 130, 11297-11299.
- 110 125. R. A. Altman, B. L. Nilsson, L. E. Overman, J. R. de Alaniz, J. M. Rohde and V. Taupin, *J. Org. Chem.*, 2010, **75**, 7519-7534.
 - 126. X. Cheng and S. P. Waters, Org. Lett., 2010, 12, 205-207.
 - W. A. Denne, S. R. Johns, J. A. Lamberton and A. M. Mathieson, *Tetrahedron Lett.*, 1971, **12**, 3107-3108.
- 115 128. W. A. Denne, S. R. Johns, J. A. Lamberton and A. M. Mathieson, *Tetrahedron Lett.*, 1973, 14, 794.
 - 129. E. J. Corey and R. D. Balanson, J. Am. Chem. Soc., 1974, 96, 6516-6517.
 - D. M. Ryckman and R. V. Stevens, J. Am. Chem. Soc., 1987, 109, 4940-4948.
 - M. Matsui, in *The Alkaloids: Chemistry and Pharmacology*, ed. B. Arnold, Elsevier Academic Press, 1988, vol. 33, pp. 307-347.
 - Y. Inubushi, T. Ibuka and M. Kitano, *Tetrahedron Lett.*, 1969, 10, 1611-1614.
 - 133. D. A. Evans, C. A. Bryan and G. M. Wahl, J. Org. Chem., 1970, 35, 4122-4127.
 - T. Ibuka, K. Tanaka and Y. Inubushi, *Tetrahedron Lett.*, 1970, 11, 4811-4814.
- 130 135. Y. Inubushi, M. Kitano and T. Ibuka, *Chem. Pharm. Bull.*, 1971, **19**, 1820-1841.
 - T. Ibuka, K. Tanaka and Y. Inubushi, *Tetrahedron Lett.*, 1972, 13, 1393-1396.
 - T. Ibuka, K. Tanaka and Y. Inubushi, *Chem. Pharm. Bull.*, 1974, **22**, 782-798.
 - T. Ibuka, K. Tanaka and Y. Inubushi, *Chem. Pharm. Bull.*, 1974, 22, 907-921.
 - 139. A. G. Schultz and A. Wang, J. Am. Chem. Soc., 1998, **120**, 8259-8260.
- 140 140. S. B. Jones, L. He and S. L. Castle, Org. Lett., 2006, 8, 3757-3760.
 - F. Li, S. S. Tartakoff and S. L. Castle, J. Am. Chem. Soc., 2009, 131, 6674-6675.
 - F. Li, S. S. Tartakoff and S. L. Castle, J. Org. Chem., 2009, 74, 9082-9093.

26 | Journal Name, [year], [vol], 00-00

Natural Product Reports

85

95

105

115

130

140

143.	S. B. Herzon, N. A. Calandra and S. M. King, Angew. Chem.	
	Int. Ed., 2011, 50, 8863-8866.	75
144.	K. V. Chuang, R. Navarro and S. E. Reisman, Angew. Chem.	
	Int. Ed., 2011, 50, 9447-9451.	
5 145.	S. M. King, N. A. Calandra and S. B. Herzon, Angew. Chem.	
	Int. Ed., 2013, 52, 3642-3645.	

- 146. N. A. Calandra, S. M. King and S. B. Herzon, J. Org. Chem., 2013, 78, 10031-10057.
- 147.
 D. K. Nielsen, L. L. Nielsen, S. B. Jones, L. Toll, M. C.

 10
 Asplund and S. L. Castle, J. Org. Chem., 2009, 74, 1187-1199.
- G.-w. Qin and R.-s. Xu, *Med. Res. Rev.*, 1998, 18, 375-382.
 R.-S. Xu, in *Studies in Natural Products Chemistry*, ed. R. Atta
- ur, Elsevier, 2000, vol. Volume 21, Part B, pp. 729-772.
 150. H. S. Chung, P. M. Hon, G. Lin, P. P. H. But and H. Dong, *Planta Med.*, 2003, 69, 914-920.
- 151. R. Aloise Pilli and M. da Conceição Ferreira de Oliveira, *Nat. Prod. Rep.*, 2000, **17**, 117-127.
- R. A. Pilli, G. B. Rosso and M. da Conceição Ferreira de Oliveira, *Nat. Prod. Rep.*, 2010, **27**, 1908-1937.
- 20 153. A. S. Kende, J. I. Martin Hernando and J. B. J. Milbank, Org. Lett., 2001, 3, 2505-2508.
- 154. A. S. Kende, J. I. Martin Hernando and J. B. J. Milbank, *Tetrahedron*, 2002, **58**, 61-74.
- 155. T. Taniguchi and H. Ishibashi, *Tetrahedron*, 2008, **64**, 8773-8779.
- 156. T. Taniguchi, G. Tanabe, O. Muraoka and H. Ishibashi, *Org. Lett.*, 2008, **10**, 197-199.
- 157. P.-Q. Huang, S.-Y. Huang, L.-H. Gao, Z.-Y. Mao, Z. Chang and A.-E. Wang, *Chem. Commun.*, 2015, **51**, 4576-4578.
- 30 158. Y.-M. Zhao, P. Gu, Y.-Q. Tu, C.-A. Fan and Q. Zhang, Org. Lett., 2008, 10, 1763-1766.
- 159. Z.-H. Chen, Z.-M. Chen, Y.-Q. Zhang, Y.-Q. Tu and F.-M. Zhang, *J. Org. Chem.*, 2011, **76**, 10173-10186.
- 160. Z.-H. Chen, Y.-Q. Zhang, Z.-M. Chen, Y.-Q. Tu and F.-M. Zhang, *Chem. Commun.*, 2011, **47**, 1836-1838.
- M. Brüggemann, A. I. McDonald, L. E. Overman, M. D. Rosen, L. Schwink and J. P. Scott, *J. Am. Chem. Soc.*, 2003, 125, 15284-15285.
- 162. A. S. Kende, T. L. Smalley and H. Huang, *J. Am. Chem. Soc.*, 1999, **121**, 7431-7432.
- 163. C. Fang, C. S. Shanahan, D. H. Paull and S. F. Martin, *Angew. Chem. Int. Ed.*, 2012, **51**, 10596-10599.
- 164. P. Gu, Y.-M. Zhao, Y. Q. Tu, Y. Ma and F. Zhang, *Org. Lett.*, 2006, **8**, 5271-5273.
- ⁴⁵ 165. M. Greshoff, *Ber.*, 1890, **23**, 3537-3550.
- 166. A. R. Battersby and H. Gregory, J. Chem. Soc., 1963, 22-32.
- C. Djerassi, H. Schmid, W. G. Kump, A. R. Battersby, J. M. 12 Wilson, R. J. Owellen, D. J. Lecount and H. Budzikiewicz, *Helv. Chim. Acta*, 1963, 46, 742-751.
- ⁵⁰ 168. B. W. Bycroft, D. Schumann, M. B. Patel and H. Schmid, *Helv. Chim. Acta*, 1964, **47**, 1147-1152.
- 169. D. Schumann, B. W. Bycroft and H. Schmid, *Experientia*, 1964, **20**, 202-203.
- 170. H. Achenbach and K. Biemann, J. Am. Chem. Soc., 1965, 87, 4944-4950.
- 171. J. M. F. Filho, B. Gilbert, M. Kitagawa, L. A. P. Leme and L. J. Durham, *J. Chem. Soc. C*, 1966, 1260-1266.
- 172. B. M. Craven, B. Gilbert and L. A. P. Leme, *Chem. Commun.*, 1968, 955-956.
- 60 173. B. Craven, Acta Crystallogr., Sect. B: Struct. Sci., 1969, 25, 2131-2139.
- 174. H. Kinoshita, T. Ohnuma, T. Oishi and Y. Ban, *Chem. Lett.*, 135 1986, **15**, 927-930.
- 175. D. Cartier, M. Ouahrani and J. Lévy, *Tetrahedron Lett.*, 1989,
 30, 1951-1954.
- 176. J. Xie, A. L. Wolfe and D. L. Boger, *Org. Lett.*, 2013, **15**, 868-870.
- 177. Y. Ban, Y. Honma and T. Oishi, *Tetrahedron Lett.*, 1976, **17**, 1111-1114.
- 70 178. M. E. Kuehne and P. J. Seaton, J. Org. Chem., 1985, 50, 4790-4796.
- 179. E. Wenkert and S. Liu, J. Org. Chem., 1994, 59, 7677-7682.
- 180. D. Gagnon and C. Spino, J. Org. Chem., 2009, 74, 6035-6041.

- T. Gallagher and P. Magnus, J. Am. Chem. Soc., 1983, 105, 2086-2087.
- P. Magnus, T. Gallagher, P. Brown and J. C. Huffman, J. Am. Chem. Soc., 1984, 106, 2105-2114.
- P. Magnus and P. Brown, J. Chem. Soc., Chem. Commun., 1985, 184-186.
- 80 184. P. Magnus, I. R. Matthews, J. Schultz, R. Waditschatka and J. C. Huffman, J. Org. Chem., 1988, 53, 5772-5776.
 - 185. P. Magnus, T. Katoh, I. R. Matthews and J. C. Huffman, J. Am. Chem. Soc., 1989, 111, 6707-6711.
 - K. Awang, T. Sévenet, A. Hamid, A. Hadi, B. David and M. Païs, *Tetrahedron Lett.*, 1992, 33, 2493-2496.
 - 187. K. Awang, T. Sévenet, M. Païs and A. H. A. Hadi, J. Nat. Prod., 1993, 56, 1134-1139.
 - T.-S. Kam, K. Yoganathan and C.-H. Chuah, *Tetrahedron Lett.*, 1995, 36, 759-762.
- 90 189. T.-S. Kam, K.-H. Lim, K. Yoganathan, M. Hayashi and K. Komiyama, *Tetrahedron*, 2004, **60**, 10739-10745.
 - S. Jin, J. Gong and Y. Qin, Angew. Chem. Int. Ed., 2015, 54, 2228-2231.
 - S. Arai, M. Nakajima and A. Nishida, *Angew. Chem. Int. Ed.*, 2014, 53, 5569-5572.
 - S. Arai, M. Nakajima and A. Nishida, *Angew. Chem. Int. Ed.*, 2014, 53, 14295-14295.
 - 193. M. Hoshi, O. Kaneko, M. Nakajima, S. Arai and A. Nishida, Org. Lett., 2014, 16, 768-771.
- 100 194. W. H. Pearson, I. Y. Lee, Y. Mi and P. Stoy, J. Org. Chem., 2004, 69, 9109-9122.
 - 195. W. H. Pearson, Y. Mi, I. Y. Lee and P. Stoy, J. Am. Chem. Soc., 2001, **123**, 6724-6725.
 - T. J. Greshock, A. W. Grubbs, S. Tsukamoto and R. M. Williams, *Angew. Chem. Int. Ed.*, 2007, 46, 2262-2265.
 - 197. G. D. Artman III, A. W. Grubbs and R. M. Williams, J. Am. Chem. Soc., 2007, 129, 6336-6342.
 - 198. D. Seebach, M. Boes, R. Naef and W. B. Schweizer, J. Am. Chem. Soc., 1983, 105, 5390-5398.
- 110 199. P. S. Baran, C. A. Guerrero, N. B. Ambhaikar and B. D. Hafensteiner, *Angew. Chem. Int. Ed.*, 2005, **44**, 606-609.
 - P. S. Baran, C. A. Guerrero, B. D. Hafensteiner and N. B. Ambhaikar, *Angew. Chem. Int. Ed.*, 2005, 44, 3892-3895.
 - S. B. Herzon and A. G. Myers, J. Am. Chem. Soc., 2005, 127, 5342-5344.
 - 202. R. F. Bond, J. C. A. Boeyens, C. W. Holzapfel and P. S. Steyn, *J. Chem. Soc., Perkin Trans.* 1, 1979, 1751-1761.
 - M. Tsuda, Y. Kasai, K. Komatsu, T. Sone, M. Tanaka, Y. Mikami and J. i. Kobayashi, *Org. Lett.*, 2004, 6, 3087-3089.
- 120 204. T. Mugishima, M. Tsuda, Y. Kasai, H. Ishiyama, E. Fukushi, J. Kawabata, M. Watanabe, K. Akao and J. Kobayashi, J. Org. Chem., 2005, 70, 9430-9435.
 - 205. Z. Bian, C. C. Marvin and S. F. Martin, J. Am. Chem. Soc., 2013, 135, 10886-10889.
- 125 206. K. Kong, J. A. Enquist, M. E. McCallum, G. M. Smith, T. Matsumaru, E. Menhaji-Klotz and J. L. Wood, *J. Am. Chem. Soc.*, 2013, **135**, 10890-10893.
 - E. V. Mercado-Marin, P. Garcia-Reynaga, S. Romminger, E. F. Pimenta, D. K. Romney, M. W. Lodewyk, D. E. Williams, R. J. Andersen, S. J. Miller, D. J. Tantillo, R. G. S. Berlinck and R. Sarpong, *Nature*, 2014, **509**, 318-324.
 - E. V. Mercado-Marin and R. Sarpong, *Chem. Sci.*, 2015, DOI: 10.1039/C5SC01977J.
 - 209. B. M. Trost, D. A. Bringley, T. Zhang and N. Cramer, J. Am. Chem. Soc., 2013, 135, 16720-16735.
 - B. M. Trost, N. Cramer and H. Bernsmann, J. Am. Chem. Soc., 2007, 129, 3086-3087.
 - W. G. Beyersbergen van Henegouwen, R. M. Fieseler, F. P. J. T. Rutjes and H. Hiemstra, *Angew. Chem. Int. Ed.*, 1999, 38, 2214-2217.
 - 212. H. Lin and S. J. Danishefsky, *Angew. Chem. Int. Ed.*, 2003, **42**, 36-51.
 - X. Zhou, T. Xiao, Y. Iwama and Y. Qin, *Angew. Chem. Int.* Ed., 2012, 51, 4909-4912.
- 145 214. J. Shimokawa, T. Harada, S. Yokoshima and T. Fukuyama, J. Am. Chem. Soc., 2011, 133, 17634-17637.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], [vol], 00–00 | 27

215.	S. Diethelm and E. M. Carreira, J. Am. Chem. Soc., 2013, 135, 8500-8503.	252.	M. Ikeda, S. A. A. El Bialy, K. Hirose, M. Kotake, T. Sato, S M. M. Bavomi, I. A. Shehata, A. M. Abdelal, L. M. Gad and T
216.	K. Stratmann, R. E. Moore, R. Bonjouklian, J. B. Deeter, G. M. L. Patterson, S. Shaffer, C. D. Smith and T. A. Smitka, <i>J. Am. Cham. Soc.</i> 11004 116 0025 0040	⁷⁵ 253.	Yakura, <i>Chem. Pharm. Bull.</i> , 1999, 47 , 983-987. S. Suga, M. Watanabe and J. Yoshida, <i>J. Am. Chem. Soc.</i>
217.	Chem. Soc., 1994, 110, 9955-9942. J. I. Jimenez, U. Huber, R. E. Moore and G. M. L. Patterson, J. Nat. Prod. 1990 62, 569-572	254.	2002, 124 , 14824-14825. S. Yasuda, T. Yamada and M. Hanaoka, <i>Tetrahedron Lett.</i> 1986 27 , 2023-2026
218.	J. C. Menéndez, in <i>Bioactive Heterocycles V</i> , ed. M. Khan, Springer Berlin Heidelberg, 2007, vol. 11, ch. 63, pp. 63-101.	80 255.	H. Ishibashi, M. Okano, H. Tamaki, K. Maruyama, T. Yakura and M. Ikeda, J. Chem. Soc., Chem. Commun., 1990, 1436
219. 220.	J. L. Wood, <i>Nat. Chem.</i> , 2012, 4 , 341-343. J. A. MacKay, R. L. Bishop and V. H. Rawal, <i>Org. Lett.</i> , 2005,	256.	1437. L. F. Tietze, H. Braun, P. L. Steck, S. A. A. El Bialy, N. Töllo
221.	7, 3421-3424. V. Bhat, K. M. Allan and V. H. Rawal, J. Am. Chem. Soc.,	85 257.	and A. Düfert, <i>Tetrahedron</i> , 2007, 63 , 6437-6445. YM. Zhao, P. Gu, HJ. Zhang, QW. Zhang, CA. Fan, Y.
222.	 2011, 133, 5798-5801. K. M. Allan, K. Kobayashi and V. H. Rawal, J. Am. Chem. Soc. 2012 134 (1392-1395) 	258.	 Q. 1u and FM. Zhang, J. Org. Chem., 2009, 14, 3211-3215. Y. Koseki, H. Sato, Y. Watanabe and T. Nagasaka, Org. Lett. 2002 A 885-888
223.	K. Jae Nyoung and E. K. Ryu, <i>Tetrahedron Lett.</i> , 1993, 34 , 8283-8284	259.	X. Lin, R. W. Kavash and P. S. Mariano, J. Am. Chem. Soc. 1994 116 9791-9792
224.	J. N. Kim, K. S. Jung, H. J. Lee and J. S. Son, <i>Tetrahedron Lett.</i> , 1997, 38 , 1597-1598.	260.	K. Folkers and R. T. Major, J. Am. Chem. Soc., 1937, 59 1580-1581.
225.	Th. Fu, W. T. McElroy, M. Shamszad and S. F. Martin, Org. Lett., 2012, 14, 3834-3837.	261.	E. Reimann, in <i>Progress in the Chemistry of Organic Natura</i> <i>Products</i> , eds. W. Herz, H. Falk and G. W. Kirby, Springe
226.	X. Tian, A. D. Huters, C. J. Douglas and N. K. Garg, <i>Org. Lett.</i> , 2009, 11 , 2349-2351.	⁹⁵ 262.	Vienna, 2007, vol. 88, ch. 1, pp. 1-62. H. Ishibashi, T. Sato, M. Takahashi, M. Hayashi, K. Ishikawa
227.	A. D. Huters, K. W. Quasdorf, E. D. Styduhar and N. K. Garg, J. Am. Chem. Soc., 2011, 133 , 15797-15799.	263.	and M. Ikeda, <i>Chem. Pharm. Bull.</i> , 1990, 38 , 907-911. S. Chikaoka, A. Toyao, M. Ogasawara, O. Tamura and H
228.	K. W. Quasdori, A. D. Hulers, M. W. Lodewyk, D. J. Tantino and N. K. Garg, J. Am. Chem. Soc., 2012, 134, 1396-1399.	100 264.	 Isnibasni, J. Org. Chem., 2009, 68, 512-518. T. Sano, J. Toda, T. Ohshima and Y. Tsuda, Chem. Pharm Bull 1992 40, 873-878
230	<i>Am. Chem. Soc.</i> , 2014, 136 , 14710-14713. E. D. Styduhar, A. D. Huters, N. A. Weires and N. K. Garg.	265.	R. L. Funk and J. Belmar, <i>Tetrahedron Lett.</i> , 2012, 53 , 176 178
231.	Angew. Chem. Int. Ed., 2013, 52 , 12422-12425. K. Komine, Y. Nomura, J. Ishihara and S. Hatakeyama, Org.	266.	S. T. Heller, T. Kiho, A. R. H. Narayan and R. Sarpong Angew. Chem. Int. Ed., 2013, 52 , 11129-11133.
232.	Lett., 2015, DOI: 10.1021/acs.orglett.5b01952. P. S. Baran, R. A. Shenvi and C. A. Mitsos, Angew. Chem. Int.	267.	HT. Luu, S. Wiesler, G. Frey and J. Streuff, <i>Org. Lett.</i> , 2015 17, 2478-2481.
233.	<i>Ed.</i> , 2005, 44 , 3714-3717. P. S. Baran and R. A. Shenvi, <i>J. Am. Chem. Soc.</i> , 2006, 128 ,	268.	 N. A. Braun, M. Ousmer, J. D. Bray, D. Bouchu, K. Peters, E. M. Peters and M. A. Ciufolini, <i>J. Org. Chem.</i>, 2000, 65, 4397
234.	14028-14029. T. Newhouse and P. S. Baran, J. Am. Chem. Soc., 2008, 130 ,	¹¹⁰ 269.	4408. M. Paladino, J. Zaifman and M. A. Ciufolini, <i>Org. Lett.</i> , 2015
235.	10886-10887. K. Foo, T. Newhouse, I. Mori, H. Takayama and P. S. Baran, Angay, Cham. Int. Ed. 2011 50, 2716-2719	270.	17, 3422-3425. T. Kawasaki, N. Onoda, H. Watanabe and T. Kitahara Tatrahedron Latt. 2001 42 8003-8006.
236.	T. Newhouse, C. A. Lewis and P. S. Baran, <i>J. Am. Chem. Soc.</i> , 2009. 131 , 6360-6361	115 271.	J. M. Joo, R. A. David, Y. Yuan and C. Lee, <i>Org. Lett.</i> , 2010 12 , 5704-5707
237.	T. Newhouse, C. A. Lewis, K. J. Eastman and P. S. Baran, J. Am. Chem. Soc. 2010. 132 , 7119-7137.	272.	K. V. Chuang, R. Navarro and S. E. Reisman, <i>Chem. Sci.</i> 2011, 2, 1086-1089.
238.	C. Li, C. Chan, A. C. Heimann and S. J. Danishefsky, <i>Angew. Chem. Int. Ed.</i> , 2007, 46 , 1448-1450.	273.	M. A. Le Dreau, D. Desmaele, F. Dumas and J. d'Angelo, J Org. Chem., 1993, 58, 2933-2935.
239. 240.	H. Abdelkafi and B. Nay, <i>Nat. Prod. Rep.</i> , 2012, 29 , 845-869. S. M. Weinreb and J. Auerbach, <i>J. Am. Chem. Soc.</i> , 1975, 97 ,	274.	Y. Yoshida, K. Mohri, K. Isobe, T. Itoh and K. Yamamoto, J Org. Chem., 2009, 74, 6010-6015.
241.	2503-2506. T. P. Burkholder and P. L. Fuchs, J. Am. Chem. Soc., 1988,	275.	K. Shimizu, M. Takimoto, Y. Sato and M. Mori, J. Organomet Chem., 2006, 691, 5466-5475.
242.	110, 2341-2342. L. F. Tietze and H. Schirok, J. Am. Chem. Soc., 1999, 121,	125 276.	H. Fukumoto, T. Esumi, J. Ishihara and S. Hatakeyama Tetrahedron Lett., 2003, 44, 8047-8049.
243.	10264-10269. Q. Liu, E. M. Ferreira and B. M. Stoltz, <i>J. Org. Chem.</i> , 2007,	277. 278.	 Q. Wang and A. Padwa, Org. Lett., 2006, 8, 601-604. F. Zhang, N. S. Simpkins and A. J. Blake, Org. Biomol. Chem. 2000, 7, 1022, 1070.
244.	 12, 752-758. WD. Z. Li and YQ. Wang, Org. Lett., 2003, 5, 2931-2934. L. Planas, L. Pérard-Viret and L. Rover, L. Org. Cham. 2004. 	130 279.	2009, 7, 1965-1979. J. H. Rigby, C. Deur and M. J. Heeg, <i>Tetrahedron Lett.</i> , 1999 40, 6887-6890
245.	69, 3087-3092. L D Eckelbarger L T Wilmot and D Y Gin <i>L 4m Chem</i>	280.	 J. W. Daly, T. F. Spande and H. M. Garraffo, J. Nat. Prod. 2005 68 1556-1575
247.	<i>Soc.</i> , 2006, 128 , 10370-10371. J. D. Eckelbarger, J. T. Wilmot, M. T. Epperson, C. S. Thakur,	281. 135 282.	S. M. Weinreb, <i>Chem. Rev.</i> , 2006, 106 , 2531-2549. K. Sakamato, E. Tsujii, F. Abe, T. Nakanishi, M. Yamashite
	D. Shum, C. Antczak, L. Tarassishin, H. Djaballah and D. Y. Gin, <i>ChemEur. J.</i> , 2008, 14 , 4293-4306.		N. Shigematsu, S. Izumi and M. Okuhara, J. Antibiot., 1996 49, 37-44.
248. 249.	Z. Zhao and P. S. Mariano, <i>Tetrahedron</i> , 2006, 62 , 7266-7273. A. Hameed, A. J. Blake and C. J. Hayes, <i>J. Org. Chem.</i> , 2008,	283.	J. F. Biard, S. Guyot, C. Roussakis, J. F. Verbist, J Vercauteren, J. F. Weber and K. Boukef, <i>Tetrahedron Lett</i>
250	73 , 8045-8048.	140	1994, 35 , 2691-2694.

- 250. T. Taniguchi and H. Ishibashi, Org. Lett., 2008, 10, 4129-4131. M. E. Kuehne, W. G. Bornmann, W. H. Parsons, T. D. Spitzer, 70 251.
- J. F. Blount and J. Zubieta, J. Org. Chem., 1988, 53, 3439-3450.

g and A. Padwa, Org. Lett., 2006, 8, 601-604. g, N. S. Simpkins and A. J. Blake, Org. Biomol. Chem., 1963-1979.

- Daly, T. F. Spande and H. M. Garraffo, J. Nat. Prod., 8, 1556-1575.
- veinreb, Chem. Rev., 2006, 106, 2531-2549.

- amato, E. Tsujii, F. Abe, T. Nakanishi, M. Yamashite, gematsu, S. Izumi and M. Okuhara, J. Antibiot., 1996, 44
- Biard, S. Guyot, C. Roussakis, J. F. Verbist, J. teren, J. F. Weber and K. Boukef, Tetrahedron Lett., 5. 2691-2694.
- 284 D. L. J. Clive, M. L. Yu, J. Wang, V. S. C. Yeh and S. Z. Kang, Chem. Rev., 2005, 105, 4483-4514.
- B. B. Snider and T. Liu, J. Org. Chem., 1997, 62, 5630-5633. 285 286.
 - B. M. Trost and M. T. Rudd, Org. Lett., 2003, 5, 4599-4602.

28 | Journal Name, [year], [vol], 00-00

20

25

55

65

Natural Product Reports

322.

95

110

120

130

145

287.	A. C. Flick, M. J. A. Caballero and A. Padwa, Org. Lett., 2008,
	10 , 1871-1874.

- 288. J. Liu, R. P. Hsung and S. D. Peters, Org. Lett., 2004, 6, 3989-3992.
- ⁵ 289. J. Liu, J. J. Swidorski, S. D. Peters and R. P. Hsung, J. Org. Chem., 2005, **70**, 3898-3902.
- H. Abe, S. Aoyagi and C. Kibayashi, J. Am. Chem. Soc., 2005, 127, 1473-1480.
- 291. J. F. Liu and C. H. Heathcock, J. Org. Chem., 1999, **64**, 8263-8266.
- 292. G. A. Molander and M. Rönn, J. Org. Chem., 1999, 64, 5183-5187.
- 293. T. Arai, H. Abe, S. Aoyagi and C. Kibayashi, *Tetrahedron Lett.*, 2004, **45**, 5921-5924.
- 15 294. G. Pandey and V. Janakiram, *Chem.-Eur. J.*, 2015, DOI: 10.1002/chem.201501859.
- 295. G. Lapointe, K. Schenk and P. Renaud, Org. Lett., 2011, 13, 4774-4777.
- 296. G. Scheffler, H. Seike and E. J. Sorensen, *Angew. Chem. Int.* 20 *Ed.*, 2000, **39**, 4593-4596.
- M. Ousmer, N. A. Braun and M. A. Ciufolini, *Org. Lett.*, 2001, 3, 765-767.
- 298. A.-J. Ma, Y.-Q. Tu, J.-B. Peng, Q.-Y. Dou, S.-H. Hou, F.-M. Zhang and S.-H. Wang, *Org. Lett.*, 2012, **14**, 3604-3607.
- 25 299. S. Ieda, T. Kan and T. Fukuyama, *Tetrahedron Lett.*, 2010, 51, 4027-4029.
- 300. H.-H. Huo, H.-K. Zhang, X.-E. Xia and P.-Q. Huang, *Org. Lett.*, 2012, **14**, 4834-4837.
- 301. H.-H. Huo, X.-E. Xia, H.-K. Zhang and P.-Q. Huang, *J. Org.* 30 *Chem.*, 2013, **78**, 455-465.
- K. M. Brummond and J. L. Lu, *Org. Lett.*, 2001, 3, 1347-1349.
 K. M. Brummond and S.-p. Hong, *J. Org. Chem.*, 2005, 70,
- 907-916. 304. M. Movassaghi, M. Tjandra and J. Qi, J. Am. Chem. Soc.,
- 35
 2009, 131, 9648-9650.

 305.
 D. A. Evans, D. J. Adams and E. E. Kwan, J. Am. Chem. Soc.,
- 2012, 134, 8162-8170.
 306. M. Kuramoto, C. Tong, K. Yamada, T. Chiba, Y. Hayashi and D. Uemura, *Tetrahedron Lett.*, 1996, 37, 3867-3870.
- 40 307. T. Chou, M. Kuramoto, Y. Otani, M. Shikano, K. Yazawa and D. Uemura, *Tetrahedron Lett.*, 1996, **37**, 3871-3874.
- 308. J. Kobayashi and M. Ishibashi, *Chem. Rev.*, 1993, 93, 1753-1769
- 309. D. Trauner, J. B. Schwarz and S. J. Danishefsky, *Angew.* 45 *Chem. Int. Ed.*, 1999, **38**, 3542-3545.
- 310. M. W. Carson, G. Kim and S. J. Danishefsky, *Angew. Chem. Int. Ed.*, 2001, **40**, 4453-4456.
- 311. M. W. Carson, G. Kim, M. F. Hentemann, D. Trauner and S. J. Danishefsky, *Angew. Chem. Int. Ed.*, 2001, **40**, 4450-4452.
- ⁵⁰ 312. H. S. Christie and C. H. Heathcock, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, **101**, 12079-12084.
- 313. S. Xu, H. Arimoto and D. Uemura, *Angew. Chem. Int. Ed.*, 2007, **46**, 5746-5749.
- 314.S. Omura, K. Matsuzaki, T. Fujimoto, K. Kosuge, T. Furuya,55S. Fujita and A. Nakagawa, J. Antibiot., 1991, 44, 117-118.
- S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka and Y. Sasaki, J. Antibiot., 1991, 44, 113-116.
- R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman,
 P. R. Jensen and W. Fenical, *Angew. Chem. Int. Ed.*, 2003, 42, 355-357.
- 317. M. Shibasaki, M. Kanai and N. Fukuda, *Chem. Asian J.*, 2007, **2**, 20-38.
- 318. E. J. Corey and G. A. Reichard, *J. Am. Chem. Soc.*, 1992, **114**, 10677-10678.
- 319. E. J. Corey and G. A. Reichard, *Tetrahedron Lett.*, 1993, **34**, 6973-6976.
- 320. E. J. Corey and S. Choi, *Tetrahedron Lett.*, 1993, **34**, 6969-6972.
- 70 321. T. Sunazuka, T. Nagamitsu, K. Matsuzaki, H. Tanaka, S. Omura and A. B. Smith, J. Am. Chem. Soc., 1993, 115, 5302-5302.

- H. Uno, J. E. Baldwin and A. T. Russell, J. Am. Chem. Soc., 1994, 116, 2139-2140.
- 75 323. N. Chida, J. Takeoka, N. Tsutsumi and S. Ogawa, J. Chem. Soc., Chem. Commun., 1995, 793-794.
 - 324. T. Nagamitsu, T. Sunazuka, H. Tanaka, S. Ōmura, P. A. Sprengeler and A. B. Smith, J. Am. Chem. Soc., 1996, 118, 3584-3590.
- 80 325. N. Chida, J. Takeoka, K. Ando, N. Tsutsumi and S. Ogawa, *Tetrahedron*, 1997, **53**, 16287-16298.
 - 326. E. J. Corey, W. Li and T. Nagamitsu, *Angew. Chem. Int. Ed.*, 1998, **37**, 1676-1679.
 - 327. E. J. Corey, W. Li and G. A. Reichard, J. Am. Chem. Soc., 1998, **120**, 2330-2336.
 - 328. J. S. Panek and C. E. Masse, *Angew. Chem. Int. Ed.*, 1999, **38**, 1093-1095.
 - H. Ooi, N. Ishibashi, Y. Iwabuchi, J. Ishihara and S. Hatakeyama, J. Org. Chem., 2004, 69, 7765-7768.
- 90 330. L. R. Reddy, P. Saravanan and E. J. Corey, J. Am. Chem. Soc., 2004, **126**, 6230-6231.
 - L. R. Reddy, J.-F. Fournier, B. V. S. Reddy and E. J. Corey, Org. Lett., 2005, 7, 2699-2701.
 - 332. A. Endo and S. J. Danishefsky, J. Am. Chem. Soc., 2005, **127**, 8298-8299.
 - 333. E. P. Balskus and E. N. Jacobsen, J. Am. Chem. Soc., 2006, 128, 6810-6812.
 - 334. N. Fukuda, K. Sasaki, T. V. R. S. Sastry, M. Kanai and M. Shibasaki, J. Org. Chem., 2006, 71, 1220-1225.
- 100 335. N. P. Mulholland, G. Pattenden and I. A. S. Walters, Org. Biomol. Chem., 2006, 4, 2845-2846.
 - 336. G. Ma, H. Nguyen and D. Romo, *Org. Lett.*, 2007, **9**, 2143-2146.
 - 337. T. Ling, V. R. Macherla, R. R. Manam, K. A. McArthur and B. C. M. Potts, *Org. Lett.*, 2007, 9, 2289-2292.
 - 338. C. J. Hayes, A. E. Sherlock, M. P. Green, C. Wilson, A. J. Blake, M. D. Selby and J. C. Prodger, *J. Org. Chem.*, 2008, 73, 2041-2051.
 - N. P. Mulholland, G. Pattenden and I. A. S. Walters, Org. Biomol. Chem., 2008, 6, 2782-2789.
 - T. Fukuda, K. Sugiyama, S. Arima, Y. Harigaya, T. Nagamitsu and S. Omura, Org. Lett., 2008, 10, 4239-4242.
 - K. Takahashi, M. Midori, K. Kawano, J. Ishihara and S. Hatakeyama, *Angew. Chem. Int. Ed.*, 2008, 47, 6244-6246.
- 115 342. Y. Sato, H. Fukuda, M. Tomizawa, T. Masaki, M. Shibuya, N. Kanoh and Y. Iwabuchi, *Heterocycles*, 2010, 81, 2239-2246.
 - 343. Y. Kaiya, J.-I. Hasegawa, T. Momose, T. Sato and N. Chida, *Chem. - Asian J.*, 2011, 6, 209-219.
 - N. Satoh, S. Yokoshima and T. Fukuyama, Org. Lett., 2011, 13, 3028-3031.
 - 345. H. Nguyen, G. Ma, T. Gladysheva, T. Fremgen and D. Romo, J. Org. Chem., 2011, 76, 2-12.
 - D. J. Wardrop and E. G. Bowen, *Chem. Commun.*, 2005, 5106-5108.
- 125 347. S. Yoshioka, M. Nagatomo and M. Inoue, Org. Lett., 2015, 17, 90-93.
 - J. Kobayashi, F. Kanda, M. Ishibashi and H. Shigemori, J. Org. Chem., 1991, 56, 4574-4576.
 - T. Jahn, G. M. König, A. D. Wright, G. Wörheide and J. Reitner, *Tetrahedron Lett.*, 1997, 38, 3883-3884.
 - S. Tsukamoto, K. Tane, T. Ohta, S. Matsunaga, N. Fusetani and R. W. M. van Soest, *J. Nat. Prod.*, 2001, 64, 1576-1578.
 - K. Namba, T. Shinada, T. Teramoto and Y. Ohfune, J. Am. Chem. Soc., 2000, 122, 10708-10709.
- 135 352. P. M. Wehn and J. Du Bois, J. Am. Chem. Soc., 2002, 124, 12950-12951.
 - 353. A. Hinman and J. Du Bois, J. Am. Chem. Soc., 2003, 125, 11510-11511.
 - K. Tran, P. J. Lombardi and J. L. Leighton, *Org. Lett.*, 2008, 10, 3165-3167.
 - 355. Y. Ichikawa, K. Okumura, Y. Matsuda, T. Hasegawa, M. Nakamura, A. Fujimoto, T. Masuda, K. Nakano and H. Kotsuki, Org. Biomol. Chem., 2012, 10, 614-622.
 - T. Kano, T. Hashimoto and K. Maruoka, J. Am. Chem. Soc., 2006, 128, 2174-2175.

This journal is © The Royal Society of Chemistry [year]

Journal Name, [year], **[vol]**, 00–00 | **29**

- 357. M. P. Sibi, L. M. Stanley and T. Soeta, Org. Lett., 2007, 9, 1553-1556
- 358 Y. Wang, X. Liu and L. Deng, J. Am. Chem. Soc., 2006, 128, 3928-3930.
- 5 359. J. C. S. Woo and D. B. MacKay, Tetrahedron Lett., 2003, 44, 2881-2883.
- 360. C. Drouin, J. C. S. Woo, D. B. MacKay and R. M. A. Lavigne, Tetrahedron Lett., 2004, 45, 7197-7199.
- J. C. Lanter, H. F. Chen, X. Q. Zhang and Z. H. Sui, Org. Lett., 361. 2005, 7, 5905-5907.
- 362 T. Shinada, E. Ikebe, K. Oe, K. Namba, M. Kawasaki and Y. Ohfune, Org. Lett., 2007, 9, 1765-1767.
- T. Shinada, E. Ikebe, K. Oe, K. Namba, M. Kawasaki and Y. 363. Ohfune, Org. Lett., 2010, 12, 2170-2170.
- 15 364. K. Oe, T. Shinada and Y. Ohfune, Tetrahedron Lett., 2008, 49, 7426-7429.
- K. Sankar, H. Rahman, P. P. Das, E. Bhimireddy, B. Sridhar 365. and D. K. Mohapatra, Org. Lett., 2012, 14, 1082-1085.
- T. Yoshimura, T. Kinoshita, H. Yoshioka and T. Kawabata, 366. Org. Lett., 2013, 15, 864-867. 20
- M. Nagatomo, H. Nishiyama, H. Fujino and M. Inoue, Angew. 367 Chem. Int. Ed., 2015, 54, 1537-1541.
- 368 Y. Tahara, J. Pharm. Soc. Jpn., 1909, 29, 587-625.
- Y. Tahara, Biochem. Z., 1911, 30, 255-275. 369.
- 25 370. T. Goto, Y. Kishi, Takahash.S and Y. Hirata, Tetrahedron, 1965. 21. 2059-2088.
- 371. K. Tsuda, O. Amakasu, S. Ikuma, M. Kawamura, C. Tamura, R. Tachikawa and K. Sakai, Chem. Pharm. Bull., 1964, 12, 1357-1374
- R. B. Woodward and J. Z. Gougoutas, J. Am. Chem. Soc., 30 372. 1964. 86. 5030.
- A. Furusaki, Y. Tomiie and I. Nitta, Bull. Chem. Soc. Jpn., 373. 1970, 43, 3325-3331.
- 374. A. Furusaki, Y. Tomiie and I. Nitta, Bull. Chem. Soc. Jpn., 1970. 43. 3332-3341. 35
- 375. F. A. Fuhrman, Ann. N. Y. Acad. Sci., 1986, 479, 1-14.
- C. Y. Kao, Ann. N. Y. Acad. Sci., 1986, 479, 52-67. 376
- 377. W. Ulbricht, H. H. Wagner and J. Schmidtmayer, Ann. N. Y. Acad. Sci., 1986, 479, 68-83.
- 40 378. R. E. Weiss and R. Horn, Ann. N. Y. Acad. Sci., 1986, 479, 152-161.
- 379. B. K. Krueger, J. F. Worley and R. J. French, Ann. N. Y. Acad. Sci., 1986, 479, 257-268.
- 380. J. Chau and M. A. Ciufolini, Mar. Drugs, 2011, 9, 2046-2074.
- Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S. Inoue and H. 45 381. Kakoi, Tetrahedron Lett., 1970, 11, 5129-5132.
- 382 Y. Kishi, F. Nakatsubo, M. Aratani, T. Goto, S. Inoue, H. Kakoi and S. Sugiura, Tetrahedron Lett., 1970, 11, 5127-5128.
- 383 Y. Kishi, M. Aratani, T. Fukuvama, Nakatsub, F. T. Goto, S. Inoue, H. Tanino, S. Sugiura and H. Kakoi, J. Am. Chem. Soc., 50 1972, 94, 9217-9219.
- 384. Y. Kishi, T. Fukuyama, M. Aratani, Nakatsub.F, T. Goto, S. Inoue, H. Tanino, S. Sugiura and H. Kakoi, J. Am. Chem. Soc., 1972, 94, 9219-9221.
- T. Nishikawa, M. Asai, N. Ohyabu, N. Yamamoto, Y. Fukuda 55 385. and M. Isobe, Tetrahedron, 2001, 57, 3875-3883.
- 386 N. Ohyabu, T. Nishikawa and M. Isobe, J. Am. Chem. Soc., 2003, 125, 8798-8805
- 387. T. Nishikawa, D. Urabe and M. Isobe, Angew. Chem. Int. Ed., 2004. 43. 4782-4785. 60
- 388 N. Ünver and G. İ. Kaya, Turk. J. Chem., 2005, 29, 547-553.
- 389. S. Tian, W. Zi and D. Ma, Angew. Chem. Int. Ed., 2012, 51, 10141-10144.
- 390. Y. Shi, B. Yang, S. Cai and S. Gao, Angew. Chem. Int. Ed., 2014, 53, 9539-9543
- 391. B. D. Morris and M. R. Prinsep, J. Nat. Prod., 1999, 62, 688-693.
- C. C. Hughes and D. Trauner, Angew. Chem. Int. Ed., 2002, 392 41, 4556-4559
- 70 393. K. Sakaguchi, M. Ayabe, Y. Watanabe, T. Okada, K. Kawamura, T. Shinada and Y. Ohfune, Tetrahedron, 2009, 65, 10355-10364.

30 | Journal Name, [year], [vol], 00–00

- K. Chiyoda, J. Shimokawa and T. Fukuyama, Angew. Chem. 394 Int. Ed., 2012, 51, 2505-2508.
- 75 395.
 - 396. DOI: 10.1002/anie.201503982.

A. Soheili and U. K. Tambar, Org. Lett., 2013, 15, 5138-5141. M. O'Connor, C. Sun and D. Lee, Angew. Chem. Int. Ed., 2015,