**NJC** Accepted Manuscript



This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.



www.rsc.org/njc

## NJC

### LETTER

Cite this: DOI: 10.1039/c3nj00000x

Received 00th XXXXX 2013, Accepted 00th XXXXX 2013

DOI: 10.1039/c3nj00000x

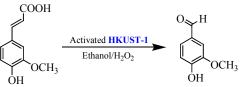
www.rsc.org/njc

# Catalytic activity of HKUST-1 in the oxidation of *trans*-ferulic acid to vanillin

Rebeca Yepez,<sup>*a*</sup> Salvador García,<sup>*a*</sup> Persi Schachat,<sup>*b*</sup> Manuel Sánchez-Sánchez,<sup>*c*</sup> Juan H. González-Estefan,<sup>*d*</sup> Eduardo González-Zamora,<sup>\*,*e*</sup> Ilich A. Ibarra,<sup>\*,*d*</sup> and Julia Aguilar-Pliego<sup>\*,*a*</sup>

HKUST-1 was used as a catalyst in the conversion of *trans*ferulic acid to vanillin. The generation of unsaturated metal sites within HKUST-1 is the fundamental step in the catalytic process. When activated under vacuum, the catalyst gives completed conversion in only 1 h with a significant average reaction yield of 95%.

A relatively new application that has been proposed for porous coordination polymers materials relates to catalysis.<sup>1</sup> These materials exhibit remarkable properties such as high crystallinity, large surface area, high pore volume and metal content, which can provide more versatile heterogeneous catalysts than the traditional zeolites and porous solids.<sup>2</sup> Several research efforts have focused on the generation of different routes for the preparation of catalytically active coordination polymers.<sup>3</sup> Interestingly, this catalytic activity is provided by active (*i.e.* unsaturated) metals which constitute the coordination polymer.


However, the nature of coordination polymers synthesis tends to result in coordinative saturation of all metal species. Thus, the incorporation of unsaturated (potentially catalytic) metal into coordination polymers is not a trivial synthetic challenge and so far the most successful methods comprise: (i) generation of vacant coordination sites on metal ions that are already occupied within the polymer structure by removal of labile ligands, e.g. solvent;<sup>3</sup> (ii) synthesis of hetero-bimetallic coordination polymers using pre-formed organometallic species as building bloks;<sup>3b,4</sup> (iii) post-synthetic modification of coordination polymers by secondary coordinative or covalent bond formation, to attach metallic<sup>5</sup> or organic<sup>6</sup> moieties within the pores. Indeed, the first method is the most commonly employed and relies on the structural composition of a given coordination polymer. Although, the generation of uncoordinated (vacant) metal sites has been typically employed for increasing the affinity of coordination polymers towards

hydrogen,<sup>7</sup> significant efforts have been also made in catalysis.<sup>8</sup> In addition to the accessibility of uncoordinated metal sites, a coordination polymer-based catalyst needs to exhibit relatively high thermal stability, retention of the crystallinity and chemical resistance in order to grant a sufficient stability under the applied reaction conditions. Thus, many reports on coordination polymer-based catalysts have focused on the use of well-studied frameworks where these parameters have been thoroughly investigated.

**RSCPublishing** 

HKUST-1 The porous coordination polymer  $(Cu_3(BTC)_2(H_2O)_3, BTC = 1,3,5$ -benzene-tricarboxylate)<sup>3a</sup> is a well-investigated coordination polymer that possesses framework Cu(II) cations, from which water can be removed to leave square planar coordinated Cu(II), (see Scheme S1, ESI<sup>+</sup>). By combining XRD, UV-Vis, EXAFS, XANES, and Raman spectroscopies Bordiga et al.9 demonstrated that by removing the coordinated water molecule, chemically bound to the Cu(II) sites, the oxidation state of copper remains unchanged and the crystalline nature of the material is preserved. HKUST-1 has been widely studied as a catalyst,<sup>10</sup> e.g. cyanosilylation of aldehydes and ketones,<sup>10c</sup> hydrosilylation of ketones,<sup>11</sup> oxidation of hydroquinone to p-benzoquinone,<sup>12</sup> oxidation of toluene, benzene and other aromatic substrates by H<sub>2</sub>O<sub>2</sub>.<sup>13</sup>

Vanilla is one of the most widely employed flavouring agents in the world and is extracted from the orchid *Vanilla planifolia*. People think of vanilla as a modern flavouring agent, however it was the pre-Columbian people in Mexico (the Mayan and Aztec civilisations) who first realised the potential of this flavouring by mixing it with chilli peppers and honey to improve the chocolate flavour.<sup>14</sup> The vanilla plant, *Vanilla planifolia*, originates in subtropical forests in Mexico and parts of Central America. The Spaniards brought vanilla to Western Europe in the early 16<sup>th</sup> century and once it was discovered that vanilla orchids could be fertilised manually, production of vanilla spread around the world.<sup>14b</sup> The vanilla scent is due to 200 different odorant molecules, but vanillin (4-hydorxy-3-methoxybenzaldehyde) is the main odorant. Vanillin was first isolated in 1858<sup>15</sup> and the chemical structure determined in 1874.<sup>16</sup> Nowadays, only 1% of vanilla produced is obtained by the natural extraction and this represents a very long and costly process.<sup>17</sup> The 99% of the remaining production is chemically synthesised<sup>17</sup> and this large-scale chemical synthesis of vanillin has been achieved from materials such as guaiacol, eugenol, and safrole. Vanillin can be also synthesised by the oxidation of lignin present in pulp wastes.<sup>18a</sup> However, these chemical processes are environmentally unfriendly (strong oxidising agents and toxic solvents) and thus, biotechnological production of vanillin was investigated.<sup>18</sup> Biotechnology-based approaches are indeed, considerably less harmful to the environment, but they show some disadvantages, such as many purification steps and waiting time for biotransformation.<sup>18</sup> We report herein the use of HKUST-1 as a catalyst on the oxidation of trans-ferulic acid to vanillin under mild oxidation conditions (see Scheme 1). Interestingly, ferulic acid (trans-ferulic acid or (E)-3-(4-hydroxy-3-methoxyphenyl)-acrylic acid) is a derivate of cinnamic acid which is very abundant on nature and it can be extracted from the corn bran.<sup>14c</sup>



Scheme 1. Oxidation of *trans*-ferulic acid to vanillin using HKUST-1 as a catalyst.

Crystalline samples of HKUST-1 (Aldrich) were characterised by PXRD (Fig. 1, catalyst before reaction), and thermogravimetric analysis (TGA, see Fig. S1, ESI<sup>†</sup>) which confirm the purity of the samples. In order to obtain internal standards for comparison, we ran GC analyses (see ESI<sup>†</sup>) and <sup>1</sup>H NMR experiments on pure *trans*ferulic acid (Aldrich) and vanillin (Aldrich), respectively. Then, a sample of HKUST-1 was activated in a conventional oven (exposed to air) at 100 °C for 1 h and the catalytic experiment (see Experimental) was carried out. The product composition was analysed by GC analysis and showed a partial conversion of *trans*ferulic acid to vanillin. Additionally, <sup>1</sup>H NMR experiments on the product composition (see Fig. S5 and Fig. S6 ESI<sup>†</sup>) confirmed this partial conversion.

First, we rationalised the reaction time was not long enough and therefore, by carrying out the reaction for longer than 1 h, the conversion should be better. Thus, the catalysts HKUST-1 was activated as described above and a catalytic experiment was performed (see Experimental), extending the reaction time to 4 and 12 h. Interestingly, the conversion of *trans*-ferulic acid to vanillin was not improved, suggesting that the reaction time was not the limiting experimental parameter.

It is very well known that the generation of coordinativelyunsaturated metal sites in porous coordination polymers is a fundamental step that entirely relies on the activation conditions.<sup>19</sup> Thus, it is reasonable to expect that the activity of the catalyst (HKUST-1) is determined by the accessibility to the vacant Cu(II) metal sites. In order to corroborate this hypothesis, HKUST-1 was activated under vacuum (10<sup>-5</sup> bar) and 100 °C for 1 h (see Fig. S2, ESI†) without physical manipulation or exposure to air. Next, after the sample was activated, the catalytic experiment was performed as previously described (see Experimental). After confirming the product composition (purified by column chromatography, see Experimental) by GC analysis, <sup>1</sup>H and <sup>13</sup>C NMR spectroscopies (see Fig. S7 and Fig. S8, respectively, ESI<sup>+</sup>), the conversion of transferulic acid to vanillin was determined, giving a reaction yield of 98%. Once the reaction was completed, the catalyst was recovered and washed with some ethanol and characterised by PXRD (Figure 1, catalyst after reaction), corroborating the retention of the overall framework crystallinity after the catalytic reaction was finished. Additionally, in order to investigate the recyclability of the catalyst in the reaction we ran ten catalytic experiments (with an average reaction yield of ~95%, see Table S1, ESI<sup>+</sup>). Thus, after each catalytic reaction was completed, the catalyst was recovered (see Table S1, ESI<sup>†</sup>) and washed with some ethanol and characterised by PXRD (see Fig. S3, ESI<sup>†</sup>). These PXRD experiments confirmed the retention of the overall framework crystallinity after 10 cycles and it also suggested that no copper species leached into the reaction solution which was corroborated by inductively coupled plasma mass spectrometry (ICP-MS) on the hot filtrates (10 filtrates from the catalytic reactions), see ESI<sup>†</sup>.

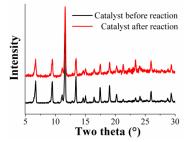



Fig. 1. PXRD patterns of the catalyst (HKUST-1) before and after the catalytic experiment.

To achieve a better understanding on the role of HKUST-1 in the oxidation of *trans*-ferulic acid to vanillin, we performed a set of reactions: (*i*) replacing HKUST-1 by Cu(CH<sub>3</sub>CO<sub>2</sub>)<sub>2</sub>, (*ii*) substituting HKUST-1 for Cu(NO<sub>3</sub>)<sub>2</sub>, (*iii*) replacing HKUST-1 for Cu(OH)<sub>2</sub>, (*iv*) in the absence of HKUST-1 in the reaction and (*v*) in the absence of H<sub>2</sub>O<sub>2</sub> in the reaction. In the cases (*i*), (*ii*) and (*iii*) we aimed to use different sources of Cu(II) that could carry on the oxidation.<sup>20</sup> In the case (*iv*), we investigated the possibility of oxidising *trans*-ferulic acid by only using H<sub>2</sub>O<sub>2</sub> and finally, in the case (*v*) explored the possibility of oxidising ferulic acid only with HKUST-1. After all of these reactions were completed, the product composition, analysed by GC, showed no conversion of *trans*-ferulic acid to vanillin.

Thus, it became clear that the responsible for the oxidation of *trans*-ferulic acid to vanillin is the heterogeneous catalyst HKUST-1 in combination with the oxidant  $H_2O_2$ . Once we managed to identify the catalytic conditions, we investigated the formation of coordinatively unsaturated Cu(II) metal sites within the catalyst. Then, FTIR spectra were recorded at 25 °C over three different samples. First, the FTIR spectrum of HKUST-1 at room temperature, non-activated, (Figure 2, see Fig. S4, ESI†) shows a

**Journal Name** 

broad absorption band at 3400 cm<sup>-1</sup>, confirming the presence of uncoordinated water in the material, and a characteristic sharp peak at 3680 cm<sup>-1</sup> that is assigned to metal-coordinated water.<sup>21</sup>

Then, a sample of HKUST-1 was activated at 100 °C during 1 h in a conventional oven (exposed to air). After the sample was back to room temperature, (25 °C) the FTIR spectrum of it (HKUST-1 activated, exposed to air) showed a reduction in the intensity of the broad absorption band at 3400 cm<sup>-1</sup> but with retention of the sharp peak at 3680 cm<sup>-1</sup> (Figure 2, see Fig. S4, ESI<sup>+</sup>). This indicated the loss of some free water (uncoordinated water) in the framework and that the coordinated water is not removed from the framework under these conditions and remains bound to Cu(II). Finally, a sample of HKUST-1 was activated under vacuum (10<sup>-5</sup> bar) at 100 °C for 1h and after cooling down to room temperature, the FTIR spectrum exhibited a significant reduction in the intensity of the broad absorption band (3400 cm<sup>-1</sup>) and the sharp peak at 3680 cm<sup>-1</sup> is also lost from the spectra (Figure 2, see Fig. S4, ESI<sup>+</sup>). Therefore, when the catalyst is activated under these last conditions all water molecules (uncoordinated and coordinated) are removed from the material generating coordinatively-unsaturated Cu(II) sites (see Scheme S1, ESI<sup>†</sup>).

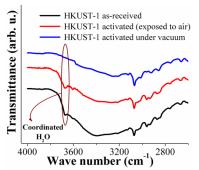



Fig. 2. FTIR spectra of the catalyst (HKUST-1) at 25 °C. Non-activated (black line), activated in a conventional oven (red line) and activated under vacuum (blue line).

On the basis of the above experimental results, the removal of coordinated water from HKUST-1 is the key to create an active catalyst and as we previously described, *vide infra*, this activated catalyst in combination with  $H_2O_2$  are necessarily for the oxidation of *trans*-ferulic acid to vanillin. Interestingly, in the catalytic reaction (see Experimental) there is also  $H_2O$  (since  $H_2O_2$  is added at 30%v aqueous solution) that could re-coordinated these Cu(II) sites. Thus, the nucleophilicity of the reacting species towards the Cu(II) sites is what determines the path of the catalytic reaction. In fact,  $H_2O_2$  is an excellent nucleophile which has a considerably higher reactivity than  $H_2O^{22}$  and therefore it coordinates first to uncoordinated Cu(II) sites even when  $H_2O$  is present.

In order to gain some insight about the oxidation mechanism using HKUST-1 in the presence of  $H_2O_2$ , Baiker *et al.*<sup>13</sup> used hydroquinone as a scavenger to stop a hydroxylation process, but hydroquinone did not stop the reaction, indicating a non-radical reaction mechanism. The authors proposed an electrophilic aromatic substitution for the hydroxylation process, based on the reaction between aromatic compounds and electrophilic species like OH<sup>+</sup>. Taking the mechanistic considerations aforementioned into account,

the FTIR experiments (see above) and the fact that H<sub>2</sub>O<sub>2</sub> is remarkably more reactive in nucleophilic displacements than H<sub>2</sub>O,<sup>22</sup> an anionic pathway similar to an electrophilic addition to double bond could take place. In this context a possible reaction mechanism accounts for the formation of vanillin 10 is depicted in Scheme S2 (ESI<sup>+</sup>). Initial activation of hydrogen peroxide by HKUST-1 (1) gives the copper ion  $2^{13}$ , which by transfer of OH<sup>+</sup> to the vinyl system of *trans*-ferulic acid 3 gives the carbocation intermediate 5, which should be favoured due to stabilisation of the carbocation in benzylic position. Nucleophilic attack of water on to the electrophilic carbon atom gives, after release of a proton, the dihydroxy compound 6, which by loss of water and subsequent oxidation by a second molecule of hydrogen peroxides provide vanillin 10 as the main product (98%). Oxalic acid and traces of acetic acid were detected as by-products. The presence of vanillin, oxalic acid, acetic acid reported in the scheme were found in the bulk of the solution and it was validated by HPLC and H<sup>1</sup>-NMR. 4-vinylguaiacol, vanillic acid or protocatechuic acid were not detected in the bulk of solution, as we also previously observed in another work.<sup>23</sup>

In summary, we demonstrated the application of the porous coordination polymer HKUST-1 as a heterogeneous catalyst in the conversion of trans-ferulic acid to vanillin. This work represents the first example of the use of HKUST-1 in the synthesis, via oxidation, of vanillin. The generation of vacant coordination sites within HKUST-1 (corroborated by FTIR) is the key step in the catalytic process and this strongly depends on the activation conditions. If the catalyst is activated in air, only a partial conversion of trans-ferulic acid to vanillin was observed. However, when HKUST-1 was activated under vacuum, the catalytic conversion took place in 1 h with a remarkable conversion yield of 98%. In addition, after the reaction was completed the catalyst was entirely recovered and the recyclability of it was confirmed to up to ten catalytic cycles (average reaction yield of  $\sim$  95%) and by PXRD the retention of the structure crystallinity was verified. Additionally, no copper species leached into the reaction solution were corroborated by ICP-MS. Indeed, from an economical and ecological point of view, this efficient route to highly precious vanillin could be extraordinarily attractive. We are currently investigating the oxidation of other  $\alpha,\beta$ unsaturated carboxylic acid under the oxidation conditions presented in here.

#### Experimental

Activated catalyst (HKUST-1), 0.005g (3.2 mol%), suspended in ethanol (20 mL) was mixed with 0.5 mL of  $H_2O_2$  (30%v aqueous), 0.025mL of acetonitrile and 0.050g (2.57 X 10<sup>-4</sup> mol) of ferulic acid. The reaction mixture was heated to reflux for 1 h. After the reaction was finished, the catalyst was recovered by filtration; the filtrate was extracted with ethyl acetate and washed with a saturated solution of NH<sub>4</sub>Cl. The combined organic phases were dried with anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtrated and concentrated under vacuum. Finally, the residue was purified by column chromatography (AcOEt-hexane 5:95).

#### Notes and references

<sup>a</sup> UAM-Azcapotzalco, San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, C.P. 02200, México, D.F., Mexico. <sup>b</sup>IMP | Instituto Mexicano del Petroleo, Eje Central Lázaro Cárdenas Norte 152 Col. San Bartolo Atepehuacan, C.P. 07730, México D.F., Mexico. <sup>c</sup>Instituto de Catálisis y Petroleoquímica, ICP-CSIC, C/ Marie Curie, 2 28049 Madrid, Spain.

<sup>d</sup>Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del. Coyoacán, 04510, México D. F., Mexico. E-mail: argel@unam.mx

<sup>e</sup>Departamento de Química, Universidad Autónoma Metropolitana-

Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340, México D. F., Mexico.

#### Acknowledgements

The authors thank Dr. A. Tejeda-Cruz (X-ray; IIM-UNAM). R.Y. thanks CINVESTAV, Mexico for technical support. M.S.S acknowledges the financial support by Spanish Government, MINECO (MAT2012-31127). I.A.I thanks CONACyT (212318) and PAPIIT UNAM (IN100415), Mexico for financial support. E.G-Z. thanks CONACyT (51346-Q) and CONACyT (156801), Mexico for financial support. Thanks to U. Winnberg (ITAM) for scientific discussions.

Electronic Supplementary Information (ESI) available: TGA data, PXRD data, ICP-MS data, FTIR data and <sup>1</sup>H-NMR data. See DOI: 10.1039/b000000x/. See DOI: 10.1039/c000000x/

- (a) A. Corma, H. García and F. X. Llabrés i Xamena, *Chem. Rev.*, 2010, 110, 4606; (b) J. Gascon, A. Corma, F. Kapteijn and F. X. Llabrés i Xamena, *ACS Catal.*, 2014, 4, 361; (c) M. Ranocchiari and J. A. van Bokhoven, *Phys. Chem. Chem. Phys.*, 2011, 13, 6388; (d) A. Dhakshinamoorthy, M. Alvaro and H. Garcia, *Chem. Commun.*, 2012, 48, 11275.
- 2 (a) A. Corma and H. Garcia *Chem. Rev.*, 2002, **102**, 3837; (b) A. Corma and H. Garcia *Chem. Rev.*, 2003, **103**, 4307.
- (a) S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant A. G. Orpen and I. D. Williams, *Science*, 1999, **283**, 1148; (b) O. K. Farha, A. M. Shultz, A. A. Sarjeant, S. T. Nguyen and J. T. Hupp, *J. Am. Chem. Soc.*, 2011, **133**, 5652; (c) J.-P. Zhang, S. Horike and S. Kitagawa, *Angew. Chem., Int. Ed.*, 2007, **46**, 889; (d) Z. Wang and S. M. Cohen, *Chem. Soc. Rev.*, 2009, **38**, 1315.
- 4 (a) S.-H. Cho, B. Ma, S. T. Nguyen, J. T. Hupp and T. E. Albrecht-Schmitt, *Chem. Commun.*, 2006, 2563; (b)M.-H. Xie, X.-L. Yang and C.-D. Wu, *Chem. Commun.*, 2011, 47, 5521.
- J.P. Zhang, S. Horike and S. Kitagawa, *Angew. Chem., Int. Ed.*, 2007, 46, 889; (b) X. Zhang, F. X. Llabrés I Xamena and A. Corma, *J. Catal.*, 2009, 265, 155; (c) A. M. Bohnsack, I. A. Ibarra, V. I. Bakhmutov, V. M. Lynch and S. M. Humphrey, *J. Am. Chem. Soc.*, 2013, 135, 16038.
- 6 (a) Z. Wang and S. M. Cohen, *Chem. Soc. Rev.*, 2009, **38**, 1315; (b) M. J. Ingleson, J. Perez-Barrio, J.-B. Guilbaud, Y. Z. Khimyak and M. J. Rosseinsky, *Chem. Commun.*, 2008, 2680; (c) A. D. Burrows, C. G. Frost, M. F. Mahon and C. Richardson, *Angew. Chem.*, 2008, **120**, 8610.
- 7 (a) M. Dincă and J. R. Long, *Angew. Chem., Int. Ed.*, 2008, 47, 6766; (b)
   I. A. Ibarra, X. Lin, S. Yang, A. J. Blake, G. S. Walker, S. A. Barnett, D. R. Allan, N. R. Champness, P. Hubberstey and M. Schröder, *Chem. Eur. J.*, 2010, 16, 13671.
- (a) M. Gustafsson, A. Bartoszewicz, B. Martín-Matute, J. Sun, J. Grins, T. Zhao, Z. Li, G. Zhu and X. Zou, *Chem. Mater.*, 2010, 22, 3316; (b) L. Mitchell, B. Gonzalez-Santiago, J. P. S. Mowat, M. E. Gunn, P. Williamson, N. Acerbi, M. L. Clarke and P. A. Wright, *Catal. Sci. Technol.*, 2013, 3, 606; (c) K. S. Jeong, Y. B. Go, S. J. Lee, J. Kim O. M. Yaghi and N. Jeong, *Chem. Sci.*, 2011, 2, 877; (d) A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, *Chem. Commun.*, 2008, 4192; (e) A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, P. Horcajada, T. Devic, C. Serre and H. Garcia, *Catal. Sci. Techol.*, 2012, 2, 324; (f) L. Kurfirtova, Y.-K. Seo, Y. K. Hwang, J.-S. Chang and J. Cejka, *Catal. Today.*, 2012, 179, 85; (g) M. J. Beier, W. Kleist, M. T. Wharmby, R. Kissner, B. Kimmerle, P. A. Wright, J.-D. Grunwaldt and A. Baiker, *Chem. Eur. J.*, 2012, 18, 887; (h) D. Ruano, M. Díaz-García, A. Alfayate and M. Sanchez-Sanchez, *Chem. Cat. Chem.*, 2015, 7, 674
- 9 C. Prestipino, L. Regli, J. G. Viltillo, F. Bonino, A. Damin, C. Lamberti, A. Zecchina, P. L. Solari, K. O. Kongshaug and S. Bordiga, *Chem. Mater.*, 2006, **18**, 1337.
- 10 (a) M. Opanasenko, A. Dhakshinamoorthy, M. Scamzhy, P. Nachtigall, M. Horáček, H. Garcia and J. Čejka, *Catal. Sci. Technol.*, 2013, 3, 500;

(b) E. Pérez-Mayoral, Z. Musilova, B. Gil, B. Marszalek, M. Položij, P. Nachtigall and J. Čejka, *Dalton Trans.*, 2012, **41**, 4036; (c) K. Schillichte, T. Kratzke and S. Kaskel, *Micropor. Mesopor. Mater.*, 2004, **73**, 81.

- 11 D. Addis, S. Zhou, S. Das, K. Junge, H. Kosslick, J. Harloff, H. Lund, A. Schulz and M. Beller, *Chem. Asian J.*, 2010, 5, 2341.
- 12 Y. Wu, L.-G. Qiu, W. Wang Z.-Q. Li, T. Xu, Z. Y. Wu and X. Jiang, *Transition Met. Che.*, 2009, 34, 263.
- 13 S. Marx, W. Kleist and A. Baiker, J. Catal., 2011, 281, 76.
- 14 (a) P. May and S. Cotton, *Molecules That Amaze Us*, 2015, CRC Press, p.193; (b) D. Havkin-Frenkel and F. C. Belanger, *Handbook of Vanilla Science and Technology*, 2011, Wiley-BlackWell, p.3; (c) S. Zhao, S. Yao, S. Ou, J. Lin, Y. Wang, X. Peng, A. Li and B. Yi, *Food Bioprocess Technol.*, 2014, **92**, 309.
- 15 T. W. Gobley, J. Pharm. Chem., 1858, 3, 401.
- 16 F.Tiemann and W. Haarmann, Ber. Dtsch. Chem. Ges., 1874, 7, 608.
- 17 M. J. W. Dignum, J. Kerler and R. Verpoorte, Food. Rev. Int., 2001, 17, 119.
- (a) N. J., Walton, M. J. Mayer and A. Narbad, *Phytochemistry*, 2003, 63, 505;
  (b) S. Serra, C. Fuganti and E. Brenna, *Trends Biotechnol.*, 2005, 23, 193;
  (c) M. A. Longo and M. A. Sanromán, *Food Technol. Biotechnol.*, 2006, 44, 335.
- 19 I. A. Ibarra, K. E. Tan, V. M. Lynch and S. M. Humphrey, *Dalton Trans.*, 2012, **41**, 3920.
- 20 S. Cadot, N. Rameau, S. Mangematin, C. Pinel and L. Djakovitch, Green Chem., 2014, 16, 3089.
- 21 (a) D.-L. Long, R. J. Hill, A. J. Blake, N. R. Champness, P. Hubberstey, C. Wildon and M. Schröder, *Chem. Eur. J.*, 2005, **11**, 1384; (b) I. A. Ibarra, X. Ling, S. Yang, A. J. Blake, G. S. Walker, S. A. Barnett, D. R. Allan, N. R. Champness, P. Hubberstey and M. Schröder, *Chem. Eur. J.*, 2010, **16**, 13671.
- 22 R. Curci, J.O. Edwards, *Catalytic Oxidations with Hydrogen Peroxide as Oxidant*, 1992, ed. G. Strukul (Kluwer, Dordrecht, The Netherlands), pp. 57-60.
- 23 I. Baqueiro-Peña, G. Rodríguez-Serrano, E. González-Zamora, C. Augur, O. Loera and G. Saucedo-Castañeda. *Bioresource Technology* 2010, 101, 472.

Journal Name