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Polymorphs of a self-assembled proline-based catalyst lead to different catalytic 

results in a direct aldol reaction. 
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Study of the effect of polymorphism on the self-
assembly and catalytic performance of an L-proline 
based molecular hydrogelator 

Santiago Díaz-Oltra,a Cristina Berdugo,a Juan F. Miraveta * and Beatriu Escudera 

* 

An exhaustive study of the polymorphism found for aggregates and hydrogels of an L-proline 
based hydrogelator under different preparation conditions is undertaken. The effect of heating 
temperature, aging time, ultrasounds and pH switching on the self-assembly in water has been 
studied. WAXD analysis of the freeze-dried materials revealed the presence of four 
polymorphs, three of which could be isolated under specific conditions. Polymorphic 
differences have been studied by DSC, FTIR, circular dichroism and electron microscopy. 
Furthermore, the catalytic activity of each polymorph has been tested for the direct aldol 
reaction between cyclohexanone and 4-nitrobenzaldehyde revealing differences in the reaction 
rates that could be attributed to differences in molecular packing and aggregate morphology 
among them. The current study highlights the role that polymorphism plays in the application 
of functional supramolecular soft materials. 
 

Introduction 

Supramolecular hydrogels formed by low molecular weight 
compounds (molecular hydrogels) have attracted much 
attention in the last years because of their potential application 
as valuable materials for regenerative medicine, drug delivery 
or as optoelectronic materials among others.1-5 These gels, 
formed by the self-assembly of small molecules by weak non-
covalent interactions, offer the possibility to create materials 
with appealing features by simply including functionality in the 
molecular structure and leave it to be spontaneously expressed 
at the supramolecular level. In this way hydrogels have been 
prepared possessing functional groups able to respond to the 
presence of physical or chemical stimuli (i.e. light, ultrasounds, 
pH, enzymes,…) that can be applied, for instance, as sensing 
devices or in controlled drug release.6-7 Moreover, catalytic 
materials can be obtained by the conjugation of known catalytic 
fragments with the structure of a hydrogelator. In this field, our 
group has reported several examples in which L-proline is 
included as organocatalytic fragment in the molecular structure 
of the gelator. These gels have been studied as heterogeneous 
catalysts for C-C bond forming reactions such as direct aldol 
reaction and Michael addition in organic solvents (organogels) 
as well as in aqueous media (hydrogels).8 In particular, 
hydrogelator 1 has been recently reported as an efficient 
catalyst for the reaction of cyclohexanone and 4-
nitrobenzaldehyde and in an extension of the work towards 
aliphatic ketones substrate selectivity has been achieved (Figure 
1).9,10 Indeed, hydrogels formed by compound 1 have been 
proposed to act as enzyme mimetics in which active sites for 
binding and catalysis are created in a process mainly driven by 
the hydrophobic effect. In all these studies it has been revealed 

the wide potential of self-assembled low molecular weight 
hydrogels in the field of catalysis not only as passive phase 
separated supports but specially because of their superior 
catalytic properties related to the emergence of new properties 
such as cooperation of functional groups, multivalent binding 
of substrates or changes in the reactivity of some groups (i.e. 
pK shifts…). 

 
Figure  1.  Structure  of  gelator  1  and  direct  aldol  reaction  catalysed  by  self‐
assembled 1. 

Despite of this potential, the application of molecular hydrogels 
in catalysis has been only barely studied11,12 and a deep 
understanding of the factors that could affect the process has 
not been performed yet. Due to the fact that these 
supramolecular systems are under the control of weak non-
covalent interactions very subtle changes in the environment or 
in the methodology of preparation can have a remarkable 
influence on the outcome of the material. For instance, Adams 
et al. have recently reported on the relevance of the gelation 
process (heating-cooling, pH switch, enzymatic control, etc…) 
on the mechanical properties of low molecular weight 
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hydrogels.13 These different methodologies may give place to 
differences in the nano/microstructure of the gel. Indeed, some 
examples have been reported revealing the influence of the 
preparation procedures not only on the morphologies of the 
aggregates but also on the polymorphism of the molecular 
packing.14,15 Heating-cooling rate, aging time or sample 
concentration have been shown to play a crucial role in this 
sense. All those factors could have an enormous effect on the 
performance of catalytic hydrogels (activity, selectivity). 
Here we undertake an exhaustive study of the polymorphism 
found for aggregates and hydrogels of compound 1 under 
different preparation conditions: heating temperature, aging 
time, ultrasounds and pH switching. Furthermore, as we 
identify several polymorphs, we isolate some of them and 
analyse their individual catalytic efficiency. 

Results and discussion 

Hydrogel formation 
As mentioned above, hydrogels formed by compound 1 have 
been described recently in our group as organocatalysts for the 
direct aldol reaction between ketones and 4-nitrobenzaldehyde 
(Figure 1). Catalytic hydrogels were formed by dissolution of 
compound 1 (2 mM) in water applying strong heating and 
sudden cooling at 25 ºC accompanied by 1 min of sonication. 
Taking the coupling of cyclohexanone and 4-nitrobenzaldehyde 
as benchmark reaction the catalytic activity of these hydrogels 
was studied after 16 to 24 h and at 25 and 5 ºC leading to high 
yields and moderate to high stereoselectivities of the aldol 
product.9 During this study we noticed that randomly, under 
apparently similar conditions some samples failed to form 
hydrogels leading to weak gels, dispersions or precipitates. 
However, the addition of reagents to these non-jellified samples 
conducted again to high yields of aldol after 24 h. These 
intriguing results prompted us to develop a careful study of the 
influence of different preparation conditions on the self-
assembly of compound 1 and thereafter on its catalytic 
performance. 

Self-assembly studies 
A summary of the experiments is collected in Table 1 including 
changes in heating temperature, aging temperature, aging time 
and use of ultrasounds. Additionally, as the proline moiety 
presents a basic centre, samples were also prepared by 
dissolution of compound 1 in acidic solution and further 
dilution with solutions at pH 7 and 8. After observation of their 
macroscopic aspect, samples were frozen in liquid nitrogen and 
lyophilised to obtain a xerogel that was studied by wide-angle 
X-ray diffraction (WAXD). 
In a first set of tests, samples were prepared at a concentration 
of 2 mM in pure water and heated at 100 ºC (Table 1, entries 1-
7). Heating was maintained either for 2h or 16h and then they 

were lyophilised immediately or after being aged at 25 ºC for 
10 minutes (Entries 1-4). The macroscopic aspect of the 
samples was that of a translucent dispersion. In some cases an 
additional time of ultrasounds was applied and a jelly 
suspension was observed (Entries 5-7). The xerogels were 
studied by WAXD and, as can be seen in Table 1, two different 
polymorphs were observed, A and B (Figure 2). Polymorph B 
was favoured by long heating time and polymorph A appeared 
as a major component after 10 minutes of ultrasounds. 
Experimental conditions could be set up to obtain samples with 
pure A (Entry 6) and B (Entries 2-4 and 19). 
Secondly, heating temperature was reduced to 80 ºC (Entries 8-
11) and under some conditions a new polymorph appeared 
(polymorph C, Figure 2C). Again, long heating times without 
aging at 25 ºC favoured polymorph B (Entry 10) whereas aging 
and ultrasounds favoured polymorph A (Entries 8, 9 and 11). 
All samples remained as jelly suspensions. In the view of these 
results it seems reasonable to propose that A is stable at low 
temperatures and it is favoured under thermodynamic control 
(long aging time) whereas B is accessible only at high 
temperature (long heating time) and it is kinetically trapped by 
fast cooling either at 25 ºC (Entry 3) or under nitrogen freezing 
conditions (Entry 4). The pure starting solid 1 was also 
analysed by WAXD directly from the synthesis batch (Entry 
13) and after a melting-cooling cycle (Entry 14). As can be 
seen, the solid was formed mainly by polymorph A with a small 
amount of B, and after melting on a glass slide and spontaneous 
cooling at r.t. the amount of B increased considerably. 
The effect of ultrasounds deserves a particular discussion. 
Sonochemical effects have being widely described in self-
assembled systems.16-18 It is believed that cavitation produced 
by ultrasounds produces a local increase of temperature and 
pressure that may lead to unexpected changes in 
packing/crystallization resulting into different crystalline 
polymorphs or in nanoobjects with variable shape and size. As 
it has been pointed before, ultrasounds can induce the process 
of crystallographic nucleation and growth, breaking the existing 
aggregates into “infecting” seeds that would act as templates 
for the growth of new aggregates. In the current case, 
ultrasounds not only could help to spread seeds of polymorph A 
but could also provide the energy to overcome the kinetic 
barrier for the conversion between polymorphs B and A. 
On the other hand, hydrogels could be prepared by pH-
switching. Compound 1 was dissolved by addition of 1 equiv. 
of HCl and slight heating and diluted with buffered solutions of 
pH 7 and 8, (Entries 15-18). Polymorph A was predominant at 
pH 8 although higher concentrations (> 4 mM) were required 
for gelation (Entries 17-18). At low concentration (2 mM) a 
suspension was formed and a new diffraction pattern was 
observed, polymorph D. This last pattern was also predominant 
at pH 7. 
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diastereoselectivity, and by chiral HPLC to determine the 
enantioselectivity.10 
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