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Disruption of protein hydroxylation is highly associated with several serious diseases and consequently the identification 

of protein hydroxylation sites has attracted significant attention recently. Here, we report development of an improved 

method, called HydPred, to identify protein hydroxylation sites (hydroxyproline and hydroxylysine) based on the synthetic 

minority over-sampling technique (SMOTE), the random forest (RF) algorithm and four blocks of newly composed features 

that are derived from the protein primary sequence. The HydPred method achieved the best prediction performance 

reported until now with Matthew's correlation coefficient values of 0.770 and 0.857 for hydroxyproline and hydroxylysine, 

respectively, according to jack-knife cross-validation. This represents an improvement of 8% for hydroxyproline and 19% 

for hydroxylysine compared to the best results of available predictors. The prediction performance of HydPred for external 

validation of hydroxyproline and hydroxylysine was also improved compared with other published methods. We 

subsequently applied HydPred to study the association of disruption of hydroxylation sites with human inherited disease. 

The analyses suggested that loss of hydroxylation sites is more likely to cause disease instead of gain of hydroxylation sites 

and 52 different human inherited diseases were found highly associated with loss of hydroxylation sites. Therefore, 

HydPred represents a new strategy to discover the molecular basis of pathogenesis associated with abnormal 

hydroxylation. HydPred is now available online as a user-friendly web server at http://lishuyan.lzu.edu.cn/hydpred/. 

Introduction 

Protein hydroxylation is a chemical process that introduces a 

hydroxyl group (-OH) into residues. The principal 

hydroxylated residue is proline, forming hydroxyproline and 

the minor hydroxylated residue is lysine, forming 

hydroxylysine. Hydroxylation plays several critical roles in 

biological systems, e.g. it is crucial for the assembly of 

collagen and other extracellular matrix components
1
. It 

modulates the function of estrogen
2
, regulates cellular 

oxygen sensing through hypoxia-inducible pathways
3
, and 

hence, creates neuroprotection
4
. Correspondingly, the 

disruption of protein hydroxylation was discovered to be 

associated with a number of serious human diseases, such as 

osteogenesis imperfecta (brittle bone disease)
5
, 

osteoporosis
6
, nervous system tumours

7
, kidney disease

3
, 

breast cancer
2
 and other hormone-related or hypoxia-related 

cancers
8-10

. Therefore, the identification of protein 

hydroxylation sites and hence annotation of hydroxylation in 

proteomes has attracted recent attention. For this goal, mass 

spectrometry (MS) related methods achieved some success
11, 

12
, but this approach is always time-consuming and 

expensive. Moreover, the data produced by MS are also 

biased toward abundant proteins and prototypic peptides 

since they were frequently studied. Considering the explosive 

increase in protein data, computational methods emerged as 

a promising tool for the first round annotation of 

hydroxylation sites. 

 Several predictors were already created for identification 

of hydroxylation sites. The first predictor was proposed by 

Yang's group, which directly targeted collagen hydroxyproline 

sites by support vector machines
13

. Later, this work was 

expanded on both hydroxyproline and hydroxylysine by Hu 

et.al. using a more comprehensive dataset that was extracted 

from UniProt/Swiss-Prot, which is cross-species and 

contained different protein types
14

. They utilized the nearest 

neighbor algorithm and 6345 features that were derived from 

the protein primary sequence. However, the final 

performance was merely adequate, with Matthew's 

correlation coefficient (MCC) values of 0.461 and 0.592 for 

hydroxyproline and hydroxylysine sites, respectively. Then, a 

predictor called iHyd-PseAAC was presented by Xu et al. 

based on the dipeptide position-specific propensity of pseudo 

amino acid composition
15

. Although this work led to the first 
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online web server for the identification of hydroxylation sites, 

the MCC values achieved for hydroxyproline and 

hydroxylysine of this predictor were both only approximately 

0.50. Soon afterwards, Shi et al.
15

 described a new 

hydroxylation prediction method called PredHydroxy, based 

on the position weight amino acids composition and 8 high-

quality amino acid indices. In this method, the MCC values for 

the first time showed a remarkable increase, up to 0.667 and 

0.690 for hydroxyproline and hydroxylysine, respectively. 

However, to create a reliable hydroxylation sites annotation 

tool for newly discovered protein data, this prediction 

performance still needs more improvement. 

 To achieve this goal, we are proposing a new in silico 

method called HydPred, based on the RF algorithm
16

 and the 

four categories of newly composed features that are derived 

from protein sequence information. These features were 

calculated from the amino acid composition, the 

autocorrelation of amino acid physicochemical properties, 

the amino acid position weighted matrices and the amino 

acid binary localization encoding. The SMOTE method
17

 was 

utilized here to fix the data unbalancing problem. Based on 

the extracted features, the final identification performance of 

HydPred was greatly improved compared with the best 

results of previously published predictors. How this method 

was developed is illustrated in Fig1. Our validated HydPred 

method was then applied to analyze differences in 

hydroxylation of protein variants associated with human 

inherited diseases that could underlie disease pathologies.  

 

Fig1. Flowchart of the proposed HydPred method for the identification of 

hydroxylation sites. 

Materials and methods 

Hydroxylation Dataset 

The hydroxylation data were assembled from Swiss-

Prot(Release:2014-09), which is currently the most 

comprehensive dataset of hydroxylation data. Here, only the 

experimentally verified information was extracted by 

searching 'hydroxyproline' or 'hydroxylysine' in the field 

'modified residue' in the text format of the SwissProt dataset. 

The data with an annotation confidence of 'probable', 

'potential', or 'by similarity' were excluded. If the proteins 

from different species have the same sequence and different 

hydroxylation entries, these entries were assembled to a 

unique protein sequence as non-redundant entries. 

Therefore, following these steps, 1031 hydroxyproline sites 

from 206 unique proteins and 127 hydroxylysine sites from 

33 unique proteins were extracted. 

 A peptide fragment of 13 amino acids in length, which 

was centered on proline or lysine with 6 upstream and 6 

downstream amino acids, was represented as a study sample. 

Because there is physical evidence of kinase-substrate 

binding within neighborhood residues of the modification site 
16

, we believe that the prolyl-hydoxylases/lysyl-hydorxoylases 

will likely recognize residues surrounding the modification 

site as well. Taking hydroxyproline as an example, the 

fragment that was centered by a proline that had a 

hydroxylation entry was treated as positive sample, and the 

fragments that were centered by non-hydroxylated prolines 

were treated as negative samples. The length of 13 is 

commonly used in previous predictors for hydroxylation sites 

identification
15, 18

, therefore, we also used this length. All of 

the redundancy entries within the same sequence were 

integrated into a unique sample. Since most of the positive 

samples of hydroxylation shared high sequence identities, we 

believed that there should be several conserved sites exist 

inside the sample sequence which are very important for the 

binding of prolyl-hydoxylases/lysyl-hydorxoylases. Therefore, 

instead of roughly removing the redundant samples 

according to a certain percent of sequence identity, only the 

identical hydroxylation samples were removed from the 

database to avoid the pre-introduced bias. 

 Meanwhile, the negative samples that either had the 

same sequence with positive samples or had a non-

experimental annotation confidence of ‘probable’, 

‘potential’, or ‘by similarity’ for hydroxylation sites were also 

eliminated from the negative sets in order to obtain a 

rigorous dataset. Then, 825 positive and 2600 negative 

samples were obtained for hydroxyproline, while 121 positive 

and 937 negative samples remained for hydroxylysine. 

 Lastly, to rigorously validate the prediction performance, 

the protein set was randomly divided into a cross-validation 

training set and an external validation set by a ratio of 

approximately 9 to 1 on the protein level to avoid intra-

protein bias. It was rounded towards plus infinity for the 

protein number in the external validation set for both 

hydroxyproline and hydroxylysine. Thus, 21 proteins with 55 

positive samples and 165 negative samples were split into the 
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external validation set of hydroxyproline, and 4 proteins with 

12 positive samples and 169 negative samples were split into 

the external validation set for hydroxylysine. The detailed 

information including protein ID, site location, fragment 

sequence, etc. are listed in the supplementary Table S1. 

 

Feature generation 

Each site was represented by a 13-residue long peptide 

centered at the proline or lysine of interest as described 

above. If the upstream or downstream residue number was 

less than 6, symbol 'X' was assigned to represent the missing 

amino acid in the sequence fragment. Afterwards, each 

fragment was transformed into four categories of features. 

I. Amino acid composition. Both the single amino acid 

composition and the K-spaced amino acid pair composition 

was calculated here. Single amino acid composition is the 

fraction of each amino acid type in a sequence fragment. The 

K-spaced amino acid pair composition was first proposed by 

Chen et al.
15, 18

 for the prediction of protein flexible/rigid 

regions, and proved to be useful for the prediction of O-

glycosylation sites19 and palmitoylation sites20. The K-

spaced amino acid pair compositions were calculated by 

considering the fraction of amino acid pairs that are 

separated by k amino acids within a protein sequence 

fragment (there are 441 possible pairs, e.g., AA, AC, AD, ..., XX). 

We refer to such a feature vector as 441
( ... )

AkA AkC AkD XkX
C C C C . 

For instance, 
3 3

/ ( 1)
A C A C
C N N= − , where 3A CN  is the number of 

occurrences of the AC amino acid pair separated by 3 amino acids 

and N  is the residue length of the peptide. In this work, N set to 

13 and 0,1,...,9,10k =  were jointly considered. In total, 4872 

(21+441*11) compositional features were generated in this 

category. 

II. Autocorrelation of amino acid physicochemical 

properties. Thirteen amino acid properties were used for this 

feature set, including (1) the hydrophobicity scale
21

, (2) the 

average flexibility index
22

, (3) the polarizability parameter
23

, 

(4)the free energy of solution in water, (5) the residue 

accessible surface area for a tripeptide
24

, (6) the average 

volumes of residues
25

, (7) the steric parameter
26

, (8) the 

relative mutability
27

, (9) the polarity factor, (10) the 

secondary structure factor, (11) the molecular volume factor, 

(12) the codon diversity factor and (13) the electrostatic 

charge factor. The latter five properties were derived from 

the literature
28-30

 and assembled by Hu et al.
31

 as 

transformed attributes. All of the properties were centralized 

and standardized before the calculation, and the properties 

for residues represented by X were set to zero. 

 Two autocorrelation calculating algorithms, the Geary 

autocorrelation and the normalized Moreau-Broto 

autocorrelation, were adopted here. In this way, the Geary 

autocorrelation features
32

 are defined as: 

 

2

1

2

1

1
( )

2( )

1
( )

1

( )

N d

i i d

i

N

i

i

P P
N d
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G d

−

+

=

=

=

−
−

−
−

∑

∑

 (1) 

where 1,2,3,...,30d =  is the lag of the autocorrelation. 
iP  and 

i dP+
 are the particular property values of the amino acids at 

position i and i+d, respectively. P  is the average value of i
P . 

The normalized Moreau-Broto autocorrelation features are 

defined as： 

 1( )

N d

i i d

i

PP

NMB d
N d

−

+

=
=

−

∑
 (2) 

where d, iP  and i dP
+
 are previously defined and N  is the length 

of peptide.  

In summary, this block of features was inspired by the PROFEAT 

method33. There are 780 (13*30*2) features in this block. 

III. Amino acid position weighted matrices (PWMs). For a 

given dataset of fixed-length sequence fragments, each 

amino acid at each position is associated with its frequency of 

occurrence. Using this frequency in both hydroxylation and 

non-hydroxylation sets of fragments in the training set, two 

position-weighted matrices (PWMs)
34, 35

 are calculated for 

both hydroxyproline and hydroxylysine data. Each row of the 

matrix corresponds to one type of amino acid, and every 

column corresponds to a position in the peptide. The element 

in the i-th row and j-th column of the matrix is defined as: 

 /ij ij pepf N N=  (3) 

where 
ijN  is the number of occurrences of i-th amino acid in 

the j-th position of the peptide and 
pepN  is the number of 

peptides in the whole dataset, 1,2,3,..., 21i = , 1,2,3,...,13j = . 

Because two PWMs were built, 26 (13*2) features were extracted 

in this group. 

IV. Amino acid binary localization encoding. Each amino acid 

of a peptide is encoded into a 21-bit vector by a one and 

twenty zeros. This vector represents the localization of 20 

normal amino acids and a non-existent residue (represented 

by X) as "ACDEFGHIKLMNPQRSTVWXY". A (Alanine) is 

encoded as "1000000000000000000000", the one in the 

vector alphabetically shifts to the right localization based on 

the letter abbreviation of the amino acids. Therefore, a 13-

length peptide is encoded as 273 (21*13) features.  

 In total, 5951 features were generated. To reduce 

redundant information, constant features and highly 

correlated features were excluded in the feature space. In 

addition, if any two features shared a correlation coefficient 

greater than 0.85, one of them was removed randomly. 

Finally, 4959 features remained for the next procedure. 

 

Balanced positive sample generation 

Because, until now, the unbalanced problem of the positive 

and negative sample numbers hindered the MCC value for 

hydroxylation site prediction performance, the SMOTE
17

 

method was utilized to fix this problem.  
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 With the generated features of positive samples in the 

training set, the SMOTE method used a k-nearest neighbors 

(KNN)
35

 based algorithm to create extra positive samples 

from the current positive dataset to fix the unbalanced 

problem.  

 The SMOTE method was performed by the DMwR 

package in the R program
36

. 

 

Feature ranking and modeling 

Aiming to further reduce the dimension of feature space and 

to find a restricted number of features yielding good 

classification performance, feature ranking and modeling by 

the RF method was performed here. The RF method was first 

introduced by Leo Breiman
16

 and then proved to be a very 

powerful classification method in the fields of chemometrics 

and bioinformatics
37-40

. RF is a classifier consisting of 

collection of tree-structured classifiers with two major 

advantages being (1) using an out-of-bag method
41

 to 

monitor error, strength and correlation, and (2) measuring 

variable importance through permutation.  

 With a whole set of features to build an initial RF 

classification model, the results of RF model are able to show 

the importance for each feature by its association with the 

prediction target. In this process, all features will first be 

trained to fit in a random forest. During the fitting process, 

the out-of-bag error for each data point is recorded and 

averaged over the forest. To measure the importance of the 

i-th feature after training, the values of thei-th feature are 

permuted among the training data and the out-of-bag error is 

again computed on this perturbed data set. The importance 

score for the i-th feature is computed by averaging the 

difference in out-of-bag error before and after the 

permutation over all trees. The score is normalized by the 

standard deviation of these differences. Features which 

produce large values for this score are ranked as more 

important than features which produce small values. Then, 

the importance ranking list of features was generated in this 

work. After that, with an increased number of top ranking 

features, different RF models will be built to select the best 

model that had the least feature space and had an equivalent 

prediction performance that compared with using the whole 

feature space.  

 There are two important parameters in RF method that 

need to be tuned to get a better performance. The first one is 

'ntree', which is the number of trees to grow. It should not be 

set to too small a number, to ensure that every input row 

gets predicted at least a few times. The second one is 'mtry0', 

which is the number of variables to split on at each node. The 

other parameters of RF model were all set to default value.  

 The feature ranking and modeling processes were solely 

based on the training dataset without any involvement of the 

external validation set. This performed a reliable supervised 

feature selection and modeling to avoid the over-fitting 

problem as Smialowski et al. emphasized
42

. The RF method 

was implemented using the R package randomForest v 4.6-7. 

 

Model evaluation 

Model evaluation was performed by not only jack-knife cross-

validation on the training dataset, but also on an external 

validation set in order to prove the generalization ability of 

HydPred. For jack-knife cross-validation, each sample of the 

internal cross-validation set was treated as a test set once, 

while the remaining data, including N-1 samples, were 

gathered as training data, where N is the total sample 

number of the internal cross-validation set. After N turns of 

calculation, the averaged prediction result of test sets was 

taken as the final jack-knife cross-validation result. For the 

external validations set, it was only used to test the 

generalization ability of the built model and not involved in 

any procedure of modeling building process. 

 Five frequently used indicators were utilized here, 

sensitivity (Sens), specificity (Spec), accuracy (ACC), MCC and 

the area under receiver operating characteristic curve (AUC). 

A receiver operating characteristic (ROC) curve is a graphical 

plot that illustrates the performance of a binary classifier 

system while its decision threshold is varied. Each point in the 

ROC curve is created by plotting the true positive rate vs. the 

false positive rate at a particular decision threshold. The AUC, 

the area under the ROC curve, can give a complete evaluation 

of a prediction method. Some other parameters of the RF 

model, such as the number of trees and number of leaves on 

each tree, were also optimized to maximize the AUC.  

 

Identification of loss or gain of hydroxylation sites in human 

inherited disease 

Because protein hydroxylation is associated with several 

serious diseases
2, 3, 5, 6, 8-10, 43, 44

, HydPred was then applied to 

analyze human inherited disease associated proteins to 

assess the loss and gain of hydroxylation sites that could 

underlie disease pathologies.  

 Firstly, HydPred estimates the probability that a residue 

is  can be hydroxylated, as ( | )p

i iP s s S= , given the protein 

sequence S . 

 Then, we can express the probability of loss of 

hydroxylation at residue is  as below:  

 ( ) ( | ) (1 ( | ))p p

l i i i i i xjy
P s P s s S P s s S= = × − =  (5) 

where S  is the wild type protein sequence and 
xjyS  is the 

same sequence with a mutation from residue x to residue y at 

position j, where x, y ∈ 

(A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,U,W,Y). Note that only the 

variation that exists in the neighbourhood (±6 residues) of 

prolines or lysines is considered to have influence on gain or 

loss of hydroxylation sites. With the same principle, the 

probability of a gain of hydroxylation site at residue is  is 

defined as: 

 ( ) (1 ( | )) ( | )p p

g i i i i i xjyP s P s s S P s s S= − = × =  (6) 
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 The threshold that distinguishes a gain or loss of 

hydroxylation sites was set to the same cut-off value of 

HydPred. 

Results and discussion 

Feature selection and prediction performance 

At first, the whole feature space was used to build the initial 

RF models for hydroxyproline and hydroxylysine, respectively. 

The value of ntree was tuned from 200-1000 with a step of 

100 while the value of mtry0 was tuned from 2 to 50 with a 

step of 1 in each tuning step of ntree. Then, ntree=500 and 

mtry0=20 was selected as the optimal parameters with the 

best AUC performance as 0.952 for hydroxyproline and 

provided the ranking of feature importance accordingly. 

Likewise, for hydroxylysine, the initial RF model was built 

with the best AUC value as 0.977 (ntree=500, mtry0=10). 

Then, different models were built on the increased number of 

top ranked features for both hydroxyproline and 

hydroxyproline by RF algorithm.  

 After then, approximate highest peak MCC, ACC and AUC 

scores were obtained when the top ranked 49 features were 

selected for hydroxyproline and the top 44 features were 

selected for hydroxylysine. The AUC for hydroxyproline 

reached 0.954, and for hydroxylysine, it reached 0.978 based 

on jack-knife cross-validation (Fig2). Therefore, the 49 top 

ranked features were selected for hydroxyproline and the 44 

top features were selected for hydroxylysine to build the 

HydPred predictor. Information regarding these selected key 

features are listed in supplementary Table S2. 

 The detailed prediction performance of HydPred for jack-

knife cross-validation and external validation is listed in Table 

1 and Table 2, where the results of the external validation set 

are fairly stable compared with cross validation results on the 

training set, which is a sign of favorable generalization ability 

for a classifier
45

. 

 

Fig2. ROC curves and the corresponding AUCs of HydPred for hydroxyproline and 

hydroxylysine. 

Performance comparison 

Because prior methods to predict protein hydroxylation sites 

used several different datasets, a more rigorous performance 

comparison between HydPred and previous predictors was 

performed. First, jack-knife cross-validation results reported 

for established methods were compared with those for 

HydPred (Table 1). Then, the well-established methods for 

which the software was either available online or ready to be 

downloaded were tested on the same external validation set. 

 By this criterion, the PredHydroxy 
18

 and iHyd-PseAAC 
15

 

methods were utilized to perform the comparative 

assessment on the same external validation set (Table 2).  

 Compared with the best score of prior published 

predictors, our HydPred method showed a remarkable 

improvement on the MCC score in both jack-knife cross-

validation (Table 1) and external validation (Table 2). For the 

first time, the MCC score achieved up to 0.770 for 

hydroxyproline and 0.857 for hydroxylysine based on jack-

knife evaluation. However, a prediction method with only 

cross-validation results is still far from being a reliable 

predictor for the over-fitting problem that is occasionally 

found in such a situation
46

. Therefore, an external validation 

on a dataset that is not involved in the model building 

process is crucial for estimating the real performance and 

generalization ability for a predictor. In other words, only  

Table 1. Prediction performance of hydroxyproline and hydroxylysine by different 

predictors based on jack-knife cross-validation. 

Target Predictor Sens Spec ACC MCC 

Hydroxyproline HydPred(Cut=0.408) 0.796 0.961 0.880 0.770 

PredHydroxy 0.838 0.852 0.845 0.690 

Hu's method 0.648 0.816 0.760 0.461 

iHyd-PseAAC 0.807 0.805 0.806 0.510 

Hydroxylysine HydPred(Cut=0.303) 0.859 0.991 0.925 0.857 

PredHydroxy 0.842 0.825 0.833 0.667 

Hu's method 0.704 0.880 0.821 0.592 

iHyd-PseAAC 0.879 0.830 0.836 0.500 

Table 2. Prediction performance of hydroxyproline and hydroxylysine by different 

predictors based on the same external validation set. 

Target Predictor Sens Spec ACC MCC 

Hydroxyproline HydPred 0.709  0.891  0.846  0.593  

PredHydroxy(*60%) 0.618  0.885  0.818  0.509  

PredHydroxy(*70%) 0.491  0.976  0.873  0.581  

PredHydroxy(*80%) 0.364  0.976  0.823  0.471  

iHyd-PseAAC 0.545  0.909  0.818  0.488  

Hydroxylysine HydPred 0.917  0.970  0.967  0.778  

 PredHydroxy(*60%) 0.833  0.947  0.939  0.633  

 PredHydroxy(*70%) 0.750  0.964  0.950  0.645  

 PredHydroxy(*80%) 0.667  0.982  0.961  0.676  

 iHyd-PseAAC 0.833  0.947  0.939  0.633  

* The threshold value of specificity of the PredHydroxy method.  
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predictors with outstanding prediction performance on both 

cross-validation and external validation can be proved to be 

reliable predictors. 

 In this way, HydPred is proved to be a reliable tool, as it 

showed a good prediction performance both on cross-

validation and external validation. 

 The SMOTE method also has favorable performance by 

solving the unbalanced problem of positive and negative 

samples. As observed from Table 1, the unbalanced problem 

did not usually affect the cross-validation results, as nearly all 

of the methods had a comparative sensitivity and specificity 

whether they accounted for the unbalanced problem. 

However, once they were tested by an external validation 

set, the unbalanced problem occurred (Table 2). This was 

particularly evident for prediction of hydroxyproline. 

Although the PredHydroxy (70%) method showed 

comparative MCC results with our HydPred method, it only 

showed a sensitivity of 0.491, which means that more than 

half of the positive samples were mis-predicted to be 

negative samples. Although it also showed good ACC results, 

this lack of sensitivity of the PredHyrdroxy method is not 

acceptable. Consequently, HydPred is currently the most 

promising predictor of hydroxylation sites due to its ability to 

solve the problem of unbalanced data. 

 

Analyses of key features 

There are 49 and 44 key features were selected in the 

HydPred predictor for hydroxyproline and hydroxylysine, 

respectively. There are lots of underlying information along 

with these features that may provide interesting insights into 

the understanding of hydroxylation mechanisms.  

 Among these features, the majority of them were 

classified into category I as component features (30/49 for 

hydroxyproline and 24/44 for hydroxylysine) which suggests 

that the residue component is one of the keys that helps 

prolyl-hydoxylases/lysyl-hydorxoylases to recognize their 

substrate. Here, Glysine (G) plays a rather important role 

since it is involved in more than half of these component 

features (16/30 for hydroxyproline and 17/24 in 

hydroxylysine).  

 The Binary localization encoding strategy as category IV 

implies the same deduction with more details. It suggests 

that the binary localization encoding of G at position 2, 3, 5, 

6, 8, 9 and 11 are all important for hydroxyproline. It is 

slightly different for hydroxylysine since the important binary 

localization of G are only at position 2, 5, 8 and 11.  

 The above analyses was further complemented by the key 

features from PWMs as category III. For hydroxyproline, it 

emphasizes that positive PWMs at position 2, 5, 8 and 11 and 

the negative PWMs at position 3, 6, 8, 9, 11 and 12. For 

hydroxylysine, it selected the key features of positive PWMs 

at position 2, 3, 6, 8, 9 and 11 and negative PWMs at position 

2, 3, 5, 8 and 11.  

 In order to illustrate these results intuitively, the Two 

Sample Logo (TSL)
47

 tool was utilized here (Fig3). TSL method 

can calculate and visualize the differences between the  

 

Fig3. Enrichment and depletion of residues at different positions of hydroxylation 

samples. 

positive and negative sets of aligned peptides by T-test and 

then present the enriched and depleted residue types in each 

position. The enrichment of residues can partially but not  

entirely reflect the positive PWMs features and the depleted 

residues can partially reflect the negative ones. In Fig3, it is 

obvious that G is enriched at position 2, 5, 8 and 11 in both 

hydroxyproline and hydroxylysine samples, meanwhile it is 

also depleted at position 3, 6, 8 and 12 for both of them as 

well. Besides, P is also enriched in multiple positions of 

hydroxylation samples. Here, it is also slightly different for 

hydroyproline from hydroxylysine. The enriched positions for 

P in hydroxyproline are 3, 6, 9 and 12, but in hydroxylysine, 

the positions are 1, 3, 4, 6, 10 and 13. From Table 3, residue P 

is also involved in many key component features in HydPred, 

as 6 for hydroxyproline and 7 for hydroxylysine. Residue P has 

a distinctive five-member cyclic group compared with other 

residues which can only be a H-bond acceptor but not a 

donor. It is interesting that residues G and P are the only two 

residues that do not follow along with the typical 

Ramachandran plot
48

 and they are all enriched in 

hydroxylation samples. The combination of G and P in a 

peptide would deduce two completely different consequence 

in their 2D structures, which is either rather ordered because 

of the distinct structure of residue P, such as in collagen 

(basically as a repeated GPP format) or tend to be a 

disordered coil since residue P is rarely found in α-helix or  β-

sheet structures expect in fibre proteins like collagen. It 

implies that the binding site of prolyl-hydoxylases/lysyl-

hydorxoylases is either in a rather ordered structure like in 

the helix in collagen or tend to be in a disordered coil. 

Residue C is also enriched in most positions of hydroxyproline 

samples, such as position 1, 3, 4, 5, 8, 9, 10 and 11. 

Coordinate with this phenomenon, the single amino acid 

component of C is also selected as key feature in HydPred for 

hydroxyproline. 

 Besides, residue H, as the only residue with both a five-

member cyclic group and positive charge, is involved in 8 key 

component features for Hydroxyproline, but it does not show 

up for hydroxylysine at all. Interestingly, as same as a residue 

with positive charge, K shows up 7 times in key features for 

hydroxylysine but not once in hydroxyproline. It may implies 
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that the side chain with positive charge group is important for 

hydroxylation, where H contributes especially to the binding 

of prolyl-hydoxylases while K contributes especially to that of 

lysyl-hydorxoylases. Since H does not show up as the 

enrichment residues in hydroxyproline samples (Fig3A), it 

suggests H does not tent to locate at specialized positions of 

a hydrxoyproline sample. Meanwhile, K tends to locate at 4 

and 10 in a hydroxylysine sample (Fig3B). 

 For category II, the volume involved features were 

selected as key features for both hydroxyproline (as 

GearynAuto_11_2) and hydroxylysine (as GearyAuto_6_2). 

Referring back to the component features, most the residues 

that are involved in the key component features are residues 

with small volumes, such as G, A, S, P, T, D, E. The residue 

with big volume, such as M, W and Y, does not appear in any 

of these key features. This phenomenon suggests that the 

hydroxylysine sites are likely to exist in the neighbourhood of 

residues with small volumes.  

 

Loss or gain of hydroxylation sites in human inherited disease 

Human disease associated variation data was gathered from 

the SwissVar
49

 database (release 201504). There are 26087 

disease related variations and 38058 neutral polymorphisms 

in 12569 proteins in all. From these, fragments of 13 residues 

centered on prolines and lysines where the variations are 

inside of these fragments were extracted as the disease-

related or polymorphisms related samples. HydPred was then 

employed to predict the loss or gain of hydroxylation sites for 

both polymorphisms and disease related samples that were 

caused by the variations. One thing should be noted that the 

distribution of training data for HydPred is unlikely identical 

to the human variation data. Therefore, we addressed a 'high 

confidence' loss or gain of hydroxylation sites, inspired by 

Radivojac's work
50

 to overcome the possibility of biased 

inference on false positive rate. Therefore, only the site with 

value of ( )l iP s  or ( )
g i
P s  that is larger than 0.500 for 

hydroxyproline and 0.400 for hydroxylysine (both higher than 

the cutoff value of HydPred) was assigned as a high 

confidence loss or gain of hydroxylation site. 

Correspondingly, only these sites were then analyzed in the 

further procedure.  

 The statistic results in Table 3 indicate that the loss of 

both hydroxyproline sites and hydroxylysine sites is 

significantly higher in disease associated variations than in 

polymorphisms according to the small p-values (as 1.29e-8 

and 9.67e-4) that was calculated by chi-square test (L.p-value 

in Table 3), which suggests that loss of hydroxylation sites is 

likely to be involved with the pathogenesis of human 

inherited diseases. Meanwhile, since the p-values for gain of 

hydroxyproline and hydroxylysine sites are both higher than 

0.05, which suggests that the gain of hydroxylation sites is 

not significant for disease-associated variations against 

polymorphisms and consequently implies that the gain of 

hydroxylation sites is not likely to be strongly associated with 

disease.  

 The predicted high confidence loss of hydroxylation sites 

in disease associated variations are listed in Table S3 for the  

Table 3. High confidence prediction results of loss or gain of hydroxylation sites. 

 Dis.  Poly.  
Loss 

 
Gain 

Dis. Poly. L.p-value 
 
Dis. Poly. G.p-value 

Hydroxyproline 19553 34063 81 53 1.29e-8 
 
60 133 0.12  

Hydroxylysine 16600 27361 36 26 9.67e-4 
 
13 21 0.95  

Note: Dis. indicated the number of disease-associated hydroxylation samples. 

Poly. indicated the number of polymorphism-related hydroxylation samples. 

L.p-value
 
indicated the significance of loss of Dis. compared with loss of Poly. by 

chi-square test; G.p-value
 
indicated the significance of gain of Dis. compared 

with gain of Poly. by chi-square test.  

further analyses. Among these disease-associated variations, 

111 of them are predicted to cause 117 different high-

confidence loss of hydroxylation sites by the HydPred method 

(Table S3). It indicated that about 0.43% (111/26087) disease-

associated variations will cause high-confidence loss of 

hydroxylation sites. In other words, it is also implies that 

among these disease-associated variations, about 0.43% of 

the disease-causing mechanisms may be related with loss of 

hydroxylation sites. 

 As indicated in Table S3, there are 44 proteins and 52 

different types of human disease associated with loss of 

hydroxylation sites. Among these, 68 variations within 11  

proteins are involved in 18 types of disease that are 

implicated  with dysplasia of the skeleton, joint, muscle or 

skin, which are mostly due to variations in hydroxylation of 

collagen (noted by 'a' in Table S3). Indeed, most of the loss of 

hydroxylysine sites are involved in this category of diseases.  

 Several other types of serious diseases are also indicated 

in Table S3, such as malfunction of the neurological system 

(noted by 'b' in Table S3), abnormalities affecting 

cardiovascular and cerebrovascular function, arteries or 

blood (noted by 'c'), severe immunodeficiency (noted by 'd') 

and kidney disease (noted by 'e'). 

 Previous studies have reported the association of 

disruption of hydroxylation sites with diseases caused by 

defect of collagen
5, 43

, malfunction of the neurological 

system
7
 and kidney disease

3
. All these diseases are included 

in the above analyses results. However, the other 

associations with abnormalities of cardiovascular and 

cerebrovascular function or blood and severe 

immunodeficiency are rarely reported. Although variations in 

primary protein sequence and function may underlie the 

pathologies of these diseases, in some examples, such as 

Brugada syndrome-1
51

, this is unclear. Our analyses indicate 

that there is also a strong likelihood that  loss of 

hydroxylation sites may play a key role in the pathogenesis of 

these diseases. Indeed, our predicted hypo-hydroxylation of 

protein variants associated with these diseases may well be 

provided as a basis for the development of novel therapies in 

the future. 

 

Web Server of HydPred 
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The web server for HydPred can be found online at 

Http://lishuyan.lzu.edu.cn/hydpred. It is a user-friendly web 

server for researchers which can be easily utilized without 

any mathematical or computational background. 

 The interface of HydPred is shown as Fig4A. Users can 

input single or multiple protein sequences in a FASTA format 

into the textbox and press the 'submit' button. Then, all of 

the prolines and lysines in a protein will be predicted to be 

hydroxylation sites or not. After the calculation, the outputs 

will be listed in the results page, as shown in Fig4B. It takes 

approximately 2 seconds to calculate and output the 

prediction results for both hydroxyproline and hydroxylysine 

for a protein of approximately 200 residues. Correspondingly, 

the time cost is multiplied when more protein sequences are 

inputted. 

 

 

Fig4. HydPred web server. A. Interface of HydPred with input; B. Results page of 

HydPred. 

  

Conclusions 

In this work, we describe a reliable identification method for 

protein hydroxylation sites called HydPred and 

comprehensively studied the potential loss or gain of 

hydroxylation sites in human inherited disease for the first 

time. The introduction of the SMOTE algorithm in HydPred 

fixed the unbalanced problem of positive and negative 

samples; hence, it showed a more favorable performance, 

especially on the external validation set compared to other 

published predictors in the same field. The web server of 

HydPred is a fast and reliable annotation tool for 

hydroxylation sites in newly discovered protein sequences. 

Moreover, the application of HydPred suggests that the loss 

of hydroxylation sites is more likely to be involved in human 

inherited disease than gain of hydroxylation sites. 52 

different types of disease were found to be associated with 

potential loss of hydroxylation sites in the corresponding 

protein variants, which presents a new angle for 

understanding the basis of disease pathogenesis and 

developing targeted therapies at the molecular level. 
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