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Abstract: 

Protein–protein interactions (PPIs) play a vital role in most biological processes. Hence their comprehension can promote a 

better understanding of the mechanisms underlying living systems. However, besides the cost and the time limitation 

involved in the detection of experimentally validated PPIs, the noise in the data is still an important issue to overcome. In 

the last decade several in silico PPI prediction methods using both structural and genomic information were developed for 

this purpose. Here we introduce a unique validation approach aimed to collect reliable non interacting proteins (NIPs). 

Thereafter the most relevant protein/protein-pair related features were selected. Finally, the prepared dataset was used 

for PPI classification, leveraging the prediction capabilities of well-established machine learning methods. Our best 

classification procedure displayed specificity and sensitivity values of 96.33% and 98.02% respectively, surpassing the 

prediction cababilities of other methods, including those trained on gold standard datasets. We showed that the PPI/NIP 

predictive performances can be considerably improved by focusing on data preparation. 

1. Introduction  

Biological processes are typically regulated by the interactions of 

proteins with either other proteins or genetic material. Protein–

protein interaction (PPI) is virtually involved in every process of a 

living system such as DNA replication, transcription, translation, 

cellular secretion, cell cycle regulation, signal transduction, 

metabolic regulation, etc. Hence the study of PPIs is crucial for the 

understanding of biological processes and has prompted the 

development of various experimental methods targeted to the 

identification of new PPIs. While the amount of genomic 

information continues to grow exponentially, the functional 

annotation of both proteins and their interactions is updated at a 

slower pace. Conventionally, both in vitro and in vivo methods are 

used to detect protein interactions. Tandem Affinity Purification 

(TAP)
1
, Affinity chromatography

2,3
 , co-immunoprecipitation (Co-

IP)
4
, X-ray crystallography

5
, Nuclear Magnetic Resonance (NMR)

6
 

and yeast two-hybrid system (Y2H) are among the techniques most 

commonly applied. These experimental techniques have 

contributed to the generation of databases containing large sets of 

protein-protein interaction pairs, such as the Database of 

Interacting Proteins (DIP)
7
, MIPS mammalian protein-protein 

interaction database (MIPS)
8
, Biomolecular Interaction Network 

Database (BIND)
9
,  IntAct molecular interaction database (IntAct)

10
 

and the Molecular INTeraction database (MINT)
11

. High throughput 

techniques are labor intensive, expensive and time-consuming, 

especially when PPIs of complete species are considered. In the last 

decade several computational methodologies have been applied to 

the prediction of PPIs. The initial strategies included comparative 

analysis such as phylogenetic profiling of fused homologs into a 

single chain obtained from different organisms (Pellegrini et al., 

1999)
12

 or other gene fusion methods such as Rosetta stone 

(Enright et al. 1999)
13

. In 1998 the conserved gene neighborhood 

analysis of nine bacterial and archaeal genomes performed by 

Dandekar et al.
14

 proved that the products of conserved genes are 

likely to interact. In 2001, Wuchty et al.
15

 proposed the domain co-

occurrence scale-free interaction network. These methods rely on 

information about protein functional domains, genes and functional 

pathways found in related species. Furthermore proteins’ physico-

chemical properties can be used to generate statistical models and 

train machine learning algorithms. In 2001 Bock et al.
16

 successfully 

trained support vector machine (SVM) using both primary structure 

information and physico-chemical properties of proteins included in 

the Database of Interacting Proteins (DIP). Gomez et al. in 2003
17

 

described an attraction-repulsion model, in which the interaction 

between a protein pair is represented as the sum of attractive and 

repulsive forces associated with domain or motif-sized features. 

Several machine learning classifiers including Support Vector 

Machines (SVM)
18–20

, Artificial Neural Network (ANN)
21

, Naïve bias 
22,23

, K-Nearest neighbors
24,25

, Decision Tree
26–28

 and Random 

Forest
26,29

 have being used to predict PPIs. Despite the popularity of 

PPI prediction methods, there are some limitations. The predictive 

performances of these methods can be negatively affected by the 

meager availability of information about non-interacting proteins. 

Secondly, the use of features with limited biological significance 
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may increase the rate of false positives, lowering the effectiveness 

of the methods. 

In order to leverage the prediction capability of some of the 

machine learning approaches mentioned above, we propose a 

procedure for the preparation of both positive and negative 

protein-protein interaction data. This methodology pays particular 

attention to the biological relevance of the protein properties taken 

under consideration, while it tries to minimize the bias. 

 The proposed procedure can be divided into three phases. The 

first phase consisted in the acquisition of human PPI data from 

different data sources, the validation of such data and their 

coherent integration. The dataset of non-interacting proteins (NIP) 

was carefully prepared using a triple-layer validation inspired by 

previous works
30–32

. The aim of the second phase was to annotate 

both PPIs and NIPs using biologically relevant features from a 

protein-protein interaction perspective. The 43 protein features 

obtained from this analysis were grouped into four different types: 

Probabilistic modeling of inferred domain–domain interaction 

(DDI), Network analysis of PPIs, gene co-expression and amino acid 

information. The proposed approach present three major novelties: 

 

1. A secondary PPI database was used without applying pre-

filtering procedures in order to limit the amount of instilled 

bias. 

2. The negative dataset of NIPs was developed considering 

only combinations of proteins found within the PPI database. A 

triple-layer of validation based on biologically relevant 

observations was then applied to select reliable NIP 

candidates. The NIP dataset represent itself a valid resource 

for future work in the field of PPI prediction. 

3. A specific combination of biologically meaningful features 

encompassing different aspects of protein interactions (e.g. 

protein co-expression, properties of the protein interactome, 

domain-domain interactions, etc.) was carefully chosen before 

applying feature selection. 

 

The machine learning methods trained on this data showed higher 

performances than the best prediction methods reported in 

literature. A schematic representation of the methodological 

workflow is presented in Figure 1. 

2. Methods 

2.1 Protein-protein interaction data 

More than 250 PPI primary and secondary databases (containing 

information from single or combined data sources respectively) are 

publicly available. We analyzed these databases and chose 

Michigan Molecular Interaction MiMI
33

 database because of its 

versatility. In fact among all meta-databases it is the most non-

discriminatory database, aiming to include all protein interaction 

data in one single comprehensive database
34

. The detailed 

relationship between experimentally validated PPI databases is 

depicted in Figure-A within supplementary materials. 157,863 

binary interactions between human proteins were reported, 

including 80,965 PPIs involving 11,075 unique proteins. Several 

detection methods were used for the same protein interactions, 

resulting in data redundancy. The problem was solved including 

only unique PPIs in the positive dataset. 

2.2. Non interacting protein data 

Reliable NIP datasets
30

 are difficult to obtain since predicting 

“absence of interaction” is not a trivial task to achieve. Moreover, 

the lack of positive interaction cannot be automatically considered 

as a negative interaction although this simplification has been 

sometimes used in previous works
28,35–37

. In order to deal with this 

problem, we applied a triple-layer validation to a raw dataset 
 

Figure. 1. Schematic view of the methodological workflow 

 
generated from all the possible 2-combinations of the 11,075 

unique PPI proteins previously obtained. The self-interactions and 

known protein-protein interactions were removed and the 

validation procedure was then applied. While the first validation 

layer uses information about the subcellular localization of the 

proteins, the second relies upon knowledge about the proteins’ 

involvement into specific biological processes. In both cases the 

Gene Ontology (GO) database was queried. Finally validation by 

gene co-expression correlation was applied. The common idea 

behind the refining procedure is that interacting protein pairs are 

more likely to be situated in the same biological contexts (e.g. 

subcellular localization, biological process or gene co-expression) 

and should be removed from the NIP dataset. This procedure can 

significantly reduce the number of false positives. The validation 

steps are described in the sections below. 

2.3. Validation with Gene Ontology 

The human gene association data included 374,356 GO annotations 

consisting of subcellular localization (SCL), molecular function (MF) 

and biological process (BP). Both BP and SCL annotations were 

cross-mapped with the PPI and NIP datasets. Protein pairs sharing 

any BP or SCL were removed from the NIP dataset. From the initial 

PPI dataset, 8,199 proteins included complete GO data, resulting in 

21,021,863 NIPs without any shared SCL and 12,532,471 NIPs with 

one or more SCL in common. From the selected NIPs, 18,020,740 

negative pairs were found to have dissimilar biological process 

ontologies. It should be noticed that a given protein may be located 

in multiple subcellular localizations and could be involved in several 

biological processes. A protein pair is considered to be non-

Page 3 of 10 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3 

Please do not adjust margins 

Please do not adjust margins 

interacting only if their proteins don’t share any common 

subcellular localizations nor biological processes. A Similar approach 

was adopted by Ben-Hur et. al.
30

 and Xiao li et al. 
31

. 

2.4. Validation with gene co-expression correlation  

Gene co-expression data from COXPRESdb (version c4.1)
38

 were 

downloaded and processed. The version used in this work contains 

73,083 GeneChip experimental data. The directory included 20,280 

files, each representing one gene. The database was parsed and the 

co-expression correlation values of 156,419,640 gene pairs were 

obtained. From the NIP dataset obtained after GO validation 

16,254,117 protein pairs had gene co-expression information. In 

order to establish the difference between the distributions of the 

co-expression coefficients values of PPI and NIP datasets, random 

samples of equal size were obtained from PPI and NIP data 

respectively (refer the figure 2 where distribution in red is for PPIs 

and is in green for NIPs over Pearson’s correlation coefficient values 

on x-axis and number of protein pair on y-axis). The Kolmogorov-

Smirnoff (KS) test and the Welch two sample t-test (WT) were 

performed on these samples. The tests confirmed a statistical 

difference between the distributions (Figure 2) under a confidence 

value of 0.025. In figure 2, co-expression values for subset of PPI (in 

red) and equal subset of NIP (in blue). The obtained p-values were 

2.43e-06 and 1.39e-04 respectively. The NIP pairs with a co-

expression coefficient greater than 0.425 were removed from the 

NIP dataset because proteins with higher co-expression values are 

more likely to interact
39

. The co-expression coefficient cutoff 

mentioned above was chosen such that the NIPs/PPIs ratio was 

approximately 1/10. More detailed information can be found in 

table-A of supplementary material. Ultimately the validation 

procedure leaded to the selection of 13,523,822 NIPs. This data 

represent the negative dataset used in the machine learning 

procedure.  

2.5. Probabilistic modeling of domain-domain Interaction 

Information about confirmed protein domains were obtained from 

Pfam
40

. All the possible domain combinations were computed for 

each protein within a given pair. Scores based on the domain 

occurrences (e.g. frequency, probability standard score (z-score), 

enrichment scores etc.) were calculated for both PPIs and NIPs. A 

similar approach was previously proposed by Li 2006, Han et al. 

2003 and Chatterjee et al. 2011
19,31,41

 Since only a subset of the 

combinatorically-generated DDIs is truly interacting, a significant 

rate of false positives is foreseen. Nevertheless it would be logical 

to expect a higher rate of DP-DDI (domain Pair from PPI) with 

respect to DP-NIP (domain pair from NIP). In fact the probability of 

finding an interacting domain pair within an interacting protein pair 

is higher than finding it within a non-interacting one. The 

characteristics of DP-DDI and DP-NIP distributions are summarized 

in Table 1 in results section.  

2.6. Network analysis 

Protein interaction network analysis was also adopted in this study 
in order to assign protein functions

42
. A simple technique known as 

neighbor counting method predicts the function of unknown 
proteins, using the frequency of the closest neighbors’ functions. 
This information can be statistically assessed

43
. The protein function 

prediction based on network mining is a novel approach in PPI 
studies

44,45
. In order to integrate the network properties in the 

 

 

Figure 2. Frequency distribution NIPs Vs PPIs on co-expression coefficient 

 

analysis, an interaction network was generated from PPI data. 

Instead of defining protein pairs as interacting or non-interacting 

entities, the network analysis defines them in terms of their degree 

of connectivity, contributing to provide an additional dimension to 

the data. The PPI network can be defined as a scale free network 
46,47

 where few nodes share many connections while the majority of 

the nodes have few connections. This makes the degree distribution 

of the PPI networks heavy-tailed
48,49

. A total number of 23 network 

properties were computed based on graph’s betweenness, 

common edge, centrality eccentricity, neighbourhood degree, etc. 

2.7. Feature assembly and selection 

The selection of representative features is a crucial task in machine 

learning and has dramatic repercussions on the performances of 

such methods. Description of the feature extraction methods is 

given below.  

2.7.1. DDI features 

During the validation by DDIs described in section 2.5, a number of 

domain-related features were extracted. The features are formally 

introduced below. 

Let a protein pair to be constituted by proteins � and �. Consider 

the set of domains �� � ���,	: � � 1,2, … , �� and �� � ���,� : � �1,2, … ,�� for proteins � and � respectively. The following 

properties are then defined. 

a) Number of domains within each protein (e.g. in the protein �): 

|��| where |��| is the cardinality of ��. 

b) Number of DDI combinations in a protein pair: |��,�|, where 

	��,� � ����, ��� � ����,	 , ��,��	|	��,	 ∈ �� ∧	��,� ∈ ��� 
= ����,�, ��,��	, ���,�, 	��,��, … , ���,	, ��,���. 
c) Number of DDI combination in the whole dataset: Let   be the 

set of the domain sets of all the proteins within the PPI dataset. The 

total number of DDI pairs for all the !|"|� # possible 2-combinations of 

  within the PPI dataset can be defined as |�""$|, where 

�""$ �∪&,'∈" ���&, �'� 
We can similarly define the total number of DDI pairs within NIP as 
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�($" � 	∪&,'∈"⋀&*' ���&, �'� 
d) Domain probability: Let	consider a domain �+, which appears in 

a certain number of domain pairs within the �""$  set. Note that the 

domain definition is irrespective of the protein source. Then we can 

define a subset 	�""$,+ containing all the �""$  domain pairs that 

include the domain �+. Formally: 

	�""$,+ �	 ��	|	∀	� ∈ �""$: �+ ∈ ��  
The occurrence probability of the domain �+ in �""$  is therefore 

-+""$ � -�.""$ � �+� � |/001,2|
�|/001|  

where 2|�""$| is the total number of domain occurrences and	.""$ 
is the domain random variable for the PPI dataset. Similarly we can 

calculate -+($". 

e) Domain pair probability: Let	consider a domain pair �+,3 within 

the �""$  set. Note that the domain pair definition is irrespective of 

the protein source. Then we can define a subset 	�""$,+,3 as 

�""$,+,3 � 	 ��+,3|	�+,3 	 ∈ 	�""$�  
containing all the �""$ domain pairs �+,3. The occurrence 

probability of �+,3 in �""$ is therefore 

 -+,3""$ � -�.4""$ � �+,3� � |/001,2,5|
|/001|   

Where, |�""$| is the total number of domain pairs and	.4""$ is a 

domain-pair random variable in the PPI dataset. Similarly we can 

calculate -+,3($". The probability of finding a highly interacting 

domain pairs is expected to be lower within the NIPs data. 

 Ideally,  

 -+,3""$ ∝	 �
-2,5710 . 

f) Enrichment score (ES): Ratio of the inferred domain pairs and 

expected number of pairs. The enrichment score for a domain 

pair	89""$  within the PPI dataset can be defined as 

89""$!�+,3# � |�""$,+,3|
8""$:�+,3; 

Where the expected number of protein pairs is defined as: 

8""$:�+,3; � -+""$ ⋅ -3""$ ⋅ 2|�""$| 
g) Standard probability score for domain pair: A numerical 

indicator similar to the z-score for domain pair �+,3  within PPI, can 

be defined as follow: 

=""$ � |�""$,+,3| − 	8""$:�+,3;?""$��+,3� 

Where 

?""$��+,3� � @2|�""$| ⋅ [-+""$�1 − -+""$� +	-3""$�1 − -3""$�] 

The same metrics can be applied to NIP data.  

2.7.2. Gene co-expression features 

The following Co-expression coefficient features were attained from 

COXPRESdb
38

. 

a) Gene co-expression value: The Pearson’s correlation coefficients 

between the expression values of gene pairs were considered. 

b) Mutual Rank: Co-expressed gene networks in COXPRESdb are 

defined in terms of rank of correlation
52

. The correlation rank is not 

commutative for the proteins within a pair. Therefore the 

geometric average between two directional ranks (one for each 

protein) is used. This value is defined as Mutual Rank (MR). 

2.7.3. Protein network features  

A protein network was computed using the igraph package in R, 

representing proteins as vertices and edges as protein connections. 

The extracted network-based features are listed below. 

 

a) Vertex properties: Network based properties such as 

betweenness, degree, closeness, eccentricity, neighbourhood 

degree, centrality closeness, and eigenvector centrality, were 

computed for each vertex (protein). These properties were 

extracted from either the 68,265 PPIs or the 8,519,279 NIPs. 

b) Edge properties: The calculations based on comparative or 

combined values of any two vertices were also performed for the 

PPI and derived NIP protein pairs. The adjacency matrix of the 

11,075 PPIs was built with the help of the R
53

 package igraph. The 

eigenvalues of each vertex pair were computed. Similarity 

coefficients for each pair were calculated using three similarity 

metrics: (i) Jaccard similarity, (ii) Dice similarity and (iii) Inverse log-

weighted similarity. 

2.7.4. Protein disorder features 

Protein disordered regions are known to be over represented in 

protein domains involved in binding
54

. This is especially visible in  

hub proteins, which interact with several different protein 

partners
55

. Hence, disorder related features were also taken into 

account. The percentage of disorder regions was calculated for each 

protein with the help of the tool ESpritz
56

. Applying the methods 

described above, 43 features were collected comprehensively. The 

complete list of these features is provided in Table B in the 

Supplementary material. Then two methods Boruta
57

 and Monte 

Carlo Feature Selection
58

 applied to identify the features which 

better describe the interactions between proteins. Network-based 

features, co-expression correlation coefficients  (CORs) and the 

frequency of inferred DDI were among the most important 

attributes. On the contrary, the contribution of attributes based on 

disorder regions was negligible. This process allowed the selection 

of 17 protein features out of the initial 43. These data were further 

used to train the machine learning algorithms for PPI/NIP 

prediction. Please refer supplementary tables C-F for detailed 

information about the feature selection results mentioned above. 
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2.8 Classification methods 

Machine learning methods were trained on multi-dimensional 

random samples of different sizes. The assortment of attributes was 

based on the feature selection outcome. The following classifiers 

were adopted: k-Nearest Neighbours (k-NN), Support Vector 

Machine (SVM) with Linear and Radial Base Function (RBF) kernels, 

Decision Tree (DT), Random forest (RF), Adapting Boosting 

(AdaBoost), Naïve Bayes (NB) and Linear Discriminant Analysis 

(LDA). A Multilayer Perceptron (MLP) implementation of artificial 

neural networks was also adopted. The samples were randomly 

obtained from both positive and negative datasets. Balanced 

samples consisting of 4000, 8000, 20000, 50000, and 100000 

protein pairs were used in the training phase. In order to test the 

performances of the classifier under conditions closer to the real 

nature of the original data, two imbalanced samples were also 

considered. In these cases the PPI/NIP ratios were 4000/20000 and 

4000/40000 respectively. 

2.9 Tools 

The relational database management Sqlite v.3.0 was used for data 

storage and management. The codebase infrastructure was 

implemented in Python v.2.7.8 Modules for data preparation and 

validation were implemented in Perl v.5.16.3, Python v.2.7.8 and R 

v.3.0.1. Statistical and machine learning analyses were performed in 

R (igraph library) and Python (including NumPy, Pandas, scikit-learn 

and scikit-neuralnetwork libraries). The classification parameters 

are included in the supplementary material.  

3. Results and discussion 

The enrichment process of artificially created non interacting 

protein pairs generated 13,523,822 NIPs of good quality, which 

were used as training set for computational prediction methods. 

Apart from Gene Ontology differentiation on the basis of exclusivity 

of location and biological process, two more properties namely 

gene Co-expression and domain-domain interaction probability 

were also successful to establish the difference between positive 

and negative interactions. The probabilistic approach developed, 

helped to reveal that inferred protein domain pairs in positive and 

negative datasets are dissimilar in terms of distribution and 

occurrence. The DDI features estimated in section 2.7.1 were 

formulated to assess the difference between interacting and not 

interacting domain-pairs belonging to the PPI and NIP datasets 

respectively. Approximately the 40% of DP-PPI were found to be 

absent in DP-NIP, despite the forty times larger DP-NIP. The 

dissimilarity between domain pair distributions from PPI and NIP 

was confirmed using Kolmogorov Smirnoff test and Welch t-test.  

The statistical distribution of probability standard score (z) is 

presented in table 1 which compares different DDI distributions.  
Out of 100,923 DP-PPI (Domain pairs inferred from PPI), 61,451 

were found in the DP-NIP dataset also. The distributions of their 

respective probability standard scores were obtained showing a 

moderately negative correlation (Pearson's coefficient = -0.24). This 

observation is coherent with the fact that interacting domain pairs 

are more likely to be found within in the positive dataset. Moreover 

the missing 39,472 DP-PPI from DP-NIP displayed a higher standard 

probability score (z) with respect to the expected probability score 

for the whole DP-PPI set (Table 2). The intuitive hypothesis is that 

both probability and the standard score (z) of DDI pairs should be 

higher within PPIs then NIPs, and vice-versa. The average z-score 

within DP-NIP was significantly lower than the same score 

measured in the DP-PPI. The table 2 shows precision performance 

with top machine learning methods with different sample size of 

balanced class having equal number of PPI and NIP. These data are 

in accordance with the hypothesis above and were used as features 

in the classification phase. A similar approach was adopted by Deng 

et. al. in 2002
50

 using maximum likelihood method. Han et al. in 

2003
41

 designed a probabilistic framework that considers domain 

combinations instead of single domains as basic units of protein 

interactions
51

. To the best of our knowledge these observations 

were not reported in previous works. 

 In each experiment we evaluated the classifiers computing 

both average and standard deviation of the performance measured 

under 10-fold cross validation. These values are presented in table 

2. Both the Random Forest and Decision Tree methods performed 

surprisingly well, whereas the other methods performed similarly to 

the best approaches reported in literature. We also investigated the 

dependence of the prediction performances from both sample size 

and sample size ratio. In order to evaluate the effect of the sample 

size, we compared the performances of the five best methods. In 

the balanced data, an improvement in precision was noticed for 

samples of size 20,000 and above (compared in table 4). On the 

other hand a minor improvement of the recall values was registered 

in small samples. 

  Results from different PPI prediction studies are not easy to 

compare, since the properties of the datasets used, the protein 

coverage and the degree of data-reliability may vary in every case. 

Moreover most of the methods, including the one here reported, 

rely on specific protein features which are usually available only for 

a subset of known proteins. Taking this fact into account, a careful 

comparison with published results was made. The PPI_SVM
19

  

method, which leverage domain information to predict PPI, 

obtained 76% recall and 95% precision on a reliable subset of 3000 

protein pairs from yeast consisting of balanced class. PreSPI
35

 which 

involves a probabilistic approach to predict the interaction 

probability of proteins from yeast, achieved very similar values: 95% 

precision and 77% recall. In this experiment the size of interacting 

and non-interacting test groups was 1590 and 1490, respectively. 

Liu et al.
36

 used sequence-based method predicting interactions for 

yeast proteins from DIP reporting 87% precision and 90% recall. In a 

recent attempt for a selected gold standard dataset, the Ensemble 

method 
28

 obtained 94% precision, 89% recall for human and 89% 

precision, 91% recall for yeast proteins. The values of precision and 

recall of our classifiers are comparable with the top results reported 

in the literature, summarized in table 4, a comparison plot is also 

presented in figure 3. The performances of Random Forest classifier 

were particularly brilliant, showing a precision 96.4% and recall of 

Table 1. Standard probability standard score (z) across DDI. 

 

 

DP-PPI DP-NIP 

Common 

DDIs in 

DP-PPI 

Common 

DDIs in 

DP-NIP 

Exclusive 

DP-PPI 

Mean 0.530 0.050 0.644 -0.024 0.185 

Median 0.092 0.011 0.102 -0.010 0.081 

Variance 3.019 0.116 3.916 0.585 0.116 

Std. dev. 1.737 0.340 1.979 0.765 0.340 

Range of 

z-score 

-1.4 to 

15.3 

-13.3 to 

6.12 

-1.4 to 

15.31 

-13.3 to 

6.12 

-0.09 to 

2.92 
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Table 2a. Precision performance value with standard deviation (in %) for different test sample size in balanced class 

Sample Size 

 

Decision 

Tree 

SD  

(+/-) 

Random 

forest 

SD  

(+/-) 

Linear 

SVM 

SD  

(+/-) 

Nearest 

Neighbor 

SD  

(+/-) 

Naïve Bayes SD  

(+/-) 

4,000 94.83 1.44 95.15 1.54 92.93 3.64 90.69 4.30 91.05 5.02 

8,000 94.92 0.78 95.34 1.01 92.64 3.74 90.21 4.53 90.83 4.75 

20,000 96.37 1.05 96.40 0.80 93.15 4.41 91.12 4.45 91.63 4.53 

50,000 96.56 0.21 96.61 0.23 93.38 4.29 91.23 4.41 91.66 4.36 

100,000 96.25 0.24 96.47 0.31 93.34 4.14 91.25 4.24 91.71 4.37 

Table 2b. Recall performance value with standard deviation (in %) for different test sample size in balanced class 

Sample Size 

 

Decision 

Tree 

SD  

(+/-) 

Random 

forest 

SD  

(+/-) 

Linear 

SVM 

SD  

(+/-) 

Nearest 

Neighbor 

SD  

(+/-) 

Naïve Bayes SD  

(+/-) 

4,000 97.84 1.15 97.34 1.39 85.58 14.38 82.26 11.27 79.35 14.92 

8,000 97.14 1.19 97.67 1.07 86.44 13.80 82.71 10.98 79.86 14.68 

20,000 97.62 0.61 98.02 0.65 87.93 12.57 84.52 10.04 81.11 14.62 

50,000 98.14 0.32 98.47 0.43 89.05 11.89 85.52 9.60 81.94 14.35 

100,000 98.74 0.17 98.91 0.18 89.62 11.66 86.17 9.42 82.42 14.47 

Table 3. ML performance (in %) for sample with 50000 protein pairs in balanced class 

 

Method used Precision 

 

SD (+/-) 

precision 

Recall 

 

SD (+/-)  

for Recall 

AUC 

Nearest Neighbors  91.23 4.83 85.52 11.23 88.40 

Linear SVM 93.38 4.59 89.05 13.35 90.48 

RBF SVM 92.78 4.12 86.72 12.26 90.17 

Decision Tree 96.56 0.22 98.14 0.33 98.06 

Random Forest 96.61 0.24 98.47 0.44 98.92 

AdaBoost 92.22 4.93 87.66 11.32 99.77 

Naive Bayes 91.66 4.76 81.94 17.51 80.81 

LDA 91.17 4.65 80.22 12.02 88.24 

MLP 87.28 0.02 85.13 03.21 95.55 

  

Figure 3: Histogram of comparison between protein - protein interaction prediction methods 
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98.02 % using Random Forest. The risk of overfitting was handled 

applying 10-fold cross validation to large samples. The low standard 

deviation of the results (Table 3.) also allows to safely discarding 

that hypothesis. The Receiver Operating Characteristic (ROC) curves 

of the prediction methods are reported in Fig 3. The recall, precision 

and the ROC Area Under the Curve (AUC) values are present in table 

3. We observed that decision-tree-based classifiers (decision three, 

random forest and AdaBoost with decision tree estimators) 

performed significantly better than the other methods. We 

investigated the effect that specific subset of features may play in 

this context. We noticed that DDI properties were capable of 

significantly improve the performances of decision-tree-based 

methods. A similar improvement was not observed in the other 

classifiers (see Figure 2 in supplementary materials).  

4. Conclusion 

In this study we introduced a novel protocol for the generation of 

reliable NIP data, which represent a crucial step in the 

enhancement of PPI prediction methods. We not only used most 

indiscriminate positive data, but our studies focused greatly upon 

the quality of negative data which is usually overlooked and many 

times wrongly used resulting in biased and inflated results. 

Biologically relevant protein features were selected. Each numerical 

feature was biologically reasonable and inspired the enrichment of 

positive as well as negative protein interaction data. The features 

derived from protein domains interaction, protein interaction 

network and gene expression allowed us to improve the quality of 

PPI prediction detection in a cumulative manner. The dataset was 

then used to train and test several machine learning classifiers. 

Some of the standard classifiers trained on the mentioned dataset, 

outperformed all the previously existing methods without losing 

robustness of the results. Algorithms based on decision trees gave 

excellent performances on these data, while maintaining low 

variance. The results obtained are undoubtedly associated with the 

diligent preparation of the NIPs data. The biological plausibility of 

the data was in fact taken into careful consideration during every 

step of the data preparation. Moreover, our definition of protein 

interactions relied on the combination of independent biological 

aspects and resulted to be beneficial in the machine learning 

training phase. We believe that our methodology represents which 

 

 

currently represent an issue in the prediction of protein-protein 

interaction. Besides the classification perspective, knowledge of NIP 

could be useful for the identification of least interacting proteins 

within a pathway. Being potentially indispensable factors in a 

pathological process, such proteins may represent valid targets for 

drug design. Despite exhibiting good performances, our method still 

has scope of improvement. Physicochemical properties like solvent 

accessibility and hydrophobicity could be included in order to 

improve the classification results. The established methodology 

could be extended to proteome other organisms. 
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