
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

Molecular
 BioSystems

www.rsc.org/molecularbiosystems

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


Expression profiles of

differentially expressed

miRNAs, mRNAs and TFs

miRNA-mRNA

miRNA-TF TF-miRNA

miRNA-mRNA

miRNA-TF TF-miRNA

miRNA-mRNAmiRNA-TF

TF-miRNA

Predicted causal relationships Putative relationships

Significant direct miRNA-TF, miRNA-mRNA and

TF-miRNA causal relationships

Extract miRNA-miRNA synergistic relationships

S
a
m
p
le
s

Filter out indirect miRNA-mRNA, miRNA-

TF and TF-miRNA causal relationships

Fiter out insignificant mirSRN motifs

using miRNA-miRNA causal effect

miRNA synergistic regulatory network (mirSRN)

Databases of miRNA and TF

target binding information

IDA learning with

bootstrapping

Extract putative relationships

among differential miRNAs,

mRNAs and TFs

Generate mirSRN motifs with NetMatch

miRNAi miRNAj

mRNA

miRNAi miRNAj

TF

miRNAi miRNAj

TF

miRNAi miRNAj

TF

miRNAi miRNAj

TF

miRNAi miRNAj

TF

Significant mirSRN motifs

Network motif union and add edges between

each pair of synergistic miRNAs

miRNA-miRNA synergistic network
 

Page 1 of 11 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Journal Name                                                                                    

ARTICLE 

This journal is © The Royal Society of Chemistry 20xx Mol. BioSyst., 2015, 00, 1-3 | 1  

Please do not adjust margins 

Please do not adjust margins 

a.
 School of Engineering, Dali University, Dali, Yunnan, 671003, P. R. China. E-

mail: zhangjunpeng_411@yahoo.com  
b.
 School of Information Technology and Mathematical Sciences, University of South 

Australia, Mawson Lakes, SA 5095, Australia. E-mail: jiuyong.li@unisa.edu.au  
c.
 Institute of Biomedical Engineering, Kunming University of Science and 

Technology, Kunming, Yunnan, 650500, P. R. China. 

† Electronic Supplementary Information (ESI) available: See 

DOI: 10.1039/x0xx00000x 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

www.rsc.org/molecularbiosystems 

Identifying miRNA synergistic regulatory network in 

heterogeneous human data via network motifs† 

Junpeng Zhang,
a,*
 Thuc D. Le,

b
 Lin Liu,

b
 Jianfeng He

c
 and Jiuyong Li

b,* 

Understanding the synergism of multiple microRNAs (miRNAs) in gene regulation can provide important insight into the 

mechanisms of complex human diseases caused by miRNA regulation. Therefore, it is important to identify miRNA 

synergism and study miRNA characteristics in miRNA synergistic regulatory networks. A number of methods have been 

proposed to identify miRNA synergism. However, most of the methods only use downstream target genes of miRNAs to 

infer miRNA synergism when miRNAs can also be regulated by upstream transcription factors (TFs) at the transcriptional 

level. Additionally, most methods are based on statistical associations identified from data without considering the causal 

nature of gene regulation. In this paper, we present a causality based framework, called mirSRN (miRNA Synergistic 

Regulatory Network) to infer miRNA synergism in human molecular systems by considering both downstream miRNA 

targets and upstream TF regulation. We apply the proposed framework to two real world datasets and discover that almost 

all the top 10 miRNAs with the largest node degree in the mirSRNs are associated with different human diseases, including 

cancers, and that the mirSRNs are approximately scale-free and small-world networks. We also find that most miRNAs in 

the networks are frequently synergistic with other miRNAs, and miRNAs related to the same disease are likely to be 

synergistic and in a cluster linking to a biological function. Synergistic miRNA pairs show higher co-expression level, and 

may have potential functional relationships indicating collaboration between the miRNAs. Functional validation of the 

identified synergistic miRNAs demonstrates that these miRNAs cause different kinds of diseases. These results deepen our 

understanding of the biological meaning of miRNA synergism. 

1 Introduction 

MicroRNAs (miRNAs) are small (~23nt), non-coding RNAs 

found in plants and animals, and they mainly regulate gene 

expression at the post-transcriptional level.1 By binding with 

complementary sequences within mRNA (messenger RNA) 

molecules, miRNAs may result in gene silencing via the full 

degradation of the target mRNA transcript or translational 

repression of it.2 About 60% of genes are predicted to be 

regulated by miRNAs in human genome.3, 4 Given their far-

reaching role, it is not surprising that miRNAs are likely to be 

involved in most biological processes, including developmental 

timing, cell proliferation, metabolism, differentiation, apoptosis, 

cellular signalling, stress responses and even cancer.5-11 

Additionally, combinatorial regulation is a feature of miRNA 

regulation. A miRNA can target multiple mRNAs, and one 

mRNA can be targeted by multiple miRNAs.12-14 Recent 

studies show that complex diseases are affected by several 

miRNAs rather than a single miRNA. Therefore, it is important 

to identify miRNA synergism to determine miRNA functions at 

a system-wide level and investigate disease miRNA features in 

miRNA synergistic regulatory networks. 

With the availability of large volume of data obtained from 

high-throughput experiments and the advance of computer 

algorithms and tools,15-19 it becomes possible to investigate the 

complex synergistic relationships between miRNAs using 

computational approaches. Our understanding of miRNA 

synergistic regulation is increasing with help of the 

computational methods developed for uncovering miRNA 

synergism. The computational methods can be classified into 

two main streams: (1) those using sequence-based target 

binding information alone20-26 and (2) methods combining 

expression data with putative sequence-based target binding 

information.27-33 The sequence-based target binding information 

mainly includes predicted miRNA targets, protein-protein 

interaction (PPI) and miRNA-SNP interactions, and the 

expression data contains expression profiles of miRNAs and 

mRNAs. They construct miRNA-miRNA synergistic network 

based on two main constraints: (1) Significant overlap of target 

genes between each miRNA-miRNA pair using hypergeometric 

distribution test, and (2) Overlap of target genes between each 

miRNA-miRNA pair significantly enriched Gene Ontology 

(http://geneontology.org/, GO) terms or Kyoto Encyclopedia of 

Genes and Genomes (http://www.genome.jp/kegg/, KEGG) 

pathways.  

The above approaches20-33 discover miRNA clusters or 

regulatory modules using statistical tests, thus the identified 
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relationships may not reveal gene regulatory relationships 

which are indeed causal relationships. Furthermore, most 

existing methods only use downstream target genes of miRNAs 

to study miRNA synergism. However, miRNAs can also be 

regulated by upstream TFs at the transcriptional level. 

Therefore, it is necessary to use both common target genes and 

regulators of miRNAs to infer miRNA synergism. 

Based on the above observations, we propose a causal 

discovery based framework, mirSRN (miRNA synergistic 

regulatory network) to discover miRNA synergism by using 

heterogeneous human data, including matched miRNA and 

mRNA expression data, and putative target binding information 

of miRNA-mRNA, miRNA-TF and TF-miRNA. Our method 

different from the previous methods20-33 identifies miRNA-

miRNA synergistic network based on two different constraints: 

(1) Significant causal relationships of miRNA-target, TF-

miRNA using causality based method in human heterogeneous 

data, and (2) Strength of each miRNA-miRNA pair measured 

by the miRNA-miRNA causal effects. 

As illustrated in Fig. 1, TFs, miRNAs and mRNAs are 

regarded as upstream, midstream and downstream molecules, 

respectively. We suppose that multiple miRNAs can directly 

regulate the same target by cooperating with each other. We 

call such a regulation pattern a direct miRNA synergistic 

regulatory network (DmirSRN) motif. Meanwhile, miRNA 

synergism can be indirect, i.e. as shown in Fig. 1, the regulation 

by a miRNA (on its target) is influenced or regulated by a TF 

and the TF in turn is regulated by another miRNA. We call this 

pattern an indirect miRNA synergistic regulatory network 

(ImirSRN) motif. We have identified 2 DmirSRN motifs and 4 

ImirSRN motifs as shown in Fig. 1. With our proposed 

framework we identify both types of motifs and combine them 

to build a miRNA synergistic network (we also call the network 

mirSRN in this paper). 

We apply the proposed framework to two human datasets: 

the epithelial-mesenchymal transition (EMT) and multi class 

cancer (MCC) datasets respectively. We discover that the top 

10 miRNAs with largest node degrees of the built mirSRNs are 

almost all associated with different human diseases of the EMT 

and MCC datasets, including cancers, and the mirSRNs are 

approximately scale-free and small-world networks. In addition, 

we extract from a mirSRN the sub-network that only contains 

the miRNA-miRNA synergistic relationships (called miRNA-

miRNA synergistic network in this paper), and we have found 

that all miRNAs in each of the miRNA-miRNA synergistic 

networks are closely connected, resulting in a high percentage 

of hub miRNAs, which indicates that most miRNAs are 

frequently synergistic with other miRNA partners. We also find 

that the miRNAs related to the same disease are likely to be 

synergistic and form clusters (highly interconnected regions) in 

the miRNA-miRNA synergistic networks. Moreover, 

synergistic miRNA pairs show higher co-expression level than 

that of non-synergistic miRNA pairs. Finally, we demonstrate 

that the identified synergistic miRNAs can cause different kinds 

of diseases. 

 
Fig. 1 TF, miRNA and mRNA are regarded as upstream, midstream and downstream molecules, respectively. There are two types of miRNA synergistic regulatory (mirSRN) motifs: 

direct (DmirSRN) and indirect (ImirSRN) motifs. The numbers of DmirSRN and ImirSRN motifs are 2 and 4, respectively. 

2 Materials and methods 

2.1 Data selection and processing 

We use the matched miRNA and mRNA expression profiles 

from the epithelial-mesenchymal transition (EMT) and multi 

class cancer (MCC) datasets in this work. The miRNA 

expression profiles of EMT are from Søkilde et al.34 They are 

profiled from the 60 cancer cell lines of the drug screening 

panel of human cancer cell lines at the National Cancer Institute 

(NCI-60). They are available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2637

5. The mRNA expression profiles of EMT for NCI-60 are 

obtained from ArrayExpress (http://www.ebi.ac.uk/arrayexpress, 

accession number E-GEOD-5720). Samples of EMT 
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categorized as epithelial (11 samples) and mesenchymal (36 

samples) are used for this work. The MCC dataset is also 

composed of matched miRNA and mRNA expression data. The 

miRNA expression profiles of MCC are obtained from Lu et 

al.35 They are available at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2564. 

The mRNA expression profiles of MCC are from Ramaswamy 

et al.36 They can be downloaded at 

http://www.broad.mit.edu/cancer/pub/migcm. Samples of MCC 

classified as normal (21 samples) and tumor (67 samples) are 

used in this work. To extract all the TF genes in both the EMT 

and MCC datasets, we use the list of TF repertoire.37 This list 

will then be used to query against the mRNA expression 

profiles to obtain TF expression profiles for both the EMT and 

MCC datasets. 

Putative miRNA-target (miRNA-mRNA and miRNA-TF) 

binding information is obtained by using the union of three 

databases: MicroCosm (Version v5),38 TargetScan (Version 

v7.0),39 and starBase (Version v2.0).40 The TF-miRNA target 

information is downloaded from MIR@NT@N (Version 

v1.2.1).41 In this study, we are only interested in the putative 

target binding information of miRNA-mRNA, miRNA-TF and 

TF-miRNA for discovering miRNA synergistic regulatory 

networks. 

2.2 Overview of the proposed framework 

As shown in Fig. 2, the overall process of our framework for 

discovering a mirSRN comprises the steps as described in the 

following. 

    (1) Differentially expressed gene analysis. Given the 

matched miRNA and mRNA expression profiles, a list of 

differentially expressed miRNAs, mRNAs and TFs are 

identified. The expression profiles of the differentially 

expressed miRNAs, mRNAs and TFs are integrated into an 

input dataset or matrix of the next step. 

(2) Inferring significant causal regulatory relationships. We 

firstly use the causal inference method, IDA (Intervention 

calculus when the DAG (Directed Acyclic Graph) is Absent),42, 

43 to calculate the causal (regulatory) effects of a miRNA or TF 

using the expression data. Considering the expression level of 

each miRNA, mRNA and TF as a random variable, the IDA 

learning contains two main steps: (a) learning the causal 

structure of the variables from expression data using the PC 

algorithm;44 (b) based on the causal structure, infer the causal 

effect of one variable on the other using the do-calculus45 and 

the expression data. Given the focus of this paper, we refer 

readers to the reference46 for the details of the two steps when 

used in finding miRNA regulatory relationships. 

For each miRNA, its causal effect on every mRNA and TF is 

calculated; and for each TF, its causal effect on every miRNA 

is calculated too. If the causal effect (absolute value) is larger 

than the median causal effect, we consider that there is a 

significant causal relationship between the pair of miRNA-

mRNA, miRNA-TF, or TF-miRNA, and non-significant 

relationships are discarded. A significant causal relationship 

may not be a result of the direct interaction between the pair, 

e.g. the causal relationship between a miRNA and mRNA may 

be mediated by a TF. To obtain significant direct causal 

interactions, we filter out indirect causal relationships of 

miRNA-mRNA, miRNA-TF and TF-miRNA using the miRNA 

and TF putative target information retrieved from the databases 

described in the previous section. All the direct significant 

causal relationships are to be used to generate the network 

motifs in the next step.  

(3) Identifying DmirSRN and ImirSRN motifs. The network 

motifs can be considered as simple building blocks from which 

the network is composed,47 and are believed to have specific 

functions which play critical roles in biological network 

inference.48 Furthermore, the identified network motifs could 

provide insights into the synergistic relationships between 

miRNAs. The significant direct causal interactions of miRNA-

mRNA and miRNA-TF are used to identify the DmirSRN 

motifs with NetMatch.49 Similarly, the direct miRNA-TF and 

TF-miRNA interactions obtained in the previous step are used 

to identify the ImirSRN motifs. 

(4) Filtering out insignificant DmirSRN and ImirSRN motifs. 

As shown in Fig. 1, each pair of miRNAs contained in a 

DmirSRN or ImirSRN motif has a synergistic relationship as 

they either co-regulate the same target or one miRNA’s 

regulation on its target is indirectly influenced by the other 

miRNA. However, the strength of the miRNA synergism varies, 

and we are only interested in strong miRNA synergism. 

Furthermore, as there may exist false discoveries in the 

miRNA-mRNA, miRNA-TF and TF-miRNA causal 

relationships identified in the previous step, the miRNA 

synergism deduced only from the motifs may have false 

discoveries too. Therefore we want to use the strength of the 

miRNA synergism to quantify and thus to filter out 

insignificant miRNA synergism to reduce the false discoveries. 

In our work, the strength of miRNA synergism is measured by 

the miRNA-miRNA causal effect calculated using IDA. If the 

causal effect (absolute value) of a miRNA-miRNA synergistic 

pair is larger than the median causal effect (of all the miRNA-

miRNA causal effects), we consider that there is a strong or 

significant synergism between the pair of miRNAs. The 

DmirSRN and ImirSRN motifs with insignificant miRNA-

miRNA synergistic pairs are discarded. 

(5) Building mirSRN. After filtering out insignificant 

DmirSRN and ImirSRN motifs, the union of all the significant 

DmirSRN and ImirSRN motifs are taken to build mirSRN. 

Then we add edges between each pair of synergistic miRNAs. 

Note that the added edges between pairs of miRNAs indicate 

synergistic relationships rather than direct biological 

interactions, which is unlike the miRNA-TF, miRNA-mRNA, 

or TF-miRNA edges in the mirSRN. 

(6) Creating miRNA-miRNA synergistic network. We 

extract from a mirSRN only the miRNA-miRNA relationships, 

which are the miRNA-miRNA synergistic relationships as 

indicated by the significant causal effects between the pairs of 

the miRNAs and more importantly by the different patterns of 

synergism of miRNAs in gene regulation as shown in Fig. 1.  

As noted earlier, in this paper, we call the network formed by 

the extracted miRNA-miRNA synergistic relationships the 

miRNA-miRNA synergistic network. 
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Fig. 2 A workflow of the proposed framework to construct mirSRN. The process involves three main steps. We firstly identify causal relationships with IDA learning, 
and generate significant causal relationships by combining putative target binding information. Then, we assemble significant causal relationships of miRNA-mRNA, 
miRNA-TF and TF-miRNA, and filter out insignificant mirSRN motifs using miRNA-miRNA causal effects to infer mirSRN. Finally, we extract miRNA-miRNA 
synergistic relationships to create miRNA-miRNA synergistic network. Since the causal effect from a miRNA i (j) to another miRNA j (i) is different, we use directed 
arrows with dotted lines to denote synergistic relationships between miRNAs. 

2.3 Analysis of network topological properties 

We analyze miRNA synergism by examining both mirSRNs 

and the miRNA-miRNA synergistic networks extracted from 

the mirSRNs. mirSRNs are used to understand the relationships 

between miRNAs, TFs and their targets, and miRNA-miRNA 

synergistic networks are used to understand functional 

synergistic relationships between miRNAs.  

Network topological properties provide valuable insight into 

the internal organization of a network, e.g. power law degree 

distribution, clustering coefficient, the average clustering 

coefficient, characteristic path length and the average 

characteristic path length. If a network whose degree 

distribution follows a power law, the network is scale-free, and 

this is an important characteristic of real-world biological 

networks.50 Clustering coefficient is a measure of the degree to 

which nodes in a network tend to cluster together, and the 

average clustering coefficient is used to evaluate the dense 

neighborhood feature of a network. In small-world networks, 

the average clustering coefficient is much higher than the 

random networks.51,52 Characteristic path length and the 

average characteristic path length reflect the compactness of a 

network. In small-world networks, the average characteristic 

path length is smaller than or comparable to the random 

networks.52 

The topological properties (power law degree distribution, 

clustering coefficient and characteristic path length) of the 

mirSRNs and miRNA-miRNA synergistic networks are 

analyzed using NetworkAnalyzer,53 one of the Cytoscape54 

plugins for computing topological parameters of biological 

networks. In the analysis, edges of mirSRNs and miRNA-

miRNA synergistic networks are treated as undirected because 

the degree of a node is defined as the number of edges 

connected with the node, without considering the directions of 

the edges. Node degree distribution, p(k) is defined as the 

number of nodes with the node degree k (k=0, 1, 2,…). The 

dependency between a node degree and the number of nodes 

with the degree can be visualized by fitting a line on node 
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degree distribution data. NetworkAnalyzer considers only data 

points with positive values for fitting the power law curve of 

the form y=bxa. The R2 value is a statistical measure of the 

linearity of the curve fit and used to quantify the fit to the 

power line. The maximal value of R2 is 1. The larger the R2 

value is, the better the fit is. If the node degree distribution of a 

network follows a power law, asymptotically, it is a scale-free 

network. 

In addition, as for mirSRNs and miRNA-miRNA synergistic 

networks (and random networks), the topological 

measurements (the average clustering coefficient and the 

average characteristic path length) are obtained using the 

RandomNetworks plugin (version 0.1) of Cytoscape. To 

determine if mirSRNs and miRNA-miRNA synergistic 

networks are small-world networks, we use the duplication 

model,55 a well-known model having power-law degree 

distributions and providing small-world networks to generate 

random networks. We construct 10000 instances and compute 

the mean shortest path length and average clustering coefficient.  

In order to discover miRNA clusters (highly interconnected 

regions) in miRNA-miRNA synergistic networks, the MCODE 

software56 is used. Instead of directly using clustering 

coefficient, MCODE uses core-clustering coefficient which 

measures the density of the highest k-core in the neighborhood 

of a vertex. This amplifies the weighting of densely connected 

regions in a biological network.  

We infer hub miRNAs in the miRNA-miRNA synergistic 

networks, since highly connected nodes (hubs) play important 

roles in different biological networks. Considering that hubs 

may be varied in terms of network size, we don’t directly define 

hubs with more than a given node degree, e.g., 10. Similar to 

the method of Jiang et al.,57 we use the following formula to 

determine whether a miRNA is a hub miRNA: 

            ∑
−

=

−

−=<−=≥

1

0

11

k

i

i

i

e
kxpkxp

!
)()(

λ
λ

                             (1) 

where 1np=λ  , 2
1 nAmp /= , n is the number of miRNAs, m is 

the number of miRNA causal interaction pairs in the miRNA-

miRNA synergistic network, and 2
nA  is the number of all 

possible miRNA-miRNA synergistic pairs. The smaller the 

calculated p-value of a miRNA is, the more likely the miRNA 

is a hub miRNA. We regard a miRNA with p-value < 0.05 as a 

hub miRNA. 

2.4 Functional analysis of synergistic miRNAs 

To determine whether the synergistic miRNAs are disease 

miRNAs or not, we conduct validation using the Human 

MicroRNA Disease Database (HMDD v2.0, 

http://cmbi.bjmu.edu.cn/hmdd), a curated database for human 

miRNA and disease associations.58 To further understand the 

biological functions and diseases associated with synergistic 

miRNAs, we use the TAM59 software to make a functional 

analysis of them. Significant biological functions and 

associated diseases are identified for synergistic miRNAs with 

an adjusted p-value (adjusted by Bonferroni method) cutoff of 

0.05. 

3 Results 

3.1 Implementation 

In this work, the limma package60 from Bioconductor is used to 

make the differentially expressed gene analysis. We also 

remove those genes with more than 10 missing values or 

identical values. As a result of the analysis, we identify 46 

probes of miRNAs, 112 probes of TFs and 1500 probes of 

mRNAs for the EMT dataset, and 66 probes of miRNAs, 104 

probes of TFs and 1214 probes of mRNAs are found for the 

MCC dataset, at the significant level (adjusted p-value<0.05, 

adjusted by Benjamini-Hochberg (BH) method). The detailed 

results can be found in the Supplemental Material 1 (ESI†). 

The layout of an input dataset or matrix for our framework 

has two types. As for discovering TF-miRNA causal 

relationships, the layout of the input dataset/matrix is that the 

first set of columns are TF expression data, the next set of 

columns are miRNA expression data and the last set of columns 

are mRNA expression data. However, as for finding miRNA-

miRNA causal effects, and miRNA-TF, miRNA-mRNA causal 

relationships, the layout of the input dataset/matrix is that the 

first set of columns are miRNA expression data, the next set of 

columns are TF expression data and the last set of columns are 

mRNA expression data. The PC algorithm44 is used to learn 

causal structure using an input dataset. We use the 

implementation of the PC algorithm of the open source R-

package, pcalg61 and set the significant level of the conditional 

independence test α=0.01. Since a small number of samples can 

cause unstable estimation of causal effects, we use the 

bootstrapping method to estimate casual effects of the 

discovered causal regulations. The number of bootstrapping M 

is set 100 and the median of 100 estimates for each regulation is 

used as the final result. 

3.2 mirSRNs and their topological properties 

The mirSRNs are constructed following the workflow shown in 

Fig.2. The mirSRN of the EMT data set contains 3882 

significant causal relationships between 45 miRNAs and 555 

unique molecular nodes (TFs and mRNAs). The mirSRN of the 

MCC data set contains 59 miRNAs and 846 unique molecular 

nodes (TFs and mRNAs), and 7555 significant causal 

relationships. The detailed information of the mirSRNs of EMT 

and MCC can be seen in Supplemental Material 2, ESI†. 

In the mirSRN of EMT, the top 10 miRNAs with the largest 

node degrees are miR-32, let-7g, miR-7, miR-200c, miR-141, 

miR-203, miR-96, miR-429, miR-590-3p and miR-101. Among 

them, 3 miRNAs (miR-200c, miR-141 and miR-429) are 

validated to play a critical role in the suppression of EMT.62-64 

To further understand whether the top 10 miRNAs are 

associated with diseases of the EMT dataset or not, we use the 

HMDD database (Version v2.0) for validation. We find that the 

top 10 miRNAs, except miR-590-3p, are all closely associated 

with different human diseases of the EMT dataset (details in 

Supplemental Material 3, ESI†). 
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Table 1 Network parameters of mirSRNs of the EMT and MCC datasets. 

mirSRN Nodes Edges Clustering coefficient Characteristic path length y=bxa R2 

EMT 600 3882 0.804 2.389 y=81.339x-0.957 0.702 

MCC 905 7555 0.735 2.386 y=149.28x-1.008 0.742 

In the mirSRN of MCC, miR-195, miR-26a, let-7g, miR-30a, 

miR-107, miR-130a, miR-103, miR-126, miR-24, and miR-30c 

are the top 10 miRNAs with the largest node degrees. The 

validation results by HMDD demonstrate that the top 10 

miRNAs except miR-103, are all associated with different 

human diseases of the MCC dataset (details in Supplemental 

Material 3, ESI†).  

We then analyze the network properties of the mirSRNs of 

the EMT and MCC datasets by NetworkAnalyzer. The 

distributions of node degrees of the two networks 

approximately follow power law distributions, with R2 = 0.702 

and 0.742, respectively (Table 1). Therefore, the mirSRNs are 

approximately scale-free, which is one of most important 

characteristics of true complex biological networks.50 

For the mirSRNs of the EMT and MCC datasets, the average 

clustering coefficients are 0.804 and 0.735 respectively, which 

are much higher than that for a random network (0.040 ± 0.010 

and 0.030 ± 0.007). Moreover, the average characteristic path 

lengths of the two mirSRNs are 2.389 and 2.386 respectively, 

which are lower than those of random networks generated by 

the duplication model (3.852 ± 0.077 and 4.027 ± 0.074). This 

result indicates that the mirSRNs of the EMT and MCC 

datasets are small-world networks with high clustering 

coefficients and small characteristic path lengths,51,52 and the 

synergistic miRNAs can promptly implement gene regulation.  

In summary, the top 10 miRNAs with largest node degrees in 

each mirSRN are almost all associated with different human 

diseases of the EMT or MCC datasets, including cancers, and 

the network is approximately scale-free and small-world. 

3.3 Evaluation of miRNA-miRNA synergistic networks 

The miRNA-miRNA synergistic network of the EMT dataset 

(Fig. 3(A)) contains 45 miRNAs and 1012 edges, while that of 

the MCC dataset (Fig. 3(B)) contains 59 miRNAs and 1699 

edges. We divide the miRNAs into Disease miRNAs and Non-

disease miRNAs following the HMDD database. In the EMT 

network, 10 out of 45 miRNAs are Non-disease miRNAs (miR-

1307, miR-17*, miR-192*, miR-200a*, miR-200c*, miR-331-

3p, miR-380, miR-590-3p, miR-590-5p and miR-769-5p). All 

the miRNAs of the MCC network except miR-103 are all 

Disease miRNAs. 

The results imply that the EMT and MCC miRNA-miRNA 

synergistic networks are also small-world. From Fig. 3 (tables 

at the bottom of the figure), the distributions of node degrees of 

the EMT and MCC miRNA-miRNA synergistic networks do 

not follow power law distributions, with R2 = 0.028 and 0.019, 

respectively. Therefore, the EMT and MCC miRNA-miRNA 

synergistic networks are not scale-free. The topologies of the 

two networks exhibit dense local neighbourhoods with the 

average clustering coefficients of 0.789 and 0.770 respectively, 

which are much higher than those of random networks (0.190 ± 

0.067 and 0.167 ± 0.056). We also find that most miRNAs are 

connected together and the two networks have small average 

characteristic path lengths of 1.360 and 1.298, respectively. 

These values are lower than those of random graphs generated 

by the duplication model (2.657 ± 0.096 and 2.787 ± 0.096). 

Since the dense neighbourhood feature and small characteristic 

path length can be exploited to predict synergism,51,52  

The result implies that most miRNAs are frequently 

synergistic with their miRNA partners in the miRNA-miRNA 

synergistic networks. We evaluate the hub miRNAs of the EMT 

and MCC miRNA-miRNA synergistic networks. The 

percentages of hub miRNAs in the two networks are 82.22% 

and 81.36% respectively, and the detailed results of node 

degree and p-value for each miRNA can be seen in  

Supplemental Material 4 (ESI†).  

In sum, all miRNAs are closely connected in each network, 

the networks are not scale-free but small-world and most 

miRNAs are frequently synergistic with their miRNA partners. 

3.4 miRNAs associated with the same disease are likely to be 

synergistic and form clusters 

In this section, we focus on studying the relationships between 

miRNA clusters and diseases. The MCODE software is applied 

to find clusters (highly interconnected regions) in the miRNA-

miRNA synergistic networks, which would provide important 

insight to the miRNAs involved. As shown in Table 2, we 

identify 2 clusters (Score>1) in both the EMT and MCC 

miRNA-miRNA synergistic networks. For the EMT dataset, all 

the 47 samples are closely related to 9 human cancer cell lines 

(Breast, Cardiovascular Nervous System, Colon, Leukemia, 

Lung, Melanoma, Ovarian, Prostate and Renal). Meanwhile, all 

the 88 samples in the MCC dataset are closely associated with 

11 human cancer lines (Bladder, Breast, Colon, Lung, 

Melanoma, Mesothelioma, Ovarian, Pancreas, Prostate, Renal 

and Uterus). Therefore, we are only interested in miRNA 

clusters associated with the above 9 and 11 human diseases in 

the EMT and MCC datasets, respectively. 

Two clusters containing 41 unique miRNA are found in the 

EMT miRNA-miRNA synergistic network and two clusters 

containing 53 unique miRNAs are found in the MCC network. 

From the HMDD database (Version v2.0), the 2 clusters in the 

EMT network are involved in the 9 human diseases in the EMT 

dataset, and the 2 clusters in the MCC network are associated 

with the 11 human diseases in the MCC dataset. 
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Nodes 45 Edges 1012  Nodes 59 Edges 1699 

Characteristic path length 1.360 Clustering coefficient 0.789  Characteristic path length 1.298 Clustering coefficient 0.770 

y=bxa y=0.880x0.109 R2 0.028  y=bxa y=3.412x-0.197 R2 0.019 

Fig. 3 Graphic representations of miRNA-miRNA synergistic networks (generated using Cytoscape). (A) The miRNA-miRNA synergistic network of the  EMT dataset. 
(B) The miRNA-miRNA synergistic network of the MCC dataset. The Disease miRNA nodes are colored in red, and the Non-disease miRNA nodes are colored in 
white. 

 For the EMT network, more than half of the 31 miRNAs in 

Cluster 1 are associated with Breast Neoplasms (20 miRNAs), 

Colonic Neoplasms (19 miRNAs), Lung Neoplasms (17 

miRNAs) and Melanoma (17 miRNAs). Meanwhile, half of the 

10 miRNAs in Cluster 2 are related to Colonic Neoplasms. 

For the MCC network, more than half of the total 40 

miRNAs in Cluster 1 are related to Breast Neoplasms (31 

miRNAs), Colonic Neoplasms (32 miRNAs), Lung Neoplasms 

(32 miRNAs), Melanoma (28 miRNAs), Ovarian Neoplasms 

(26 miRNAs), Pancreatic Neoplasms (22 miRNAs), Prostate 

Neoplasms (26 miRNAs) and Renal (22 miRNAs), respectively. 

Moreover, more than half of the 13 miRNAs in Cluster 2 are 

associated with Breast Neoplasms (10 miRNAs), Colonic 

Neoplasms (9 miRNAs), Lung Neoplasms (8 miRNAs), 

Melanoma (8 miRNAs), Ovarian Neoplasms (8 miRNAs), 

Pancreatic Neoplasms (7 miRNAs) and Prostatic Neoplasms (7 

miRNAs), respectively. The detailed information can be seen in 

Supplemental Material 5 (ESI†).  

In all, these results indicate that miRNAs associated with the 

same disease are likely to be synergistic and form clusters to 

implement biological functions. 

3.5 Functional validation of synergistic miRNAs 

To understand the biological functions and diseases associated 

with synergistic miRNAs, we use the TAM59 software to make 

a functional analysis of the synergistic miRNAs contained in 

the miRNA-miRNA synergistic networks of the EMT and 

MCC datasets. Similar to the cluster analysis of the miRNA-

miRNA synergistic networks, for the EMT dataset, we are only 

interested in the links between the synergistic miRNAs and the 

epithelial-mesenchymal transition, and diseases associated with 

the 9 human cancer cell lines in the dataset; and for the MCC 

dataset, we are only concerned about miRNA tumor 

suppressors in biological function, and the diseases with 

associated the 11 human cancer cell lines in the dataset. 

Table 2 Cluster analysis of miRNA-miRNA synergistic networks of the EMT and MCC datasets. 
Dataset Cluster Score (Density*#Nodes) Nodes Edges miRNAs 

EMT 1 21.806 31 676 miR-30e, miR-194, miR-429, miR-200c, miR-203, miR-141, miR-200b, miR-17*, miR-

200a, miR-107, miR-32, miR-18b, miR-301a, miR-7, miR-106b, miR-590-3p, miR-148b, 

miR-18a, miR-101, miR-331-3p, miR-301b, miR-135b, miR-96, miR-7-1*, miR-33b, let-

7g, miR-30b*, miR-765, miR-590-5p, miR-15a, miR-769-5p 

2 2.9 10 29 miR-215, miR-192*, miR-200a*, miR-192, miR-675, miR-93, miR-103, miR-454, miR-

1307, miR-20a 

MCC 1 25.35 40 1014 miR-30e, miR-17-5p, miR-99b, miR-19a, miR-223, miR-34b, miR-19b, miR-15a, miR-

24, miR-29c, miR-30d, miR-181a, miR-107, miR-106a, miR-138, let-7e, miR-181c, miR-

145, miR-27b, miR-29a, miR-126, let-7g, miR-26a, miR-152, miR-30c, let-7f, miR-30b, 

miR-32, miR-195, miR-101, miR-99a, miR-16, miR-23b, let-7c, miR-98, miR-30a, miR-

143, miR-130a, let-7i, miR-27a 

2 3.846 13 50 miR-103, miR-139, miR-25, miR-23a, miR-142-3p, let-7b, miR-100, miR-125a, miR-22, 

miR-215, miR-15b, let-7d, let-7a 

(A) (B) 
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As a result of the analysis, 15 out of the 45 miRNAs in the 

EMT miRNA-miRNA synergistic network are associated with 

epithelial-mesenchymal transition. The numbers of the 

miRNAs closely related to Breast Neoplasms, Colonic 

Neoplasms, Lung Neoplasms, Melanoma, Ovarian Neoplasms 

and Prostatic Neoplasms are 22, 13, 18, 19, 17 and 15 in EMT, 

respectively (see Supplemental Material 6, ESI†). 

As for the MCC miRNA-miRNA synergistic network, 26 out 

of the 59 miRNAs in the network are related to miRNA tumor 

suppressors, and 29, 24, 38, 31, 31, 25, 22, 12 and 9 miRNAs 

are associated with Breast Neoplasms, Colonic Neoplasms, 

Lung Neoplasms, Melanoma, Ovarian Neoplasms, Pancreatic 

Neoplasms, Prostatic Neoplasms, Carcinoma of Renal Cell and 

Uterine Cervical Neoplasms, respectively (see Supplemental 

Material 6, ESI†). These results demonstrate that the identified 

synergistic miRNAs can cause different kinds of diseases. 

3.6 Synergistic miRNA pairs have higher co-expression level 

Synergistic miRNA pairs tend to be co-expressed. To validate 

our assumption, we investigate the co-expression levels of 

synergistic miRNA pairs in the miRNA-miRNA synergistic 

networks. We use Pearson correlation of each synergistic 

miRNA pair to measure the (relevant) level of their co-

expression. If a synergistic miRNA pair is positively correlated 

with p-value < 0.05, the synergistic miRNA pair is regarded as 

a co-expressed miRNA pair; otherwise the pair is not co-

expressed. For comparison, we also calculate Pearson 

correlation of each non-synergistic miRNA pair to know their 

co-expression level. To further investigate whether the 

synergistic miRNA pairs have higher levels of co-expression or 

not, we use the Kolmogorov-Smirnov (KS) test to evaluate the 

difference between the co-expression levels of synergistic 

miRNA pairs and the co-expression levels of non-synergistic 

miRNA pairs in each of the EMT and MCC miRNA-miRNA 

synergistic networks. Please note that, when evaluating the 

difference, we only consider co-expressed miRNA pairs of the 

synergistic and non-synergistic miRNA pairs. 

As illustrated in Fig. 4, the synergistic miRNA pairs have 

higher co-expression levels than those of non-synergistic 

miRNA pairs in the EMT and MCC miRNA-miRNA 

synergistic networks with p-value = 9.9939E-110 and 8.6809E-

058, respectively. The detailed results of co-expression miRNA 

pairs of the synergistic and non-synergistic miRNA pairs of 

each network are provided in Supplemental Material 7 (ESI†). 

The above results support the proposition that the synergistic 

miRNA pairs have higher levels of co-expression, and they 

have potential functional relationships which may indicate 

collaboration between the miRNAs. The higher level of co-

expression may demonstrate that miRNAs can quickly adapt to 

a new biological environment through prompt gene regulation. 

 
Fig. 4 Co-expression level of synergistic and non-synergistic miRNA pairs in the 

miRNA-miRNA synergistic networks. (A) Co-expression level of synergistic and non-

synergistic miRNA pairs in the EMT network. (B) Co-expression level of synergistic 

and non-synergistic miRNA pairs in the MCC network. In both EMT and MCC 

networks, the synergistic miRNA pairs have higher co-expression level than that of non-

synergistic miRNA pairs. The p-values are calculated using the Kolmogorov-Smirnov 

(KS) test. 

4 Conclusions 

miRNAs are main regulators at the post-transcriptional level, 

and they play important roles in most biological processes, 

including cancers. Previous research12-14 has demonstrated that 

multiply miRNAs may work synergistically to regulate their 

target genes. It is important to study the synergism of miRNAs 

at a system-wide level to further understand the regulation 

mechanism of miRNAs. 

In this study, we propose a framework called mirSRN to 

construct the miRNA synergistic regulatory networks from 

heterogeneous human data, including sequence and expression 

data, and our framework uses a causal discovery model to infer 

mirSRNs. 

We hypothesize that miRNAs can both directly and 

indirectly cooperate with each other to regulate their targets. 

Consequently, we have two types of mirSRN motifs: DmirSRN 

motifs and ImirSRN motifs. Significant causal relationships of 

miRNA-mRNA and miRNA-TF are used to generate DmirSRN 

motifs, while the significant TF-miRNA and miRNA-TF causal 

relationships are used to develop ImirSRN motifs. The strength 

of miRNA synergism is measured by the miRNA-miRNA 

causal effect.  

The mirSRNs of the EMT and MCC datasets show the 

desirable generic properties of general biological networks. The 

two networks are approximately scale-free and small-world. 

The top 10 miRNAs with largest node degrees are almost all 

associated with different human diseases of the EMT and MCC 

datasets, including cancers. 

To further infer the properties of synergistic miRNAs, we 

construct the miRNA-miRNA synergistic networks by 
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extracting only the miRNA-miRNA synergistic relationships 

from the mirSRNs. We find that the miRNA-miRNA 

synergistic networks have the following features: all miRNAs 

are closely connected in each network, the networks are not 

scale-free but small-world and most miRNAs are frequently 

synergistic with their miRNA partners. 

Moreover, we make cluster analysis using the MCODE 

software and find that miRNAs associated with the same 

disease are likely to be synergistic and link the same biological 

functions. 

The comparison results between the co-expression levels of 

synergistic and non-synergistic miRNA pairs demonstrate that 

synergistic miRNA pairs show higher co-expression level, and 

may have potential functional relationships. According to the 

functional analysis of synergistic miRNAs by the TAM 

software, we find that the identified synergistic miRNAs link 

different kinds of diseases. 

In conclusion, the results from the proposed framework 

provide new insights into understanding miRNA synergistic 

regulation mechanisms, especially disease miRNAs. The 

framework has great potential to improve our understanding of 

the roles of miRNAs in different kinds of diseases. 
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