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Model-based investigation of metabolism, immunometabolism of CD4+ T cell (CD4T1670) and 

the application of CD4T1670 in drug development. 
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Genome-wide metabolic model shed light on understanding CD4
+
 

T cell metabolically, immunometabolically and in drug design 

Feifei Han
ab

, Gonghua Li
a
, Shaoxing Dai

a
, Jingfei Huang

†acd 

CD4
+
 T cells play a critical role in adaptive immunity and have been well studied in past decade years. However, the 

systematic metabolism features are less clear. Here, we reconstructed the genome-wide metabolic network of naïve CD4
+
 

T cells, CD4T1670, by integrating transcriptome and metabolism data. We performed simulations for three critical 

metabolic subsystems (carbohydrate metabolism, fatty acid metabolism and glutaminolysis). The results were consistent 

with most experimental observations. Furthermore, we found that depletion of either glucose or glutamine did not 

significantly affect ATP production and biomass, but dramatically unbalanced the metabolic network and increased the 

release of some inflammation or anti-inflammation related factors, such as lysophosphatidylcholine, leukotriene and 

hyaluronan. Genome-wide single gene knockout analysis showed that acetyl-Coa carboxylase 1 (ACC1) was essential for T 

cell activation. We further investigated the role of immunometabolic genes in metabolic network stability, and found that 

above 25% of them were essential. And results showed that although PTEN was a well-studied proliferation inhibitor, it 

was essential for maintaining the stability of CD4 metabolic network. Finally, we applied CD41670 to evaluate side-effects 

of certain drugs in preclinical experiments. These results suggested that CD4T1670 would be useful in understanding CD4
+
 

T cell and drug design systematically. 

Introduction  

The CD4
+
 T cell is one of the major lymphocyte subsets in the 

adaptive immunity system
1
 to respond to various pathogens 

and co-stimulation. Naïve T cells will activate, proliferate and 

differentiate into different subtypes to fight pathogens
2, 3

. 

Among these subtypes, Th1, Th2 and Th17 are effector T cells 

that mediate immune responses toward the invasion. Treg 

cells are mainly used to keep all immune process of effector 

cells under control
4
. Since almost all physiological functions 

rely on the metabolism, more and more researchers have 

focused on studies of the metabolic aspects of CD4
+
 T cells and 

proposed many strategies of therapy for certain disease
5, 6

. 

It has been revealed that in naïve T cells, TCA (citric acid cycle) 

cycle and fatty acids oxidation were mainly used for energy 

production and other metabolic processes to keep immune 

surveillance
7, 8

. Upon activation, the metabolic machinery was 

changed to coordinate this phase transition
9
. Firstly, Warburg 

effect occurred, also termed aerobic glycolysis, converting 

pyruvate to lactate even when oxygen was available
10-12

. 

Secondly, glutaminolysis
8
 increased, leading to an increased α-

ketoglutarate usage. Thirdly, fatty acid oxidation was down-

regulated and lipogenesis increased. Lastly, amino acids and 

nucleotide metabolism were also increased to meet metabolic 

needs of the following cell growth and proliferation procedure. 

Therefore, efficient and rapid biosynthesis and energy supply 

should be satisfied upon activation. 

After differentiation, effector T cells sustain high glycolytic 

activity and glutaminolytic activity while the Treg use fatty acid 

oxidation for energy production. When pathogens were 

cleared, most cells turn to apoptosis, and the rest became 

memory T cells for responding to future pathogen exposure, 

whose metabolism was similar to that of the Treg
6
. Therefore, 

metabolic dysfunction could result in anergy in CD4
+
 T cells

13
. 

Although many efforts have been put on metabolism in CD4
+
 T 

cells, more detailed mechanisms are still unknown. This is 

partly due to the limitations of experimental techniques. Thus 

the trials to reach clinical purposes by interfering metabolism 

are very limited. In silico modeling and simulations could 

rightly make up for this vacancy and help to guide 

experimental design. To this end, we firstly reconstructed the 

metabolic network of naïve CD4
+
 T cells, CD4T1670. Secondly, 

we explored in detail the three mostly fundamental pathways: 

basic carbohydrate metabolism, fatty acid metabolism and 

glutaminolysis by in silico simulations. We found that depletion 
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of either glucose or glutamine did not significantly affect ATP 

production and biomass, but dramatically unbalanced the 

metabolic network and increased the release of some 

inflammation or anti-inflammation related factors, such as 

lysophosphatidylcholine, leukotriene and hyaluronan. 

Genome-wide single gene knockout analysis showed that 

acetyl-Coa carboxylase 1 (ACC1) was essential for T cell 

activation. Reaction markers were identified for each condition 

under inspection. Thirdly, related metabolic genes were 

screened out for glucose, glutamine depletion and lipogenesis 

inhibition. And HIV-1 infection was taken as an example to 

prove that the prediction power of the model-based 

simulation was acceptable. Fourthly, we further investigated 

the role of immunometabolic genes in metabolic network 

stability, and found that about 28% (56 out of 197) of them 

were essential. And PTEN were presented in details. Finally, we 

presented an application of CD4T1670 in drug design and side-

effects evaluation.  

Materials and methods 

Data sources and preliminary processes 

1, Transcriptome data for CD4
+
 T cell 

Cell-specific gene expression data using the next generation 

sequencing technique were downloaded for CD4
+
 T cell(E-

GEOD-16190)
14

 from EBI ArrayExpress Archive. Only data of 

CD4
+
 T cells from a healthy donor were used.  

Data were processed as described in previous studies
15

,
16

. We 

obtained the FPKM(Fragments Per Kilobases of exon per 

Million fragments mapped) value for each transcript for 

determining present/absent calls in the following 

reconstruction process.  

2, Enzymic drug target and corresponding drugs were obtained 

from Drugbank database
17

. Then we extracted corresponding 

entries that expressed in CD4
+
 T cells. Then we downloaded 

side effect data of drugs from SIDER 2, the side effect resource 

(http://sideeffects.embl.de/)
18

, which records information on 

marketed medicines and their adverse effects. 

3, The human global metabolic network reconstructions, 

recon1 and recon2 were obtained from their original published 

papers
19, 20

. Compartmentalized metabolic maps were 

downloaded from the BIGG database
21

. Reference metabolic 

pathways were retrieved from KEGG (kyoto encyclopedia of 

genes and genomes) database (www.kegg.jp/). Proteome data 

on lymph node and spleen in HPA (www.proteinatlas.org) 
22, 23

 

and GSE1133 published gene expression data in blood CD4
+
 T 

cells
24

 were referred to determine the expression status for 

some dubious metabolic genes. In other words, for metabolic 

genes with low expression in E-GEOD-16190 were checked 

with their expression status in GSE1133 and HPA. 

4, Databases on metabolism, such as HMA 

(www.metabolicatlas.com), HMDB (www.hmdb.ca/) and 

TransportDB (www.membranetransport.org) were used for 

correcting the formula or other related information for some 

incorrect reactions. 

Metabolic network reconstruction and validation 

The reconstruction was derived from Recon2, a global human 

metabolic network
19

 using GIMME algorithm
25

. Recon2 

consists of 2194 ORFs, 7440 reactions and 5063 metabolites in 

total. GIMME, Gene Inactivity Moderated by Metabolism and 

Expression, is one of the most popular algorithms for pruning 

the global metabolic network by integrating cell-specific gene 

expression data. As inputs, GIMME requires: 1) the genome-

scale reconstruction, recon2; 2) a set of two-value gene 

expression data, in which 0 represents absent calls and 1 

represents present calls; and 3) one or more required 

metabolic functionalities (RMF) that the cell is assumed to 

achieve, and which also can be set to all reactions. GIMME is 

available in a matlab package, the COBRA Toolbox v2.0
26

. Here 

the CD4
+
 T cell expression data was mapped to the Recon2 

reactions and it resulted in a draft model. This model was then 

reconciled with the maps in BIGG database, KEGG database, 

HPA data, GSE1133 data
24

, uniprot, and others. 

As shown in Figure 1, we firstly removed dead-end reactions 

and metabolites. Necessary transport and exchange reactions 

were then added for maintaining connectivity of this network. 

Secondly, we set exchange constraints for 71 reactions 

(supplementary Table 1) based on the published functional 

macrophage model, iAB-AM@-1410
27

 due to the sparse of 

corresponding data directly on the CD4
+
 T cells. Thirdly, 

network connectivity was tested and 261 out of 288 basic 

metabolic functions of a cell, published with the recon1 

model
20

. The reconciling process was iterated, for every 

change we do to the network, network connectivity and basic 

functions had to be checked. Biomass function, ATP synthesis 

function were treated as target function during the testing 

iteration. Finally, we got our curated model and used it for 

following simulation and analysis processes. 

 
Figure 1 Flowchart of this work. Firstly, transcriptome data were processed 

to get absent/present calls of metabolic genes. Recon2 was tailored to 

naïve CD4
+
 T cell specific model and this model was modified and validated 

with multiple sources of data. Secondly, the final naïve model was 

characterized with its metabolic features by flux balance analysis and 

monte-carlo sampling methods. Thirdly, immunometabolic genes and their 
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metabolic functions were investigated in silico and PTEN was presented in 

details both metabolically and immunologically. Finally, CD4
+
 T cell 

expressed enzymatic drug targets and corresponding drugs were extracted 

from DrugBank and drug side effects information was obtained from 

SIDER2 database. And we investigated the effects of these drug targets on 

the metabolic model and correlated their actions with side effects of their 

drugs and proposed the application of the metabolic network in drug 

design and side effects evaluation. 

Immunological analysis of CD4
+
 T cells and identification of 

immunometabolic genes 

Immunological genes and proteins were downloaded mainly 

from two databases: InnateDB
28

 and Immprot
29

. A total of 

6363 genes were retrieved and only the genes expressed in 

the CD4
+
 T cell were remained. The remained immunological 

genes were then used to find overlaps with CD4
+
 T cell 

metabolic network, noted as immunometabolic genes. Single 

gene deletion was performed for each immunometabolic 

genes as well as pure metabolic genes using COBRA toolbox in 

matlab. Affected reactions and their metabolic functions were 

identified for further comparative analysis. An immunological 

network for CD4
+
 T cell was built using all expressed 

immunological genes using cytoscape3.2.1 and one of its 

plugins, GeneMania. Genetic interactions, physical 

interactions, transcriptional factor targets, consolidated 

pathways, miRNA target predictions and InterPro were used in 

the construction. And we didn’t incorporate information from 

predictions. This network, together with the reconstructed 

CD4T1670, was used to analyze the properties of CD4
+
T cell 

expressed immunometabolic genes. 

Monte-Carlo sampling and logistic regression 

To get the feasible flux distributions for all reactions in the 

CD4
+
 T cell model, Monte Carlo sampling was conducted. 

Considering the network size, unbiased sampling can be very 

much time-consuming, so a modified version, ACHR (artificially 

centered hit and run) algorithm was used instead
30

. Here in 

our case, we calculated 10000 warmup points and 10000 

sampling points for each condition. Sampling errors were 

calculated and points with error greater than 1e-8 were 

removed for a balanced control of all the sampling results. 

Before comparison between sampling results of different 

models, we normalized all sampling data points, and then a 

paired T-test assuming that data from different conditions 

have unknown and unequal variances was performed. False 

discovery rates were then calculated by the method 

introduced by Benjamini and Hochberg to control the use of 

the linear step-up (LSU) procedure. Significance level was set 

as 0.05. And considering the sensitivity of metabolic reactions, 

those with flux fold changes (log2 transformed) over 1 were 

considered as differentially expressed. Moreover, reactions 

with fluxes of changed direction were also kept. And only 

reactions with flux value over 1e-6 were identified as 

functional. 

Logistic regression was conducted to determine the weight of 

each reaction to feature the transformation of cells' functional 

states. Top 10th percentile items were used as reaction 

markers under certain perturbation. 

Results and discussion 

Gene expression profile analysis 

Before reconstruction, cell-specific gene expression data using 

the next generation sequencing technique were obtained for 

CD4
+
 T cell from NCBI Gene Expression Omnibus and EBI 

ArrayExpress Archive. We processed raw data, extracted FPKM 

value for each transcripts and used them in the following 

reconstruction process. 

Since the reconstruction procedure required presence and 

absence calls for each gene/transcript based on the expression 

data, we firstly calculated the FPKM distribution of all data 

obtained above. Result showed that the distribution of gene 

expression values is extremely skewed right (the median and 

mean FPKM values are 0.0815 and 17.6949; the bottom 25th 

percentile of FPKM values is 0, and the top 25th percentile of 

FPKM values is 2.6517; the minimum FPKM value is 0 and the 

maximum FPKM is 3.4130e+004). Here we used a similar logic 

as described in Toung's work
31

 and take genes whose FPKM 

values were less than 0.0815 as low expression genes and 

those with FPKM values above 17.694 as highly expressed 

genes. The expression statuses of low and medium expressed 

genes were validated with HPA data, GSE1133 and others. 

Present/absent calls for metabolic genes were used in the 

following reconstruction process. 

Reconstructed naïve CD4
+
 T cell model: CD4T1670 

The reconstruction is derived from the recently published 

global human metabolic network, Recon2
19

. We firstly tailored 

the global network to the draft CD4 model with the GIMME 

algorithm
25

.  

Table1 Overview of basic features of CD4T1670, recon2 and iAB-AM@-

1410. 

 iAB-AM@-

1410 

Recon2 CD4T1670 

Transcripts 1410 1789 1670 

Reactions 3394 7440 4229 

Metabolites 2583 5063 3310(1843) 

GARs* 67.8% 59.9% 78.3% 

* GARs, gene associated reactions 

Table2 Subcellular statistics of CD4T1670 

Subcellular 

location 

Reaction count Metabolite count 

Cytosol 999 991 

Mitochondria 457 518 

Lysosome 187 225 

Golgi apparatus 181 231 

Nucleus 112 145 

Reticulum 253 334 

Peroxisome 286 357 

Extracellular 303 301 
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Massive curation works were done by integrating data from 

multi-sources of data as described in material and methods. 1, 

The obtained network was with many reaction gaps and errors 

about reaction directions and the lower and upper bounds. We 

detected reaction gaps and performed gap-filling by 

integrating KEGG pathways, BIGG maps, existing macrophage 

model
32

 and adipocyte model
33

. And then we modified 

incorrect reaction directions (and reversibility) and reaction 

bounds accordingly. To test the metabolic functionality of the 

draft network, we assessed the ability of the networks to 

complete metabolic functions in Recon1
20

, which was one of 

the main steps in the network gap filling and validation 

procedure used in other reconstruction studies
32, 33

. Here we 

performed 261 tests and 115 were passed (supplementary 

Table 1), indicating that the model we’ve constructed doesn’t 

possess all features of a global network and thus was tissue 

specific. 2, Energy generation, fatty acid metabolism, 

glutaminolysis and other tests also performed and validated 

with existing experiments data for model curation. 3, Finally, 

we adjusted the maximum flux of biomass generation to be 

0.032 mmol gDW
-1

 hr
-1

. And it indicated a constraint of the 

whole network was functional. Till now, a functional and 

constrained model was ready for further analyses (CD4T1670 

was available in supplementary as CD4T1670.xml and 

CD4T1670.xls). 

The contents of the final CD4T1670 network compared with 

Recon2 as well as iAB-AM@-1410 are shown in table1. And 

information on subcellular models is shown in Table2. 

Metabolic features of naïve CD4
+
 T cell 

Carbohydrate metabolism 

In normal condition, aerobic respiration is mainly used for 

energy production. This involved two key metabolic pathways: 

glycolysis and TCA cycle. This is the same for naïve CD4
+
 T cells, 

although both pathways occurred on a relatively low level. 

Previous studies have found that upon T cell activation, a 

metabolic transition to aerobic glycolysis (lactate is produced 

from glycolytic pyruvate, even when oxygen is sufficient) 

occurred
34

, similar to the Warburg effect observed in cancer 

cells
35

. To activate the T cells, expression of glucose 

transporter glut1 and its translocation to the cell surface 

increased and lead to increased glucose uptake
36

.  

Figure 2 Fluxes of reactions in the key carbohydrate metabolism of naïve 

CD4T1670. Flux values were from monte-carlo samplings. Mean flux of 

each reaction was casted at the BIGG map. Flux range is -1000 to 1000 and 

is indicated by color scope from cyan to purple. Metabolites that linked 

with boxes were nodes in the pathway that connected with other 

metabolic pathways (metabolites in boxes were nodes from these 

pathways). 

To see how the reconstructed metabolic model responded to 

glucose metabolism, we closed all glucose transport reactions 

to simulate the glucose depletion condition and then 

performed monte-carlo sampling. Result showed that fluxes of 

most reactions in glycolysis and TCA cycle were kept at a low 

level in normal naïve CD4T1670 (Figure 2). ATP generation 

through oxidative phosphorylation was with an average flux 

value of about 0.5219 mmol gDW
-1

 hr
-1

, and biomass 

production was 0.0014 mmol gDW
-1

 hr
-1

. This indicated the 

relatively low energy and metabolic state of this cell as 

mentioned above. 

Figure 3 Flux changes of reactions on fatty acid metabolism when glucose 

was depleted. A presented some decreased reactions on fatty acid 

oxidation or transport; B presented some of those decreased fatty acid 

oxidation reactions in mitochondria; C showed increased fatty acid 

oxidation reactions in peroxisome and the decreased reaction, KAS8, for de 

novo fatty acid synthesis. The flux distributions in normal condition and 

glucose blocked condition were shown with blue box and cyan box, 

respectively. 

After glucose depletion, 597 reactions were significantly 

differentially expressed (flux>1e-6 mmol gDW
-1

 hr
-1

; 

pvalue<0.05; absolute fold change>=1, log2 transformed). 

Among these, 265 reactions were downregulated, 243 were 

upregulated and 89 were with reversed flux. Interestingly, we 

observed that glycolysis and TCA cycle were not dramatically 

affected. This proved the result of Macintyre’s study that 
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GLUT1, the key transporter of glucose in vivo, was not required 

for naïve T cells’ survival
37

. In support of this, flux through 

biomass reaction was not changed
 
and ATP generation through 

oxidative phosphorylation was with an average flux value 

about 0.411 mmol gDW
-1

 hr
-1

 (a slight decrease). Many 

reactions on glycan degradation were upregulated, although 

they still ran on a low level. For example, reactions in keratan 

sulfate degradation and chondroitin sulfate degradation in 

lysosome were upregulated. Besides, in normal condition, 

glucose could transport from cytosol to endoplasmic reticulum. 

But when glucose was removed from the extracellular 

environment, the transport reaction reversed. Thus, we 

supposed that the barely affected glycolysis might temporally 

attribute to the filling from other carbohydrate pools. Even 

under those changes, glycan metabolism was still disturbed 

since increased degradation would affect many functions 

which were important for the cell, such as the cytoskeleton or 

glycosylation of proteins. 

Moreover, fatty acid metabolism was greatly affected both in 

mitochondria and peroxisome. Firstly, fatty acid activation in 

cytosol was significantly decreased (Figure 3A) and so was the 

transport of activated fatty acid into mitochondria. Secondly, 

beta oxidation of long chain fatty acids such as tetradecanoate 

(n-C14:0), palmitate (n-C16:0), linolenic acid (n-C20:6), 

linoelaidic acid (n-C18:2) and docosa-pentaenoic acid (n-C22:0) 

(Figure 3B) was decreased in mitochondria. Thirdly, although 

beta oxidation of certain fatty acids in mitochondria was also 

increased, the upregulation was more remarkable in 

peroxisome (Figure 3C). And because many of them were O2 

involved and h2o2 generation would increase. Fourthly, de 

novo lipogenesis was inhibited (KAS8, Figure 3C) while uptake 

of some fatty acids increased, such as linolenic acid and 

hexadecanoate. These metabolic changes on fatty acid 

metabolism were very much similar to that of the 

differentiation to Treg cells from activated CD4
+
 T cell. It is 

mainly because differentiation of Treg cell doesn't rely on the 

glycolytic-lipogenic pathway
38

. On the contrary, effector T cells 

generation requires high glycolytic and lipogenic activities and 

extracellular supply of extra fatty acid could not reverse the 

effects of inhibition to these two pathways
39

. The results 

indicated that glucose depletion would impair the normal 

immunological function of CD4
+
 T cell by inhibiting the 

differentiation of effector T cells metabolically. 

Figure 4 Flux changes of reactions about some inflammatory metabolites 

when glucose was depleted. In A, PLA2_2 is the reaction for 

lysophosphatidylcholine generation and the rest reactions were for 

leukotriene uptake or transport; B showed downregulated reactions for 

prostaglandin metabolism. The flux distributions in normal condition and 

glucose blocked condition were shown with blue and cyan histograms, 

respectively. 

Furthermore, we detected changes of certain inflammatory 

factors (Figure 4). And we found that releases of leukotriene 

and lysophosphatidylcholine were increased and leukotriene 

was also turned from being taken up to being released. But 

prostaglandin synthesis was decreased. So metabolic disorder 

resulting from glucose removal could cause inflammatory 

outcomes. But the mechanism of the different actions of those 

inflammatory molecules observed here were not clear. 

We performed logistic regression to identify all glucose-

associated factors. Top 10 percentile of reactions markers 

were selected out. Results showed that about 30 different 

metabolic functions were relevant (supplementary Table 2). 

These functions covered amino acid metabolism, fatty acid 

metabolism, nucleotide metabolism, carbohydrate metabolism, 

folate metabolism and exchange or transport reactions. This 

indicated a significant reorganization of the normal metabolic 

system and thus the abnormality of the CD4
+
 T cell. 

To sum up, altered pathways such as fatty acid oxidation and 

glycan metabolism could prevent T cell from dying when 

glucose was totally depleted. So glucose is not indispensible 

for survival of CD4
+
 T cells. However, significant metabolic 

disturbance occurred, inflammatory factors were released and 

these might finally result in malfunctions of CD4
+
 T cell and 

other tissues. 

Glutamine metabolism 

Glutamine is abundant in serum, and there were studies 

showing that lymphocytes consume glutamine at a 

comparable rate to glucose
40

. T cells are highly sensitive to 

glutamine metabolism, which is required for T cell activation 

and effector T cell development
41

. And T cell proliferation 

could be impaired by glutamine deletion
42

. Since cell size and 

protein synthesis rates of T cells were all increased upon 

activation
35

, T cell activation required oxidative 

phosphorylation for energy production. However, rapid 

induction of aerobic glycolysis was also needed not only for 

fast ATP generation, but also supplying metabolic 

intermediates for the syntheses of other biomolecules such as 

lipids, carbohydrates, proteins, and nucleic acids
11

.  We 

already know that a key component of TCA cycle, a-

ketoglutarate, is the metabolite for glutamine through 

glutamate to enter the energy production pathway. Glutamine 

can also serve as an amine group donor for nucleotide 

synthesis. Thus, glutamine metabolism is indispensible for 

CD4
+
 T cell. 

To see how glutamine functions in T cell and if the termination 

of extra glutamine supplying will generate features preventing 

CD4
+
 T cells from activation, we closed glutamine related 

transport/exchange reactions in CD4T1670. And results 
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showed that top 5 percentile (210 reactions) of highest 

weights were mostly corresponding to amino acid transport or 

exchange reactions (159 reactions), indicating a dramatic 

disturbance to the amino acids balance. This was consistent 

with results from Erkka's study
41

 in which strongest inhibitions 

of all other amino acids were observed upon glutamine 

depletion. Other 52 affected functions were showed in 

supplementary Table 3, within which we could found more 

closely related factors that were important for or related with 

glutamine metabolism. 

Figure 5 Flux changes of some reactions in fatty acid metabolism system 

upon glutamine depletion. FAOXC143C123x, FAOXC184C164x, FAOXC204, 

FAOXC182806m, FAOXC2252053m, FAOXC2252053m and 

FAOXC2251836m were some reactions on fatty acid oxidation in either 

mitochondria or peroxisome. KAS8, is one of the most critical reactions for 

de novo fatty acid synthesis. And GTHPm is the reaction occurring in 

mitochondria for eradicating H2O2. The flux distributions in normal 

condition and glucose blocked condition were shown with blue and cyan 

histograms, respectively. 

 

Figure 6 Flux changes of some reactions in glycolysis and hyaluronan 

metabolism upon glutamine depletion. HEX1 and PYK were two critical 

reactions in glycolysis while the rest were reactions in hyaluronan 

metabolism. The flux distributions in normal condition and glucose blocked 

condition were shown with blue box and cyan box, respectively. The flux 

distributions in normal condition and glutamine blocked condition were 

shown with blue and cyan histograms, respectively. 

From supplementary Table 3, we observed that fatty acid 

metabolism was also a key factor related to glutamine 

metabolism. After further investigation, we found that most 

fatty acid oxidation reactions both in mitochondria and 

peroxisome were dramatically upregulated (some were 

presented in Figure 5) but de novo lipogenesis were 

significantly downregulated (Figure 5, KAS8). Similar to that of 

peroxisome, H2O2 generation in mitochondria was 

significantly increased. This could be indicated not only from 

lipolysis reactions, but also the reaction to eradicate H2O2, 

GTHPm (in Figure 5). Although fatty acid oxidation increased 

and its final product, acetyl-Coa, could fill the TCA cycle and 

maintain energy production and anabolism on a certain level, 

we observed that glycolysis was inhibited. This was due to the 

significantly downregulated HEX1 and PYK (Figure 6). HEX1 was 

the initiating reaction of this pathway, and PYK was the second 

ATP production reaction. Compared with the results of glucose 

depletion, the inhibited glycolysis upon glutamine starvation 

further supported the idea that glutamine metabolism played 

critical roles in CD4
+
 T cell. 

In addition to the results above, we also found that hyaluronan 

(HA) degradation was greatly decreased (Figure 6). This meant 

a relatively higher level of high molecular weight HA 

extracellularly and lower level of low molecular weight HA. 

Actually, when glucose was depleted, HA degradation was also 

decreased. There are already studies showing that HA in the 

matrix environment acts as a link between the innate 

inflammatory network and the regulation of adaptive immune 

responses. Intact HA functions to enhance the inflammation-

suppressive effects of activated Treg cells while its degraded, 

low molecular weight forms promote inflammation and 

angiogenesis when infection and injury occur
43-45

. So, the 

relatively decreased high molecular weight HA degradation, 

which in other words, a relatively increase of extracellular HA 

observed here, might functioned to counter inflammatory 

effects caused by glutamine or glucose starvation. This might 

indicate a self-protection strategy of our body in response to 

nutrition starvation. 

As mentioned above, glutamine depletion could result in 

inflammatory outcome. This was because that releases of 

lysophosphatidylcholine and leukotrieneA4 were increased 

and prostaglandin synthesis (Figure 7) was decreased as they 

showed in glucose depletion. 

Moreover, inositol phosphate metabolism was also affected. 

Since PI3K-Akt-mTOR pathway is critical in regulating the 

functional states of CD4
+
 T cell, the changes could affect the 

signaling transduction. This could render activation failure and 

impaired immune response. Erikka and coworkers also found 

that glutamate supply could not reverse the effects of 

glutamine depletion
41

. And we also increased glutamate 

uptake otherwise, and results were well agreed with the result 

of Erikka’s result (data not shown). 

Figure 7 Flux changes of some reactions around some inflammatory 

molecules upon glutamine depletion. PLA2-2 is the reaction for generating 
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lysophosphatidylcholine; LCAT1e, ALOX52, EX_leuktrA4, and LEUKTRA4t are 

reactions responsible for leukotrieneA4 transport or metabolism; and PGS 

is the reaction for prostaglandin generation. The flux distributions in 

normal condition and glutamine blocked condition were shown with blue 

and cyan histograms, respectively. 

All results indicated that, similar to glucose metabolism, 

glutamine metabolism was very important in maintaining 

normal functions of CD4
+
 T cells and disruption of it could 

result in inflammatory
46-52

 and more outcomes. Glutamine is 

not a necessary amino acid for human and can be synthesized 

intracellularly. However, the roles it plays in amino acid 

metabolism, nucleotide metabolism, energy metabolism, 

inflammation and other subsystems in CD4
+
 T cells suggest 

that keeping serum glutamine on a stable concentration is 

important to maintain health. 

Fatty acid metabolism 

It has been proved that naïve T cells use not only glycolysis and 

TCA cycle, but also fatty acid oxidation to fuel oxidative 

phosphorylation
7
. And fatty acid metabolism plays a critical 

role in determining the fate of T cell subsets
39

. ACC1, the key 

enzyme of fatty acid synthesis in cytosol has been proved to be 

important for T cell immunity
53, 54

. Its inhibition could not only 

directly block de novo fatty acid synthesis, but also result in 

the reorganization of cellular metabolic network
39

. And these 

metabolic changes could finally affect the transformation 

behavior of activated CD4
+
 T cells to their subsets.  

Here we inhibited ACC1 by setting the flux of its catalyzed 

reaction, ACCOAC, to zero in CD4T1670 and analyzed the 

effects of this perturbation on the whole metabolic system. 

We extracted the top 10 percentile of reaction factors (423 

reactions) and functional classification showed that except for 

exchange and transport reactions, 29 kinds of metabolic 

functions corresponding to 152 reactions were selected out 

(Supplementary Table 4).  

Figure 8 Flux changes of some reactions in fatty acid metabolism system 

upon acc1 inhibition. FAOXC2251836m, FAOXC183806m and 

FAOXC161802m were three of upregulated fatty acid oxidation reactions in 

mitochondria. FAOXC183806x, FAOXC18480x and FAOXC16080x were three 

of downregulated fatty acid oxidation reactions in peroxisome. The flux 

distributions in normal condition and acc1-inhibited condition were shown 

with blue and cyan histograms, respectively. 

We firstly inspected the changes in fatty acid metabolism. 

Results showed that lipogenesis was dramatically inhibited and 

fatty acid oxidation in mitochondria was mostly upregulated 

while that in peroxisome was mostly downregulated 

(Supplementary Table 4, Figure 8). Most h2o2 generation 

reactions in peroxisome were downregulated, implying a 

decreased h2o2 production. Interestingly, we found that the 

reaction for removing h2o2 in mitochondria, GPTHm, was 

significantly downregulated (foldchange=-1.13). This reaction 

takes h2o2 and reduced glutathione as inputs. Since the 

reaction for generating reduced glutathione or other reactions 

consuming glutathione were not dramatically affected, we 

deduced that mitochondria production of h2o2 decreased. 

And this implied a release of oxidative stress in the cell. There 

were already studies showing that increased fatty acid 

oxidation could protect microphage from ROS damage
55

, and 

here we found that the increase of fatty acid oxidation after 

lipogenesis inhibition could also reduce ROS damage to CD4
+
 T 

cells. Even through, CD4
+
 T cell would unable to be fully 

activated, since fatty acid synthesis was required for this 

process
7, 8, 39

. Besides, fatty acid uptakes were mostly 

downregulated as shown in Figure 9. And we also observed 

increases in glutamine and glucose uptake. As showed in 

Figure 2, citrate was the node that linked lipid metabolism and 

TCA cycle. Intracellular starvation of lipid might push the flux 

to this direction and disturbance of amino acids and 

nucleotides metabolism (supplementary Table 3) also exerted 

pressures on the TCA cycle. So increased uptake reactions of 

glutamine and glucose might be compensations for this 

intracellular imbalance caused by lipid starvation.  

Furthermore, inflammation related reactions were also 

inspected and just like those in glucose and glutamine 

depletion, lysophosphatidylcholine and leukotriene releases 

were also increased. And this might indicate an inflammation 

outcome resulted from fatty acid metabolism disorder in CD4
+ 

T cells.  

Figure 9 Flux changes of some uptake reactions for fatty acids and others 

upon acc1 inhibition. The first 6 reactions were uptake reactions for 

different fatty acids which all showed decreased uptake rates.  The last two 

reactions were uptake reactions for glutamine and glucose respectively and 

both of them was with increased uptake rates. The flux distributions in 

normal condition and acc1-inhibited condition were shown with blue and 

cyan histograms, respectively. 

To sum up, we had deeply investigated three critical metabolic 

subsystems in CD4
+
 T cell, carbohydrate metabolism, 

glutamine metabolism and fatty acid metabolism. We found 

that these three functions were closely associated. And 
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disruption of any one of them could affect others and 

functions beyond. Interestingly, we found that peroxisomal 

fatty acid oxidation in CD4
+
 T cell was very sensitive to 

perturbations from either intracellular or extracellular 

metabolic changes. We know that peroxisomal lipid substrates 

do not contribute much to energy production
56

. So we 

deduced that the sensitivity of peroxisomal fatty acid 

metabolism and h2o2 production might be important to buffer 

metabolic stress of CD4
+
 T cell and protect mitochondria from 

instant ROS stress in some extent. This might then protect our 

body from inflammation or loss of CD4
+
 T cells when 

malnutrition occurs for a short time and maintain flexibility of 

our immune system. This also implied to us that modulation of 

peroxisomal functions might reach clinical targets in the future. 

Besides, we found that any perturbation to the metabolic 

network could result in inflammatory outcomes. And we found 

that any disruption resulted reorganization of the CD4
+
 T cell 

metabolism might have the risk of activation failure and affect 

the adaptive immunity function. So, the model we built could 

be used to simulate conditions of malnutrition and predict 

corresponding effects. This can be used to guide healthy 

dietary decisions. 

Gene markers identification and applications 

In addition to identifying reaction markers related with glucose 

depletion, glutamine depletion and acc1 inhibition, we further 

identified associated gene markers (supplementary Table 2-4). 

For the top 10 percentile of reactions, 145, 123 and 163 genes 

expressed in CD4
+
 T cell were obtained respectively and Figure 

10 was an overview of the overlap of these 3 groups.  After 

annotation using DAVID, diseases associated with the 

functional abnormalities of those genes were identified. For 

glucose depletion, about 74 affected genes were found to be 

related with at least one type of disease or abnormality 

(supplementary Table 2). And among these, 11 genes could 

interact with HIV-1, the human immunodeficiency virus 1. In 

the case of glutamine depletion, 57 genes were identified to 

be disease-related (supplementary Table 3). And 7 genes could 

interact with components of HIV-1. And after acc1 inhibition, 

79 possibly affected genes were associated with different 

kinds of diseases (supplementary Table 4). Twelve of them 

could interact with components of HIV-1.  

Figure 10 Venn diagram displaying related genes for marker reactions of 

glucose, glutamine and acc1 depletion respectively, and their overlaps. Top 

10 percentile of reaction markers associated genes for each case were 

included in the analysis. 

Other than other type of diseases, the main host of HIV-1 is 

CD4
+
 T cell. So we examined our predicted results with 

transcription and existing data on metabolic changes upon 

HIV-1 infection. From perturbation tests of above, we 

identified 17 genes that were both relevant with one or more 

kinds of basic metabolic functions of CD4
+
 T cell and could 

interact with HIV-1. Of the 17 genes, 15 (88%) were found to 

be significantly up- or down- regulated in other dataset due to 

HIV-1 infection(Table 3). We already know that glycolysis was 

increased and required by HIV-1 infection
57, 58

, beta oxidation 

of fatty acid in mitochondria could barely happen
58

, and amino 

acid and nucleotide were both reorganized to satisfy the 

demands of HIV replication
58, 59

. Those genes we found here 

and their corresponding reactions could be important in 

explaining the mechanism of metabolic transformation caused 

by HIV-1 infection. Besides, genes that didn’t interact with HIV-

1 but responded to the infection were also considered to be 

important. For the three cases, 67 (38.6%), 52 (42.3%) and 70 

(43%) genes were found to be differentially expressed upon 

HIV-1 infection, respectively. Since the simulation here was 

based on single factor perturbation, and infection was a more 

complicated process that involved many factors, results we got 

here were considered acceptable. And multiple variables 

based investigation on HIV-1 infection and how those factors 

acted in the infection would be presented otherwise and not 

the topic of this work. So, we proposed that in silico simulation 

using CD4T1670 should be very useful in studying the 

mechanism of certain disease metabolically through in silico 

perturbations. 

Table 3 17 genes identified from in silico perturbation which 

could interact with HIV-1 

ID
a
 GENE HIV_INTERACTION glc gln 

acc

1 

hiv 

infection
d
 

2821 GPI env: gp120, 1
b
 0

c
 1 down 

1374 Cpt1a env: gp160,  1 1 1 down 

1375 CHKB env: gp160,  1 1 1 down 

6520 SLC3A2 env: gp160,  1 1 1 down 

8140 SLC7A5 env: gp160,  1 1 1 down 

12612

9 
Cpt1c env: gp160,  1 1 1 NA

e
 

2203 Fbp1 gag:matrix, 1 0 0 up 

8789 FBP2 gag:matrix, 1 0 0 up 

5105 PCK1 pol:integrase, 1 0 0 up 

57379 AICDA vif:Vif, 1 0 0 up a little 

291 
SLC25A

4 
vpr:Vpr, 1 0 1 

down a 

little 

2879 GPX4 tat:Tat, 0 1 0 down 

1376 cpt2 env: gp160,  0 1 1 down 

10632 ABCC1 tat:Tat, 0 0 1 down 
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4907 
Pla2g2

a 
env: gp120, 0 0 1 NA 

522 ada env: gp120, 0 0 1 down 

13787

2 
pla2g6 env: gp120, 0 0 1 up a little 

a: the entrez id of a gene; b: 1 means this gene is identified in this 

perturbation test; c: 0 means this gene was not identified in this 

perturbation test; d: Information about this aspect was collected from the 

study of Chang's
60

; e: NA means that this gene was not related HIV-1 

infection. 

 

Unlike HIV-1 infection, other diseases' information might 

derived from data in other tissue/cell type, and not directly 

related with CD4
+
 T cell. Till now, many tissue-specific 

metabolic networks have been published, such as liver
61

, 

adipocyte
33

, heart
62

, kidney
63

, macrophage
32

 and so on. Model-

based simulations can be used to investigate interactions of 

multiple tissues or cells. Considering the critical role of CD4
+
 T 

cell in immunity and metabolism of our body, we propose that 

in silico investigations on the interactions among those 

networks will greatly help with our understanding the ways 

our body works and how disease progresses. And the 

CD4T1670 model will help to lay foundations on such studies. 

Interface of metabolic functions and immunological functions 

CD4
+
 T cell is one of the most important members of human 

adaptive immune system. Here we explored the interface of 

the immunological functions and its metabolic basis based on 

the CD4T1670. Immunological data was mainly from two 

databases: InnateDB
28

 and Immport
29

. The final count of 

integrated immunological genes was 6363. We found that 

about 2201 immunological genes were expressed in CD4
+
 T 

cells and 197 genes were overlapped with genes of our 

metabolic network. Function enrichment of immunometabolic 

genes in CD4
+
 T cells was conducted and terms with corrected 

p value less than 0.05 were displayed in Figure 11. We can see 

that these immunometabolic genes participated in many 

important pathways for cell activation, proliferation, 

immunological functions and so on. And they are mainly 

involved in carbohydrate, lipid and nucleotide metabolism.  

Figure 11 Function enrichment results of immunometabolic genes in CD4
+
 

T cells. Terms in the same color belong to a same function group. The 

number on each bar stands for how many immunometabolic genes in CD4
+
 

T cell enriched in this term. And x axis shows the ratio of immunometabolic 

genes in CD4
+
 T cell to all genes in this term. 

To see how these immunometabolic genes function in the 

metabolic network and to reveal the metabolic basis of their 

immunological functions, we performed single gene deletion 

for each immunometabolic gene in CD4T1670. We found that 

56 (about 28%) genes' deletions could disrupt the steady state 

of the network (Figure 12, supplementary Table 5). For each 

deleted gene, we analyzed the properties of its affected 

reactions and extracted the metabolic subsystems they 

belonged. Besides, we constructed the immunological 

interaction network for CD4
+
 T cell using the 2141 

immunological genes. Immunometabolic genes were located 

and the number of interactions for each of the 56 selected 

genes and the rest 141 genes were compared. Besides, we 

randomly selected 100 immunological genes in the 

immunological interaction network and 200 metabolic genes 

within which 39 deletions could disrupt the balance of the 

network for comparison.  

Firstly, we compared the immunometabolic genes and 

randomly selected simple metabolic genes, all of which could 

affect the balance of the metabolic network upon deletion. 

Means and standard errors of up-regulated, down-regulated 

and direction reversed reactions were calculated for both 

cases. Affected metabolic functions were also extracted for 

comparison (data not shown). And we found that deletions of 

two groups of genes didn’t show big differences in the number 

of metabolic subsystems. Then we compared 

immunometabolic genes and randomly selected pure 

immunological genes in the constructed immunological 

network. Direct linked nodes and related interactions around 

the target gene were extracted. Similarly, no significant 

changes were detected between two groups (data not shown). 

Both results suggested that, immunometabolic genes didn’t 

work different topologically with either pure metabolic genes 

in the metabolic network or pure immune genes in the 

immunological network. 

Figure 12 Immunometabolic genes whose depletion could disrupt the 

balance of CD4
+
 T cell's metabolism. Those gene were divided into 10 
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groups depending on their metabolic functions (G1-G10), G1: Fatty acid 

metabolism; G2: vitamins and signaling molecules; G3: peroxide related 

reaction; G4: Glycan and aminosugar metabolism; G5: Transporters; G6: 

Sphingolipid metabolism; G7: Nucleotide metabolism; G8: Phospholipid 

metabolism; G9: Amino acid metabolism; G10: Glycolysis / 

Gluconeogenesis, pentose phosphate pathway and other sugars 

metabolism. 

Thus, to have a better understanding of how 

immunometabolic genes function, we further investigated 

some of them both metabolically and immunologically. PTEN, 

the phosphatase and tensin homolog, was showed in details.  

PTEN was well known as a tumor suppressor
64-67

. We 

integrated data from stringDB (http://string-db.org/), KEGG 

database, and primary literature on PTEN's mechanism and it 

is shown in Figure 13. 

Figure 13 Interaction network of PTEN and its directly interacted proteins 

expressed in CD4
+
 T cell. KEGG pathways or related functions were 

presented to annotate those interactions. 

In Figure 13, we saw that most PTEN interaction partners 

participated in more than one key pathway that was critical in 

CD4
+
 T cells. This made PTEN one of the hub proteins in the 

signaling transduction and transcription regulation system. It 

also functioned in the activation process of CD4
+
 T cells to 

prevent over-stimulation of mTOR signaling pathway and PI3K-

Akt signaling pathway to maintain the stability of this cell. At 

present, metabolic mechanisms of PTEN were mainly 

presented on liver or adipocyte
68

. And here we would like to 

penetrate into its metabolic roles in CD4
+
 T cells by in silico 

simulation. Firstly, we deleted PTEN in the model, and results 

showed that, 192 reactions were up-regulated while 280 

reactions were down-regulated (supplementary Table 6). And 

74 reactions showed changed directions of fluxes compared 

with control (supplementary Table 6). Those affected reactions 

cover several metabolic functions. We already know that PTEN 

is a negative regulator of T cell activation, the same effect of it 

on tumor progression, since both of them were highly 

glycolytic. And this was also supported with results of our 

activation simulation otherwise (data not shown), in which 

PTEN catalyzed reactions, PI345P3P and PI345P3Pn were both 

down-regulated. However, inhibiting PTEN also produced 

features that counter activation. For example, glycolysis was 

dramatically inhibited with HEX1 was significantly inhibited. 

But the activity of HEX1 is critical in the activation process
8, 37, 

69
. Then, de novo lipogenesis and fatty acid uptake reactions 

were mostly downregulated, although not dramatic. This was 

different from the function of PTEN in liver cells
70

. 

Furthermore, amino acid metabolism and nucleotide 

metabolism were also disrupted (supplementary Table 6). All 

those features indicated the disability to activation. Thus, we 

deduced that, in addition to its signal transduction function, 

PTEN was indispensible metabolically to maintain systematic 

balance of T cell and its activation. To test the assumption, we 

changed the upper bounds of those two reactions (PI345P3P 

and PI345P3Pn) to 1e-6, to keep them at allowable 

background level. And we found that the disruption to 

metabolic system disappeared, which supported our 

assumption made above. 

PTEN has also been proved to be linkage of Treg cell stability 

and the repression of helper T cell responses
71

. The PTEN-

mTORC2 axis was found to be responsible for this function and 

we proposed that metabolic function of PTEN should also be 

important in the maintenance of different kinds of T cell 

subsets' states. With accumulated data on metabolism of 

those cells, we would disclose detailed mechanisms of PTEN's 

immunometabolic functions in CD4
+
 T cell and its subsets in 

the future.  

Based on present understandings of PTEN's functions 

immunometabolically, inhibiting its activity would disrupt the 

balance of CD4
+
 T cells while excessively activating would 

inhibit the PI3K-Akt-mTOR axis, both of them would disable 

the activation of naïve CD4
+
 T cell. So we assumed that PTEN 

might not be proper to be a drug target for clinical benefits. On 

one hand, it was widely expressed. And on the other, drugs, 

either inhibiting or activating of it would cause destructive 

effects to immune system. Actually, although being a key 

tumor suppressor, PTEN was not used as a drug target since it 

was not recorded in the DrugBank database. But its interaction 

partners showed in Figure 13 were all already taken as drug 

targets except SLC9A3R1. Worthy of noting was the 3 

phosphoinositide 3-kinease isoforms, PIK3CA, PIK3CB and 

PIK3CD. They were also immunometabolic genes but inhibiting 

neither of them would disrupt the CD4
+
 T cell's metabolic 

network. This not only supported the assumption we made 

above but also implied that systematic understanding of the 

functions of a immunometabolic gene would help with the 

proper selection of drug targets. This logic was applicable to 

the rest 55 immunometabolic genes identified in this study, 

and CD4T1670 would be helpful in evaluating the potential of 

them to be target of certain disease. Also worth mentioning is 

that we just conducted single gene deletion in this study. Some 

immunometabolic genes might work with other genes to play 

critical roles in CD4
+
 T cells. But this is not the topic of this 

paper.  

In summary, a preliminary trial was conducted to study the 

immunometabolic mechanisms of CD4
+
 T cell by computation. 

PTEN was taken as an example and results showed that it was 

indispensible in both metabolism and immunity for CD4
+
 T 

cells. Worthy of attention is that we didn't integrate CD4T1670 

with signaling transduction pathways, but inspected functions 

of PTEN separately. Thus, it could be only used to simulate the 

steady state under certain conditions just like other published 

tissue specific networks
32, 62, 63, 72

. As we know, immunological 
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signals can regulate the process of metabolism and many 

metabolites also play critical roles in immunological signaling 

transduction
6, 7, 34

. So we suggest an integrated method that 

combines immunity with metabolism to provide more 

information on specific gene functions and disease progression. 

For example, this can be reached by constructing an logical 

model as showed in Oyebode’s work
73

. Thus, accumulated 

knowledge on cross-talk between metabolism and immunity 

will be sure to help to improve the accuracy of model-based 

simulation. And the integrated model will contribute to 

choosing drug targets for certain disease more properly and 

leading to better clinical output. 

Application of CD4T1670 in drug design and drugability evaluation 

In DrugBank database, a total of 77 enzyme drug targets 

(EDTs) (supplementary Table 7) were expressed in CD4
+
 T cell. 

We performed single gene deletion for each of the 77 EDTs 

and found that 34 of them could disrupt the balance of 

CD4T1670 (supplementary Table 7). Then we extracted drugs 

that could act on each drug target and this gave us a total of 

68 drugs, within which 25 were multi-targets drugs (drug that 

can act on more than one target). Of the 68 selected drugs, 43 

were recorded in SIDER 2, within which 28 were with side 

effects information. Therefore, we extracted side effects data 

and the frequency of each immunological associated side 

effect for each of the 28 drugs (supplementary Table 8). Result 

showed that 26 kinds of drugs were associated with 493 

immunological associated side effect terms. Of those, 18 drugs 

corresponding to 357 terms were with frequency from 0.30% 

to 94% or were considered as potential. This indicated that 

EDTs that could significantly affect the metabolic status of 

CD4
+
 T cells might be partly responsible for drugs' induced side 

effects associated with immune system. Here, we didn't 

estimate conditions of drugs combination which would result 

in more entries and more complex results. We neither 

considered changes from the drugs' target cells that would 

affect the function of CD4
+
 T cells. And as the accumulation of 

drug side effects of uninspected EDTs or by integrating drugs 

under investigation, we would expect more would be found if 

off-target occurred to those drugs and CD4
+
 T cells were 

affected. Since drug side effects could directly affect the 

drugability and market of drug target and drugs, we suggest 

that in future drug design, except for conventional ADMET 

test, model based evaluation of potential effects of a drug's 

effects on immune system should be taken into consideration 

to reduce cost of the whole process. 

Conclusions 

We reconstructed the metabolic network of human CD4
+
 T 

cell, CD4T1670. It is the first metabolic model in the adaptive 

immune system. We studied in details three critical metabolic 

subsystems (carbohydrate, glutamine and fatty acid 

metabolism) in it. Besides features that have been reported by 

experimental studies, we also gained systematic knowledge of 

the actions of certain factors and the relationships between 

different subsystems. Considering that CD4
+
 T cell is a member 

in the circulation system, it can sense nutrition status directly. 

Cellular dependencies on different substrates or genes could 

be inspected by modulating transport or exchange reactions 

and performing gene deletions on CD4T1670. With the 

predicted gene and reaction markers we can guide 

experimental design and finally more healthy and beneficial 

dietary plans. As the accumulation of validated tissue-specific 

metabolic networks, model-based simulations can be used to 

investigate interactions of multiple tissues or cells. And 

CD4T1670 is a linkage between those tissues and adaptive 

immunity. Moreover, it can help with studies on diseases like 

HIV-1 infection and other immunity-related dysfunctions in 

human(such as obesity and cancers). To this end, this model 

can be modified by modulating flux distributions of certain 

reactions based on available transcriptome or metabonome 

data of a disease. Lastly, we propose an application of this 

model in drug or drug target evaluation by inspecting potential 

side effects of it. And such applications can reduce 

unnecessary costs in drug design. Importantly, a 

comprehensive model, integrating metabolic network and 

immunological signaling pathway, will be more powerful in 

studies mentioned above. And CD4T1670 has laid the 

foundation of this target. So we hope that CD4T1670 can spur 

new knowledge and new assumptions for researchers in the 

future.  
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