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Small-world networks of residue interactions in the Abl kinase 
complexes with cancer drugs:  Topology of allosteric 
communication pathways can determine drug resistance effects 
A. Tsea and G. M. Verkhivkera,b,† 

The human protein kinases play a fundamental regulatory role in orchestrating functional processes in complex cellular 
networks. Understanding how conformational equilibrium between functional kinase states can be  modulated by ligand 
binding  or mutations is critical for quantifying molecular basis of allosteric regulation and drug resistance.  In this work, 
molecular dynamics simulations of the Abl kinase complexes with cancer drugs (Imatinib and Dasatinib) were combined 
with structure-based network modeling  to characterize  dynamics of the residue interaction networks in these systems. 
The results have demonstrated that structural architecture of kinase complexes can produce a small-world topology of the 
interaction networks. Our data have indicated that specific Imatinib binding to a small number of highly connected 
residues could lead to network-bridging effects and allow for efficient allosteric communication, which is  mediated by a 
dominant pathway sensitive to the unphosphorylated Abl state. In contrast, Dasatinib binding to the active kinase form 
may activate a broader ensemble of allosteric pathways   that are less dependent on the phosphorylation status of Abl and 
provide a better balance between the efficiency and resilience of signaling routes. Our results  have  unveiled how  
differences in the residue interaction networks and allosteric communications of the Abl kinase complexes can be directly 
related   to drug resistance effects.  This study   offers a   plausible  perspective on how efficiency and robustness of the 
residue interaction networks and allosteric pathways in kinase structures may be associated with  protein responses to 
drug binding. 

Introduction 
Protein kinase genes are signalling switches with a conserved 
catalytic domain that are regulated via phosphorylation of the 
activation loops, through autoinhibition or by allosteric 
activation that enable the kinase domain to adopt a 
catalytically competent conformation1-10. Recent studies of the 
structure and regulation of the Abl kinase domains11-13 have 
emphasized that kinase activation and various functions can be 
orchestrated and supported by conformational changes in the 
key functional regions of the catalytic domain: the Asp-Phe-Gly 
(DFG) motif, the glycine-rich P-loop, the regulatory αC-helix, 
and the activation loop (A-loop). A dynamic equilibrium 
between distinct conformational states is central   for kinase 
regulation and has been exploited in drug discovery of type 1 
inhibitors (Dasatinib) that target the active DFG-in 
conformation of the kinase domain14, and type 2 inhibitors 
(Imatinib) that recognize the inactive DFG-out kinase 
conformation15-17.  Systematic analyses of type 2 inhibitors 

that stabilize an Imatinib-like inactive conformation have 
revealed that Abl-selective ligands   preferentially bind to the 
unphosphorylated kinase form18. This study has also pointed 
out to a relationship between Imatinib sensitivity to the P-loop 
mutations and binding preferences for   the unphosphorylated 
state, suggesting that ligand-mediated allosteric coupling 
between the P-loop and A-loop regions could modulate 
binding preferences of specific inhibitors. Dasatinib is a type 1 
inhibitor that targets the catalytically competent active ABL 
conformation14 and has a broad spectrum of activity against 
the SRC, CSK, TEC, and EPH families of tyrosine kinases19-23. 
NMR studies have shown that Dasatinib binds an active-like 
conformation of an unphosphorylated Abl and suggested that 
DFG-in conformation may be an obligatory kinase form for a 
productive inhibitor binding. Recent functional experiments   
have demonstrated that Dasatinib binding   may be 
phosphorylation state-independent but exhibit conformation-
specific binding preferences  towards active Abl state24. 
Computational studies have investigated molecular 
mechanisms of protein kinases and structural effects of drug 
resistance mutations25-34.  Molecular dynamics (MD) 
simulations and free energy calculations have shown that 
conformational selection and the stability difference between 
the inactive DFG-out and active DFG-in conformations may be 
the primary determinant underlying Imatinib specificity30,31.  
MD simulations and free energy calculations combined with 
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isothermal titration calorimetry have quantified   energetics of 
conformational transitions in Abl kinase32, confirming that a 
more favorable kinetic accessibility and thermodynamic 
stability of the DFG-out conformation in Abl may determine 
Imatinib selectivity. A systematic investigation based on 
extensive molecular simulations has revealed that Dasatinib 
shows a marked preference for binding to the active state of 
the Abl kinase35. Understanding  of mechanisms  by which  
conformational equilibrium  between functional kinase states 
can be modulated  upon inhibitor  binding is critical for 
quantifying molecular basis of allosteric regulation and drug 
resistance. Despite wealth of structural and computational 
studies, the dynamic nature of functional kinase complexes 
with inhibitors can often hinder the molecular details 
underlying ligand-induced modulation of the residue 
interaction networks and allosteric effects. Quantifying 
allosteric changes due to cooperative interactions and 
collective influence of multiple residues remains a challenging 
task in biophysical simulations of macromolecular complexes.  
Protein structure network (PSN) analysis using a graph-based 
representation,   where the nodes represent residues and the 
edges their contacts,  can yield a convenient description of  
protein dynamics and stability36-40 by simultaneously capturing 
the effects of global topological rearrangements and local side-
chain interactions into computational analyses. Protein 
structure topologies could often produce small-world 
networks which balance a high local connectivity of residue 
nodes with a smaller number of long-range interactions, giving 
rise to a high degree of interaction cooperativity. Small-world 
network models of proteins and topology-based network 
parameters describing node centrality (degree, closeness, and 
betweenness) have been exploited to predict protein-protein   
interactions41,42, protein-DNA interfaces43 ,  ligand binding 
sites44-46, and catalytic residues in enzymes47.  These studies 
have linked small-world organization of protein structure 
networks with  structural stability  and high connectivity of 
functional residues, particularly  indicating that residues  
involved in short path length communications could mediate 
signaling48. Graph-based protein networks   that incorporated 
topology-based residue connectivity and contact maps of 
residues cross-correlations obtained from MD simulations 
have provided important insights into structural mechanisms 
underlying allosteric interactions and communication 
pathways in various protein systems49-51. The network 
organization is also determined by the average degree 
correlation between nodes, so that complex networks may be 
either disassortative, where the links between nodes with 
similar networking parameters   are systematically prevented, 
or assortative, where these links are enhanced52. While a 
disassortative organization allows for rapid signal transmission 
between segregated modules but may produce more 
vulnerable to random attacks networks, assortative networks 
may sacrifice the efficiency of long-range communication to 
achieve a greater resilience against random perturbations. A 
dynamic balance between disassortative organization of 
spatially separated, highly connected hubs and assortative 
features that are responsible for the network integrity and 

functional redundancy is believed to be maintained in the 
protein environment within the cell53. 
In this work, we integrate MD simulations with the network 
modelling to characterize organization and dynamics of the 
residue interaction networks and allosteric communications 
pathways in Abl complexes with cancer drugs Imatinib and 
Dasatinib. We show that  Imatinib binding to  a small number 
of highly connected residues could allow for efficient  allosteric 
communication mediated by  a dominant single  ensemble of 
short  path length  routes that are  “addicted” to the 
unphosphorylated state of the A-loop. In contrast, Dasatinib 
binding may activate a broad ensemble of alternative allosteric 
pathways   that are essentially independent on the 
phosphorylation status of Abl and may provide a better 
balance between the efficiency and resilience of signalling 
routes.  We also demonstrate how differences in centrality and 
communication pathways of Abl kinases complexes with 
Imatinib and Dasatinib are linked with differences in drug 
resistant profiles of these inhibitors. 

Materials and methods 
MD Simulations  

MD simulations of the protein kinase crystal structures (each 
of 500 ns duration) were   performed for structures of the Abl 
complexes with Imatinib (pdb id 1IEP, 1OPJ) and Dasatinib 
(2GQG).  The crystal structures of the Abl kinases were 
obtained from the Protein Data Bank54.   The missing residues, 
unresolved structural segments and disordered loops were 
modelled with the ArchPRED server55.  MD simulations were 
carried out using NAMD2.656  with the CHARMM27 force 
field57,58 and the explicit TIP3P water   model as implemented 
in NAMD2.659.  The employed MD protocol is consistent with 
the overall setup described in details in our earlier studies60. In 
a nutshell, the initial structures were solvated in a water box 
with the buffering distance of 10 Å. The system was heated 
from 100 K to 300 K in 30 ps and then cooled down again to 
100 K in 30 ps in the NVT ensemble. In the following step, the 
system was heated in the NPT ensemble to 300 K over 30 ps 
keeping a restraint of 10 Kcal mol-1 Å-2 on protein alpha 
carbons (Cα). The system was then equilibrated for 300ps at 
300K in the NVT ensemble without restraining forces on the 
atoms and then for further 300ps  at 300K using the NPT 
ensemble to achieve uniform pressure. An NPT production 
simulation was run on the equilibrated structures for 500 ns  
keeping the temperature at 300 K and constant pressure (1 
atm)   using Langevin piston coupling algorithm. The van der 
Waals interactions were treated by using a switching function 
at 10Å and reaching zero at a distance of 12Å. Principal 
component analysis (PCA) of the MD conformational 
ensembles was based on the Cα atoms to determine the 
essential dynamics of the protein systems.  The calculations 
were performed using the CARMA package61. For comparison, 
we also employed the elastic network model (ENM) and 
computed ENM-based lowest normal modes using the 
Anisotropic Network Model web server62. 
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Protein Structure Network   Modelling 

In the protein structure network analysis, a graph-based 
representation of proteins was used in which amino acid residues 
were considered as nodes connected by edges corresponding to the 
nonbonding residue-residue interactions.  The pair of residues with 

the interaction strength ijI  greater than a user-defined cut-off (

minI ) are connected by edges and produce a protein structure 

network graph for a given interaction strength minI .  The strength 

of interaction between two amino acid side chains is evaluated as 
follows :  

100
( )

ij
ij

i j

n
I

N N
= ×

×
 (1) 

where ijn  is number of distinct atom pairs between the side chains 

of amino acid residues i  and j   that lie within a distance of 4.5 Å. 

iN  and jN   are the normalization factors for residues  i  and j   

respectively63,64. The number of interaction pairs including main-
chain and side-chain made by residue type  i  with all its 

surrounding residues in a protein k  is also evaluated. The 
normalization factors take into account the differences in the sizes 
of the side chains of the different residue types and their propensity 
to make the maximum number of contacts with other amino acid 
residues in protein structures. The pair of residues with the 

interaction ijI  greater than a user-defined cut-off ( minI ) are 

connected by edges and produce a protein structure network graph 

for a given interaction cut-off minI . The pair of residues with the 

interaction strength ijI  greater than a user-defined cut-off ( minI ) 

are connected by edges and produce a protein structure network 

(PSN) graph for a given interaction strength minI .   Similar to the 

arguments presented in our earlier studies60, we considered any 

pair of residues to be connected if  minI  was greater than 3.0%.   

We treat protein–ligand complexes as interaction networks in 
which the nodes of the network are formed by both amino acid 
residues and ligand atoms. In the network model, the binding of a 
ligand introduces new edges in the protein network and more 
closely links important protein nodes. 

Network   Parameters 

Protein structure networks were constructed by incorporating 
the topology-based residue connectivity  in combination with 
the contact maps of residues cross-correlations obtained from 
MD simulations. A weighted network representation of the 
protein structure is adopted that   includes non-covalent 
connectivity of side chains and residue cross-correlation 
fluctuation matrix50. In this model of a protein network, the 
weight ijw of an edge between nodes i  and j  is determined by 

the dynamic information flow through that edge as measured by 

the correlation between respective residues. The weight ijw  is 

defined as  log( )ij ijw C= −  where ijC  is the element of the 

covariance matrix measuring the cross-correlation between 
fluctuations of residues is i  and j    obtained from MD 

simulations.  The shortest paths between two residues are 
determined using the Floyd–Warshall algorithm65 that 
compares all possible paths through the graph between each 
pair of residue nodes.  At the first step, the distance between 
connected residues was considered to be one, and the 
shortest path was identified as the path in which the two 
distant residues were connected by the smallest number of 
intermediate residues.  To select the shortest paths that consist of 
dynamically correlated intermediate residues, we considered the 

short paths that included   sufficiently correlated ( ijC  = 0.5–1.0)   

intermediate residues. Using the constructed protein structure 
networks, we computed the residue-based betweenness 

parameter. The betweenness centrality ( )bC n  of a node n  is 

typically computed as ( ) ( ( ) / )st st
s n

b
t

nC nδ δ
≠ ≠

= ∑  where s  

and  t  are nodes different from n  in the network, stδ  is the 

shortest paths number from s  to t , and ( )st nδ  is the shortest 

paths number from s  to t  in which n  lies on. For each node n
the betweenness value is normalized by the number of node pairs 

excluding n   given as ( -1)( - 2) / 2N N , where N  is the total 

number of nodes in the connected component that node n  

belongs to. The betweenness of residue i  is defined to be the sum 
of the fraction of shortest paths between all pairs of residues that 

pass through residue i : 

( )
( )

N
jk

b i
j k jk

g i
C n

g<

=∑  (2) 

where jkg  denotes the number of shortest geodesics paths 

connecting j  and k , and ( )jkg i  is the number of shortest paths 

between residues j  and  k  passing through the node in .  

Residues with high occurrence in the shortest paths connecting all 
residue pairs have a higher betweenness values. The normalized 

betweenness of residue i  can be expressed as follows: 

( )1( )
( 1)( 2)

N
jk

b i
j k jk
j i k

g i
C n

N N g<
≠ ≠

=
− − ∑  (3) 
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jkg  is the number of shortest paths between residues j  and k; 

( )jkg i is the fraction of these shortest paths that pass through 

residue i .The clustering coefficient nC  of a node n  is the ratio 

between the total number of links actually connecting its nearest 
neighbours and the total number of possible links between the 
nearest neighbours of node n . The clustering coefficient is a ratio 

/N M where N  is the edges numbers between the neighbours 
of a node n ; M  is the maximum edge numbers which could 
possibly exist between the neighbours of a node n . The clustering 

coefficient C  value of a node is a number between [0,1].  In 

undirected networks, the clustering coefficient nC of a node n  is 

defined as: 

2 / ( ( 1))n n n nC e k k= −  (4) 

 

nk  is the number of neighbours of a node n  and ne  is the 

number of connected pairs between all neighbours of a node n . 
The clustering coefficient of a residue node measures the number 
of interactions among its interacting residues, normalized by the 
maximum number of possible interactions. The network clustering 
coefficient is the average of the clustering coefficients for all nodes 
in the network.  
To study assortative mixing in the interaction networks and 
determine if the high-degree nodes tend to be connected with 
other high-degree nodes or with other low-degree nodes,   we 
computed the average neighborhood connectivity distribution. The 
neighborhood of a given node n  is the set of its neighbors. The 

connectivity of a node n , denoted by nk , is the size of its 

neighborhood. The neighborhood connectivity of a node n is 
defined as the average connectivity of all neighbours of a node n . 
A normalized version of this parameter is the network density. The 
density is a value between 0 and 1. A network which contains no 
edges and solely isolated nodes has a density of 0. In contrast, the 
density of a clique is 1.  The average degree of neighbors of a node 
with degree k  is calculated as follows: 
 

' '

'
( / k)nn

k
k k P k< >=∑  (5) 

'( / )P k k  is the conditional probability that an edge of node 

degree k   is connected  to a node with degree 'k . If this function 
is increasing, the network is assortative, since it shows that nodes 
of high degree on average connect to nodes of high degree66,67. 
Conversely, if the function is decreasing, the network is 
disassortative, since nodes of high degree tend to connect to nodes 
of lower degree. The neighborhood connectivity distribution gives 
the average of the neighborhood connectivities of all nodes n  with 

k  neighbours. We have computed this parameter to study the 
tendency for residue nodes in the interaction network to be 

connected to other nodes with similar degree. Another  measure  of 
assortative mixing  is the assortativity coefficient  which is the 
Pearson correlation coefficient of degree between pairs of linked 
nodes. The assortativity coefficient is expressed as follows: 

2

1 ( )jk j k
jkq

r jk e q q
σ

= −∑ (6) 

where kq is the distribution of the remaining degree,  which 

corresponds to  the number of edges leaving the node, other than 

the one that connects the pair. The distribution kq  is derived from 

the degree distribution kp  as 1

1

k
k

j
j

pq
p
+

≥

=
∑

 and  jke  the joint 

probability distribution of the remaining degrees  of the two nodes 
at either end of a randomly chosen link. It is a symmetric quantity in 
an undirected graph, and satisfies the following normalizing 

conditions: 1jk
jk

e =∑  and jk k
j

e q=∑ . qσ  is the variance of 

the distribution kq . The value of the assortativity coefficient  r  

gives a quantitative estimation of the mixing behavior of nodes in a 
network.  Positive values of r  indicate a correlation between 
nodes of similar degree, while negative r  values indicate 
relationships between nodes of different degree. In general, r  lies 
between −1 and 1. When r  = 1, the network is said to have perfect 
assortative mixing patterns, when r = 0 the network is non-
assortative, while at r  = −1 the network is completely 
disassortative. All topological measures were computed using   the 
python module NetworkX (http://networkx.github.io/). For 
comparison, we also computed topological network parameters 
(clustering coefficient, shared neighbor distribution, and average 
neighborhood connectivity) using   the Cytoscape  platform for 
network analysis68   where the RING program69 was used to 
generate  the residue interaction networks, and the  RINalyzer70  
and NetworkAnalyzer71 plugins were used in the analysis.  

Results and discussion 
MD simulations of the Abl complexes and  dynamics of  the 
inhibitor-kinase interactions  

Using MD simulations,  we analysed similarities and 
differences in conformational  dynamics of the Abl complexes, 
particularly  focusing on ligand-mediated variations in 
structural stability of the critical “triad” (DFG motif,  αC-helix, 
and  A-loop). To analyze functionally relevant motions we 
employed PCA of MD simulations72,73. Functional dynamics 
profiles in the space of the three lowest frequency modes 
were mapped onto respective c-Abl structures (Fig. 1A,B) 
showing  that structural rigidity of the catalytic core may be  
coupled with conformational mobility of the αC-helix and the 
P-loop.   In particular,  conformational and positional variability 
of the αC-helix  is linked with structural  stability of the 
adjacent αC-β4 loop in  the N-terminal lobe. We previously 
conferred that  the “boundary” between the rigid αC-β4 loop 
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and a more flexible αC-helix can define a functional hinge 
connecting regions of high and low structural stabilities in the 
N-terminal lobe of the catalytic domain60. Functional dynamics 
maps of residue fluctuations also indicated that the Imatinib-
bound c-Abl  complex may be more rigid than the Dasatinib-
Abl  complex. An important distinct characteristic of  the 
Imatinib-Abl  complex was a markedly reduced mobility of the 
kinked P-loop in the DFG-out inactive conformation, owing to  
the correlated fluctuations  between the P-loop and the A-loop 
(Fig. 1A). The main regions of conformational flexibility in the 
c-Abl kinase domain included the αC-helix (residues 279-292), 
and the A-loop (residues 379-407). The intramolecular 
networks that form a regulatory spine (R-spine) and a catalytic 
spine (C-spine) networks connecting the N-lobe and the C-lobe 
have been widely accepted as critical for kinase regulation and 
activation74-77. The R-spine in Abl kinase consists of   M290 
from the C-terminal end of the αC-helix, L301 from the β4-
strand, F382 of the DFG motif in the beginning of the A-loop, 
H361 of the His-Arg-Asp (HRD) motif in the catalytic loop, and 
D421 of the αF-helix. Structural stability of the R-spine 
residues was seen in both complexes, even  though the R-spine 
was partially disassembled in the  Imatinib-bound inactive 
conformation (Fig. 1A) and fully assembled in the Dasatinib-Abl 
active form (Fig 1B).   The differences in the binding modes of 
Imatinib and Dasatinib could become more apparent from the 
analysis of the inhibitor-kinase  contacts  (Fig.  1C). the 
distributions illustrated strong Imatinib contacts with the 361-
HRD-363 motif and 381-DFG-383 motifs that include the key R-
spine residues (M290, H361, and F382). Importantly, Imatinib 
maintains a large number of  stable contacts with Y253 in the 
P-loop, catalytic residue E286 and gate-keeper T315.  
The open binding mode of Dasatinib resulted in the reduced 
number of intermolecular contacts as compared to Imatinib 
binding, but stronger interactions  in the binding site, 
particularly hinge residues (E316, F317, and M318) (Fig.  1B,C). 
Despite the fewer number of total contacts, Dasatinib 
interactions with the adenine binding pocket, that is lined up 
with the hydrophobic residues (L248 in β1, V256 in β2, A269 in 
β3, V299 in the loop between αC-helix and β4, and L370 in β6), 
were stronger than for Imatinib. During simulations Dasatinib  
maintained hydrogen bonds with M318, T315 and E316 that 
are observed in the crystal structure14.  Due to moderate 
flexibility of the  P-loop, Dasatinib also sustained  a number of  
stable contacts with the P-loop residues G249 and  Y253. At 
the same time, Dasatinib binding is less sensitive to the 
interactions with V289 (αC-helix), L354 (αE-helix), F359, I360, 
H361 (catalytic loop), A380 (in β8) D381, F382, G383 (DFG 
motif).  Overall, we found that Imatinib   binding may be 
strongly coupled with a number of stable functional residues 
from the P-loop, A-loop, HRD and DFG motifs that are critical 
in stabilization of the inactive c-Abl structure and may 
contribute to the binding specificity. At the same time, 
Dasatinib binding to the active kinase form   may primarily rely 
on structural stability of the hinge residues in the adenine 
binding pocket and allow for a greater mobility and variations 
in the intermolecular contacts with other functional regions. 
 

Small-world topology of the residue interaction networks in  the 
Abl kinase complexes 

Although functional dynamics and collective motions provided 
certain evidence  of allosteric coupling in c-Abl complexes, the 
residue interaction networks and communication pathways 
between various regions cannot be fully quantified using only 
analysis of conformational dynamics. The network approach 
can describe the global structural organization of proteins and 
complement PCA and ENM-based normal mode analyses of 
global collective motions. We employed a graph-based 
representation of protein structures by combining MD 
simulations and structure-based network analysis    to 
characterize the residue interaction networks in the c-Abl 
kinase complexes. In this model, we integrated the topology-
based residue connectivity and dynamics-based contact maps 
of residues cross-correlations obtained from MD simulations, 
thus expanding our analysis beyond a static description of 
protein structure networks.  By weighing the residue 
interaction networks on the basis of cross-correlations 
between residues, a more accurate picture of the network 
topology may be obtained in which the average strength of 
allosteric signalling in c-Abl complexes can be related to 
experimental observations.  
Residue betweenness,  which is a global   centrality measure,  
was used  to compute residue interaction networks  in the  
MD-derived ensembles of kinase conformations. The 
betweenness of a node is defined as the number of shortest 
paths that pass through that node in the network, 
representing   a global medial measure   of the node 
contribution to the communication within the network. These 
network parameters can characterize highly connected 
residues that mediate stable interaction networks and 
allosteric communications in protein structures.  Using the MD 
trajectories   we computed distributions of residue centrality in 
the c-Abl kinase complexes.  In this analysis, it was  observed 
that the residue betweenness could be  anti-correlated with 
local conformational fluctuations (Fig. 2A,B). According to this 
finding, highly connected central residues in  the  kinase 
complexes are mostly rigid and such hub residues tend to have 
lower flexibility than sparsely connected residues. Consistent 
with previous studies40,  these results suggested that the 
average shortest path lengths in the kinase complexes may be   
associated with the extent of residue fluctuations, revealing an 
important link between protein network topology and 
conformational dynamics. Despite  the observed correlation 
pattern, structurally rigid residues with low B-factors may 
exhibit a range of medium and high betweenness values,  as 
could be seen in the Dasatinib-Abl complex (Fig. 2B).  
Therefore,   low residue flexibility and cross-correlations of 
with other protein kinase residues  could  ensure a certain 
level of residue connectivity in the global network, but by itself 
may not be sufficient to     infer functional significance. In 
other words,  local measures of residue flexibility  and global 
centrality parameters could represent complementary 
features in  relating  structural stability of a given residue  with 

Page 5 of 18 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

its global mediating  role in the interaction network and 
functional significance. 
 

We found that Imatinib binding could induce a significant 
network-bridging effect in the Abl kinase and result in the 
betweenness profile  where  a small number of highly 
connected residues have high centrality, exemplified by the 
long distribution tail (Fig. 3A). This finding is  reminiscent of a 
similar effect seen in computational studies of  ligand binding 
with  dihydrofolate reductase (DHFR) where the actual term 
“network-bridging” ligand effect was originally coined47. In the 
network terms, it would imply that Imatinib binding could 
induce the residue interaction network, where the short path 
length routes proceed through a small number of critical 
central residues and the bound ligand. The number of hub 
nodes seemed to exponentially decay as the  betweenness of a 
residue node increased. This is indicative of  a small-world 
network topology, in which a new node in the network is more 
likely to form an edge with a node that has higher than 
average number of connections, or with a node that has the 
short path length to such a node.  
A scale-free topology is considered as  an extreme case of 
small world  networks, where path lengths between any two 
nodes   are significantly  shorter than can be predicted by the 
small-world effect.   Due to inherent limitations imposed on 
the number of residue edges (interactions) and topological 
constraints, protein structure networks   do not follow  a scale-
free behavior78,79  but rather tend to display   a Poisson-like 
centrality distribution  dictated by a small-world network 
organization. The centrality profile of the Dasatinib-Abl 
complex   featured signs of a random graph,  where the 
majority of residues in the kinase domain have a relatively 
moderate level of centrality (Fig. 3B). This observation is in line 
with the evidence that side-chain interaction networks of 
flexible proteins may    be described by random graph 
models80. A common feature of the random graph model is 
that the centrality distribution could peak at an average value, 
remaining homogeneous as most of the nodes have   similar 
number of connections. Overall, the residue interaction 
networks in the kinase complexes tend to fall in between 
scale-free and random graph patterns, displaying a certain bias 
towards a Poisson-like centrality distribution. 
 
We specifically focused on  differences in the centrality profiles 
of the inhibitor-interacting residues in the Imatinib and 
Dasatinib complexes with c-Abl (Fig. 3C,D). To highlight the 
ligand-induced bridging effect, we compared  centrality 
profiles of the binding site residues in the absence of bound 
inhibitors (Fig. 3C)  and  in the inhibitor-bound complexes (Fig. 
3D).  The betweenness values  of the Imatinib-interacting 
residues were significantly greater for Y253 (P-loop), T315 
(gate-keeper), H361, R362 (HRD motif), D381, F382 (DFG 
motif) and Y393 (A-loop). These findings revealed a stronger 
inhibitor bridging effect in the Imatinib-Abl complex and 
pointed to  a global mediating role of these residues in the 
specific Abl conformation. From structural perspective, this 
may reflect the integrating role of Y253, D363, and Y393 

residues in stabilizing allosteric interaction networks between 
the kinked P-loop, catalytic core and unpohosphorylated A-
loop of Abl (Fig.  1A).  It has been well recognized that 
phosphorylation status of Y393 is crucial for regulation of Abl 
activity and is necessary to stabilize the active kinase 
activation11-13. Our findings also indicated that structural 
stability of the inactive Abl conformation may be dependent 
on precise coupling between high centrality residues Y253, 
D363, and Y393. This may be relevant in explaining   the 
experimentally observed high sensitivity of Imatinib binding to 
the kinked P-loop conformation and obligatory 
unphosphorylated   form of the A-loop.  
 
To directly evaluate the “small-worldness” of the residue 
interaction networks in the kinase complexes, we used MD 
simulations to compute distributions of several topological 
network parameters. The employed parameters included the 
short path length (Fig.  4A,B), the clustering coefficient 
distribution (Fig.  4C), and the neighbourhood connectivity 
(Fig.  4D). High overall clustering and a relatively short path 
length between any pair of nodes are key defining features of 
a small-world network40-48.  In the  Abl complexes the majority 
of short paths require ~3-5 nodes to connect any pair of 
residues in the interaction network.  The results are consistent 
with previous studies suggesting that short path lengths in 
protein structures are typically distributed by small-world 
topology47,48.  Despite an overall similarity, the important 
feature of  the Imatinib-bound complex was a noticeable 
distribution shift towards the  dominant peak corresponding to 
the shorter path length (~3 nodes).  Accordingly, Imatinib 
binding may lead to a small-world network topology that can 
minimize transition times and optimize allosteric 
communications in the specific Abl complex.  Strikingly, the 
network-bridging effect produced by Imatinib may amplify 
connectivity of   some central residues and render a more 
“scale-free like” topology with efficient communications 
between rigid functional residues.  
A network cluster (or module)   defines a highly 
interconnected group of nodes that can be determined by the 
clustering coefficient, which is a signature of the network 
modularity. The clustering coefficient quantifies the number of 
connected pairs between a node and its neighbors and can be 
measured both local and globally as the average of the 
clustering coefficients for all nodes with k  neighbours. The 
clustering coefficient distribution C (k) (Fig.  4C)  is defined by 
the average of the clustering coefficient of the nodes with 
degree equal to k . In a random network, C(k) is independent 
of the node degree k  since the vast majority of nodes have 
about the same number of connections, and their tendency to 
form clusters  does not depend on the node degree78,79. 
Similar to random networks, C (k) is independent of k in scale-
free networks81,82. Hierarchical networks are considered as a 
special type of scale-free networks with a large clustering 
coefficient that can be approximated by a power law83.  For 
the kinase complexes, the clustering coefficient distribution 
follows as C (k) ~ k-0.6 indicating an intermediate small-world 
regime between random and scale-free topology (Fig. 4C). In 
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such hierarchical organization,  locally connected residue 
nodes  typically belong to large clusters, while long-range  
communication between  non-overlapping   modules   can be  
maintained by  a relatively small number of central residues.   
Clustering coefficient  corresponds to the density of the 
neighborhood of a  residue in the network, and thus highly 
connected residue nodes have less densely clustered   
neighborhoods. High centrality (low clustering coefficient) 
residues are typically associated with the  intermodular  
interactions  and mutations of these residues may affect global 
connectivity of the network  and the average path length of 
the network.  In particular, we found that the  high 
betweenness residues from the regulatory HRD and DFG 
motifs  could  be involved in mediating  the intermodular 
connections.   
A network measure that has recently caught substantial 
attention is the assortativity coefficient, which quantifies the 
preference of a node to attach to another one with similar 
(assortative mixing) or dissimilar (disassortative mixing) 
number of connections84,85. In assortative mixing the high-
degree nodes tend to be connected with other high-degree 
nodes, while   in disassortative networks  the tendency of high 
degree nodes to connect with low degree ones results in a  
topology that favors speedy information processing across the 
network.  These network characteristics can be  assessed by  
computing the average neighborhood connectivity of a node 
which is defined as the average connectivity of all neighbors of  
this node.  We computed the average neighbourhood 
connectivity distribution as the average of the neighborhood 
connectivities of all nodes with k  neighbours (Fig.  4D). In the 
presence of assortative mixing, this parameter tends to 
increase with increasing k , while it decreases with k  for a 
disassortative network. We observed that the average 
neighboring connectivity of a residue node generally increased 
with   the number of neighbours k .  After reaching the plateau 
level,  this distribution begins to  gradually falloff for highly 
connected residues  (Fig.  4D).  A plateau level approached in  
the distributions at  larger values of k    may arise from steric 
constraints   of the structural fold. The character of the 
distribution profile remained largely the same for the kinase 
complexes, signalling the presence of assortative organization 
shared by the residue interaction networks.  Interestingly, in 
the Imatinib-bound complex, the  average connectivity for 
neighbors of the highest connected residues  begins to 
gradually  decline, pointing to the emergence of  unique 
“mega-hubs” in the interaction network of the specific kinase 
complex.   
It has been  observed that assortative networks  may exhibit a 
modular organization  and display an efficient dynamics that is 
stable to noise  and resilient to node deletion78,79. Unlike  
biological and protein-protein interaction networks that are 
known to be disassortative with the prevalent  connectivity 
between high-degree and low-degree nodes86, protein 
structure networks  tend to shape a  topology  that is 
distinctively assortative. Our results supported this notion, 
demonstrating that hierarchical modularity (high clustering 
coefficient) and positive assortative mixing (increasing average 

neighborhood connectivity) may be general properties of 
kinase catalytic domains and their complexes with inhibitors. It 
has been  also  noted that increasing the assortativity  may 
eventually decrease the network stability   and that 
disassortative networks  can be more resistant to the effect of 
dynamical fluctuations than assortative networks87.   Hence, 
the observed positive assortativity  and intermodular 
interactions  in the inactive and active kinase structures  
corroborates with the marginal thermodynamic stability of  
structurally distinct kinase states  that enables conformational  
transitions required for regulation. 
 
Communication pathways in the Abl complexes:  high centrality 
residues mediate  allosteric interactions 

Our results were particularly intriguing in light of recent 
experimental data demonstrating that   selective Abl 
inhibitors, such as Imatinib, may be susceptible to the 
allosteric coupling between the kinked P-loop conformation 
and unphosphorylated state of the A-loop in Abl kinase18.  
These experiments posted an important question concerning a 
mechanism of allosteric communications between these 
regions that may be linked   with binding preferences of 
specific inhibitors.  We employed the network  analysis to 
model how allosteric signals may be transmitted in the 
catalytic core.  Modelling of allosteric communication 
pathways was based on the centrality analysis which 
generated   the ensemble of short paths between any pair of 
residues in the Abl and c-Src complexes.  In this analysis, we 
focused on the following objectives  : (a)  to    map the 
ensemble of short path length  between  high centrality 
residues  in the P-loop and phosphorylation sites Y393 and 
Y413 in the A-loop;  (b) to determine the  contribution of  
functional regions to the optimal communication pathways; (c)  
to  determine differences in allosteric coupling  of Imatinib and 
Dasatinib-bound complexes. We specifically   analyzed the   
ensembles of  communication pathways    connecting  the  
conserved high centrality Y253 residue (P-loop) with the   
primary phosphorylation site  in the A-loop (Y393)  and 
another  phosphorylation  site Y413.   
The important finding of this analysis is the emergence of a 
dominant optimal pathway in the Imatinib-Abl complex that 
accounts for  more than 30% of the  total ensemble of  short 
length pathways (Fig. 5A,B).  This path  linked Y253 from the P-
loop with  the nearby F382 and D381 residues (DFG motif),   
via  D363 (HRD motif) that  hydrogen bonded with Y393.  This   
route  could  further link Y393 via H396 and N414  with  
another phosphorylation site Y413  in the A-loop (Fig.  5B). 
Consequently,   allosteric communication pathways  between 
the P-loop  and A-loop  in the Imatinib-Abl complex may be 
primarily mediated by  high centrality  residues from  the HRD 
and  DFG motifs  and can be highly dependent on the 
hydrogen bonding between D363 and unphosphorylated Y393.   
Additionally, the optimal   pathway   seemed to exploit support 
of neighbouring hydrophobic residues of the A-loop (L384, 
L387, and H396)   that may serve as “guardians”   protecting 
the optimal route.  Of special notice  was a  sharp decline in 
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the population of optimal pathways  in the Imatinib-Abl 
specific complex and  strong dependence of the single 
dominant path on  a small number  of highly connected  
residues (Fig. 5A,B).  Strikingly,  functional residues that 
constitute the dominant  allosteric pathway  are known to be 
critical for kinase regulation. For instance, mutation of a  highly 
conserved R367 (R367A)  showed a reduction in catalytic 
efficiency of about 5000-fold compared with the wild-type 
enzyme88.  The strategic position of Y393 and its integrating  
central role  in the optimal pathways is consistent with  the  
high sensitivity of  Imatinib binding to the structural 
arrangement and  obligatory unphosphorylation status at this 
position11-13,18.  Indeed, phosphorylation of  Y393 can stabilize 
the open conformation of c-Abl kinase, thus blocking the 
access of Imatinib to the catalytic region and severely 
compromising its inhibitory function89,90. The importance of 
unphosphorylated Y393 was further  demonstrated  from 
mutagenesis analysis  as Y393F  variant  formed a  
constitutively dephosphorylated state  of Abl that resulted in 
increased kinase sensitivity towards Imatinib89. 
Structural  and biochemical studies of  Dasatinib binding24,91 
have convincingly  shown that Abl   can adopt a stable active 
conformation  independent of the A-loop phosphorylation at 
Y393.   Modelling of allosteric communications in the 
Dasatinib-Abl complex revealed a number of equally probable 
alternative routes connecting the P-loop and the A-loop 
regions (Fig. 5C, D). One of the optimal   pathways connected 
Y253 via a catalytic pair (K271, E286) with the regulatory αC-
helix (M290 from the R-spine) and then via V289, F359, L387 
and M388 residues to the unphosphorylated Y393 (Fig. 5D). 
This pathway utilized the catalytic salt bridge K271-E286  
coupled to the active position of the αC-helix to transmit 
allosteric signal via a set of rigid and primarily hydrophobic 
residues.  Notably,  most of these residues  (K271, E286, V289, 
M290, F359, L387) are known to  be functionally important for 
modulating conformational transitions  and stabilization of the 
active kinase form11-13. We also found a number of equally 
probable pathways that explore alternative routes. For 
example, a potential route connected Y253  via a catalytic pair 
(K271, E286) with D381 (HRD motif), F382 (DFG motif), L384, 
S385 and R386 to the unphosphorylated Y393.  This pathway 
navigated  via high centrality residues  and utilized hydrogen 
bonding between backbone carbonyl of S385 and guanidinium 
group of  R386 as well as stacking interactions of Y393 with the 
hydrophobic part of  R386.  In the presence of 
phosphotyrosine,  this route becomes somewhat more 
dominant  as it is stabilized by direct hydrogen bonding 
between  p-Y393 and  the side-chain of R386.   
To summarize, we determined that Dasatinib binding may 
activate a broad ensemble of allosteric pathways that could 
exploit structurally alternative routes between the P-loop and 
A-loop, exhibiting  only marginal sensitivity to the 
phosphorylation status of  Y393.  The observed structural 
diversity of communication paths may be associated with the 
broader distribution of central residues.   This may provide a 
better balance between the efficiency and resilience of the 
interaction networks in the Dasatinib complex. 

The Network Effect of Ligand Binding and Drug Resistance: 
Correlating Mutational Effects with Residue Centrality  

A large number of studies have  investigated structural 
mechanisms of Imatinib-resistant mutations92-94. We 
hypothesized that network signatures of the Abl complexes 
may be relevant in quantifying drug resistance effects, 
particularly explaining the greater tolerance of  Dasatinib to a 
number of mutations known to confer resistance to Imatinib. 
Although  many mutations in the Abl kinase domain  can be 
associated with Imatinib resistance,   there are  ~ 15 major 
point mutations that account for 85% of observed alterations 
in Abl kinase. We  considered  a panel of  these major 
mutational forms associated with Imatinib resistance94  that 
cover a range of  residues  in different kinase regions:  L248, 
G250, Q252, Y253, E255 (P-loop), D276, E279 (C-helix), ATP 
binding site (V299, T315, F317),  SH2 domain contact (M351), 
substrate binding region (F359), A-loop (L384, H3396, G398), 
and C-terminal lobe (F486). In the context of the current study, 
we elected to simplify  analysis and perform a direct mapping 
of  targeted residues onto the centrality profiles of the 
Imatinib and Dasatinib complexes (Fig. 6).  
In this analysis,   we correlated residue centralities against a 
consistent set of experimental data92-95 on the following 
mutations: L248V, G250E, Q252H, Y253F, E255V, D276G, 
E279K, V299L, T315I/A, F317L/V/C, F359V, L384M, H396R, 
G398R, and F486S. We assembled all available IC50 values for 
Imatinib and Dasatinib binding with different mutant forms, 
including information on multiple mutations of the same 
binding site residues such as T315I/A and F317L/V/C. The 
utilized IC50 values against mutated forms of Abl were 
obtained under similar experimental conditions and 
corresponded to the average of at least three independent 
proliferation assay experiments92-95. We analyzed correlation 
patterns between residue centrality and the fold change in 
IC50 values of drug binding to the mutants. Given a significant 
chemical diversity of mutations and inclusion of multiple 
modifications of the same residues (T315 and F317), we tested 
whether the network signature of kinase residues could be a 
robust indicator of drug resistance effects.   
The central finding of this analysis is that residue centrality in 
the kinase complexes may be strongly associated with the 
susceptibility to drug resistant mutations.  We detected a fairly  
strong signal pointing to a relationship between residue  
centrality and mutation-induced fold increase in IC50 values 
for the Abl complexes (Fig. 6A, B).   For the Imatinib-Abl 
binding, the correlation trend (R=0.6258) captured fairly well 
Imatinib resistance to Y253H, E255V, and T315I mutational 
variants (Fig. 6A) Dasatinib is active against many of the Abl 
mutations known to confer resistance to Imatinib except for 
the T315I mutation and some other mutations (V299L, 
F317L/V/C, and Q252H) that could be resistant or 
intermediately sensitive to Dasatinib92-95.  These residues 
corresponded to the highest centrality sites and   the 
correlation between the residue betweenness values and the 
IC50 fold increase upon mutations for Dasatinib-Abl binding 
approached  R=0.766 (Fig.  6B).   Importantly, this analysis  
provided an interesting interpretation of allosteric drug 
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resistance effects, whereby  mutations of the kinase residues 
not directly interacting with the drug could still have significant 
impact on binding.  In particular, some of   the A-loop residues 
that contribute to the dominant communication route in the 
Imatinib-Abl complex include F382, L387, and H396 residues 
(Fig. 6C). While Imatinib maintains a significant number of 
contacts with F382, the drug does not form any interactions 
with L387 and H396 residues. At the same time, mutations of 
these residues were reported in patients including F382L, 
L387M and H396P/R, among which H396R was observed most 
frequently96.  In the inactive Abl conformation L387 is 
orientated toward the P-loop and involved in communication 
pathways connecting P-loop and A-loop, so its mutation to 
methionine may affect the packing with the P-loop and affect 
allosteric signalling in the Imatinib-bound Abl.  According to 
our observations, a fairly exposed A-loop residue H396 
appeared to contribute to the optimal pathways linking the P-
loop and A-loop. The crystal structure of the Abl kinase domain 
carrying the H396P mutation displays the active conformation 
of the activation loop to which Imatinib binds less readily97. In 
line with this observation, the H396P mutation was shown to 
strongly activate c-Abl activity98 providing a possible 
explanation for the observed Imatinib resistance.  
According to this analysis,  mutations of these A-loop 
mutations, although not contacting Imatinib directly, may 
compromise the integrity and efficiency of short 
communication pathways mediating inhibition signal in the 
Imatinib-Abl complex, which may trigger  shift  in the 
conformational  equilibrium towards the active conformation.  
Some of the key residues involved in multiple pathways 
connecting P-loop and A-loop in the Dasatinib-Abl complex 
include Y253 and F359 residues (Fig. 5D).  Indeed, targeted 
mutations of these residues could cause some level of 
resistance to Dasatinib, which is tolerant to majority of the 
Imatinib-resistant mutations. However, patients with Y253H or 
F359V mutation have a high likelihood of developing new 
mutations in the setting of Dasatinib resistance99.    
The important conclusion from this analysis is that centrally 
positioned stable residues that preserve the short path length 
routes and ensure the efficiency of allosteric networks in the 
kinase structures are important for kinase regulation and can 
be also associated with drug resistance effects.  

Conclusions 
In this work, MD simulations of the Abl kinase complexes with 
cancer drugs Imatinib and Dasatinib were combined with 
structure-based network modelling to characterize dynamics 
of the residue interaction networks. The results have 
demonstrated that structural architecture of Abl kinase 
complexes can produce small-world topology conducive to a 
modular organization and assortative mixing of the residue 
interaction networks.  An intriguing finding of this analysis 
revealed a significant network-bridging effect of Imatinib in Abl 
and   pointed to a small-world   topology of the residue 
interaction network,   in which a small number of   central 
residues could mediate binding preferences and coordinate 

allosteric communications.  According to our findings, rapid 
communication in the Imatinib-Abl complex may come at the 
expense of high dependency on a small number of 
coordinating modes and   sensitivity to the unphosphorylated 
state of the A-loop, making specific drug binding vulnerable to 
targeted mutations. A different organization of optimal 
pathways in the Dasatinib complex may provide a better 
balance between the efficiency and resilience of the 
interaction networks in the Dasatinib complex.  Our results 
supported this notion, demonstrating that hierarchical 
modularity (high clustering coefficient) and positive assortative 
mixing (increasing average neighborhood connectivity) may be 
general properties of protein domains, including kinase 
catalytic domains and their complexes with inhibitors. The 
emergence of these topological traits suggests a similar 
organizing topology that enhances resilience of the interaction 
networks. Interestingly, the short path length distribution 
emerged as a topological   indicator of differential kinase 
sensitivity to Imatinib binding, suggesting that variations in 
allosteric communication pathways may be linked with protein 
responses to ligand binding.  
Another important implication of this study is a potential 
utility of network parameters in predicting drug resistance 
effects.  Our results have related differences in the residue 
interaction networks and allosteric communications of the Abl 
kinase complexes with their binding preferences and drug 
resistance profiles.  In particular, we have found that the 
severity of Imatinib-resistant effects may be differentiated 
based on network centrality properties. This finding may be 
particularly interesting since a number of Imatinib-resistant 
mutations may arguably exist before treatment and may 
contribute to tumorigenesis.  
The structure-based network approach could provide a useful 
conceptual perspective on structural stability and function, 
also addressing   the efficiency and robustness of proteins 
against failure of function due to mutations. The network 
approach is also attractive from a protein modelling 
perspective, enabling both local and global interaction effects 
to be considered from a unified view.  The simplicity and 
transparency of the network analysis coupled with the rigor of 
biophysical simulations and power of structural modelling may 
prove to be a useful approach complementing existing 
computational and structural biology studies of protein kinase 
function and regulation. 
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Fig. 1.  Functional dynamics of the Abl-inhibitor complexes. 
Conformational dynamics profiles of the Abl structures in the 
essential space of three low frequency modes are shown for   
the inactive Imatinib-bound form (A) and the Dasatinib-bound 
active kinase form (B). The colour gradient from blue to red 
indicates the decreasing structural rigidity (or increasing 
conformational mobility) of the protein residues and refers to 
an average value over the backbone atoms in each residue. 
The R-spine residues are annotated in spheres and colored 
according to their degree of structural stability.  (C) The 
ensemble-based distribution of the intermolecular contacts in 
the Imatinib-Abl and Dasatinib-Abl complexes.  The number of 
the intermolecular contacts formed by the inhibitors with the 
interacting residues is shown for Imatinib in blue filled bars 
and for Dasatinib in green filled bars. 
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Fig. 2. Structure-based  network analysis of the Abl-inhibitor 
complexes.  The joint probability distribution of   computed B-
factors and residue betweenness values in the Imatinib-Abl (A) 
and Dasatinib-Abl complexes (B). The depicted profile 
combines local estimate of conformational fluctuations with 
the global measure of residue centrality in the interaction 
networks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Page 13 of 18 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



ARTICLE Journal Name 

14 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 
Fig. 3. Structure-based  network analysis of the Abl-inhibitor 
complexes. The residue-based betweenness distribution in the 
Imatinib-Abl (A) and Dasatinib-Abl complexes (B). The 
distributions are shown in blue bars and the population of the 
inhibitor-interacting residues is depicted in green. (C, D)  A 
comparative analysis of centrality for the binding site residues 
in the inactive (blue bars) and active Abl structures (green 
bars) in the absence of bound inhibitors (C) and in the 
Imatinib-bound (blue bars) and Dasatinib-bound (blue bars) 
Abl complexes (D).  
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Fig. 4.  The distribution of topological network parameters in 
the Abl-inhibitor complexes. (A,B) The distribution of  the short 
path length between residue pairs in the Imatinib-Abl complex 
(in blue bars) and Dasatinib-Abl complex (in green bars). (C) 
The distribution of the average clustering coefficient and (D) 
the distribution of  the average neighbourhood connectivity. 
The average clustering coefficient and the average 
neighbourhood connectivity distributions are shown in colored 
lines, with Imatinib-Abl (in blue circles), Dasatinib-Abl (in red 
squares). 
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Fig. 5.   Analysis of conformational allosteric pathways in the 
Abl-inhibitor complexes. (A,C) The population distribution of 
optimal communication pathways connecting the Y253 (P-
loop) and phosphorylation site Y413 (A-loop) in the Imatinib-
Abl and Dasatinib-Abl complexes. (B) The dominant 
communication pathway connecting Y253 of the P-loop with 
the phosphorylation sites in the A-loop (Y393 and Y413) in the 
Imatinib-Abl complex. (D) A semi-optimal communication 
pathway connecting the same residues in the Dasatinib-Abl 
complex. The residue numbering corresponds to the original 
annotation from the crystal structures (pdb id 1IEP and 2OIQ).  
The contributing residues are shown in filled spheres and 
colored according to their conformational mobility in the  
principal space of low frequency modes as in Fig. 1.  
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Fig. 6. The network analysis of drug resistance in the Abl-
inhibitor complexes. (A,B) A correlation between residue 
betweenness and experimentally measured fold increases in 
IC50 values upon resistant mutations in the Imatinib-Abl and 
Dasatinib-Abl complexes respectively. (C)  Structural mapping 
of Imatinib-resistant mutations onto Imatinib-bound  inactive 
Abl structure. The sites of highly resistant Imatinib mutations 
(G250E, Y253F, E255V, T315I, F486S) are shown in red spheres, 
while residues targeted by moderately resistant Imatinib 
mutations (L248V, Q252H, V299L, F317L, F359V, H396, L384M, 
G398R) are shown as green spheres.  
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