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ABSTRACT 18 

Dietary modulation of gut microbiota, suggested to be involved in allergy processes, has 19 

recently attracted much interest. While several studies have addressed the use of fibres 20 

to modify intestinal microbial populations, information about other components, such as 21 

phenolic compounds, is scarce. The aim of this work was to identify the dietary 22 

components able to influence the microbiota in 23 subjects suffering from rhinitis and 23 

allergic asthma, and 22 age and sex-matched controls. Food intake was recorded by 24 

means of an annual food frequency questionnaire. Dietary fibres were obtained from 25 

Marlett et al. tables and Phenol-Explorer Database was used for phenolic compounds 26 

intake. Quantification of microbial groups was performed by Ion Torrent 16S rRNA 27 

gene-based analysis. Results showed a direct association between the intake of red wine, 28 

source of stilbenes, and the relative abundance of Bacteroides, and between coffee, rich 29 

in phenolic acids, and the abundance of Clostridium, Lactococcus and Lactobacillus 30 

genera. Despite epidemiological analyses not establishing causality, these results 31 

support the association between polyphenol rich beverages and faecal microbiota in 32 

allergic patients. 33 

KEYWORDS: allergy; phenolic compounds; microbiota; red wine; coffee  34 
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INTRODUCTION 35 

Large amounts of data have discussed the involvement of intestinal bacteria in the 36 

initiation and amplification of inflammatory processes, allergies and autoimmune 37 

diseases 
1
. During the last few years, there has been an increasing interest in the study of 38 

gut microbiota, using high throughput techniques, in order to establish associations 39 

between the gut microbes and these pathologies 
2,3

. Allergy is a disorder of the immune 40 

system characterized by a hypersensitive reaction induced by certain types of antigens 41 

referred to as allergens. Lifestyle changes in western countries may be interfering in the 42 

mutualistic relationship between bacteria and host, leading to an increase in the 43 

incidences of this disease 
4
. Although it has been proposed that some food components, 44 

such as probiotics, prebiotics and antioxidants, are critical players in the correct 45 

maintenance of the immune system, their association with the microbiota in 46 

immunological disorders has not yet been adequately described 
5
. Apart from probiotics 47 

and prebiotics, other bioactive compounds from diet, such as phenolic compounds, are 48 

able to modulate the intestinal microbiota 
6
. Evidence from animal and human studies 49 

has shown that supplementing diet with polyphenol-rich food, such as red wine 
7
, tea 

8
, 50 

cocoa 
9
 or blueberry 

10,11
, produces modifications in the intestinal bacterial populations. 51 

Despite the unclear impact of these microbial changes on health, polyphenols have 52 

shown promising results in different trials with animal models of allergy 
12

 and 53 

autoimmunity 
13

. It could be considered that some of the potentially health effects of 54 

polyphenols on these pathologies may be due to their impact on the gut microbiota 55 

composition due to the microbial bio-conversion of polyphenolic compounds into other 56 

bioactive compounds with more potent  anti-oxidant and/or anti-inflammatory activity 57 

14
. 58 
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Giving these evidences, the aim of our work was the identification of dietary 59 

components associated with the faecal microbiota of a sample of allergic patients. The 60 

data resulting from this work could be useful for generating hypotheses that can be 61 

used, in the future, for the design of intervention studies aimed to test the effect of 62 

specific diets on the symptoms or the course of this disease or for the design of new 63 

functional foods targeted at this group.  64 

SUBJECTS AND METHODS  65 

Participants 66 

Twenty three subjects suffering from rhinitis and allergic asthma were randomly 67 

selected according to the clinical criteria recommended by the European Community 68 

Respiratory Health Survey 
15

, functional criteria (spirometry and bronchial challenge 69 

test with methacholine) and immunological criteria (determination of specific IgE to 70 

some key antigens and positive cutaneous tests for those key antigens). Subjects 71 

diagnosed as having autoimmune diseases, inflammatory bowel disease (IBD) or other 72 

diseases known to affect the intestinal function, as well as subjects who had undergone 73 

medical treatment with oral corticoids, immunosuppressive agents, monoclonal 74 

antibodies, antibiotics or immunotherapy during the previous 6 months were not 75 

considered for this study. Twenty two age and sex matched subjects from the same 76 

population were recruited as controls.  77 

Ethics approval for this study (reference code AGL2010-14952; grant title “Towards a 78 

better understanding of gut microbiota functionality in some immune disorders”) was 79 

obtained from the Bioethics Committee of CSIC (Consejo Superior de Investigaciones 80 

Científicas) and from the Regional Ethics Committee for Clinical Research (Servicio de 81 
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Salud del Principado de Asturias) in compliance with the Declaration of Helsinki. All 82 

determinations were performed with fully informed written consent from all participants 83 

involved in the study. 84 

Nutritional assessment 85 

Dietary intake of the previous year was assessed by means of a semi-quantitative FFQ 86 

referring to 160 items. During a personal interview, subjects were asked item-by-item 87 

whether they usually ate each food and, if so, how much they usually ate. For this 88 

purpose, 3 different serving sizes of each cooked food were presented in pictures to the 89 

participants, so that they could choose from up to 7 serving sizes (from “less than the 90 

small one” to “more than the large one”). For some of the foods consumed, amounts 91 

were recorded in household units, by volume, or by measuring with a ruler. Special 92 

attention was paid to cooking practices, number and amount of ingredients used in each 93 

recipe, as well as questions concerning menu preparation (e.g., type of oil, type of milk 94 

used) and other relevant information for the study, such as the consumption of skin in 95 

fruit. Food intake was analysed for energy using the nutrient Food Composition Tables 96 

developed by CESNID 
16

, dietary fibre (total and subtypes) from Marlett food 97 

composition tables 
17

, and the phenolic compounds content in foods was completed 98 

using the Phenol Explorer Database 
18

. 99 

Anthropometric measures 100 

Body mass index (BMI) was calculated from the formula: weight (kg) / height (m)
2
. 101 

Height was registered using a stadiometer with an accuracy of ±1 mm (Año-Sayol, 102 

Barcelona, Spain). Subjects stood barefoot, in an upright position and with the head 103 

Page 5 of 24 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t



6 

 

positioned in the Frankfort horizontal plane. Weight was measured on a scale with an 104 

accuracy of ± 100 g (Seca, Hamburg, Germany).  105 

Microbiological analyses 106 

Faeces were collected in an interval of 7 days after nutritional interviews. Fresh faecal 107 

material (between 10 and 50 g per person) was collected in a sterile container and 108 

immediately manipulated and homogenized within a maximum of 3 h from defecation. 109 

During the waiting period, from defecation to homogenization, samples were kept at 110 

4°C. Thirty millilitres of RNAlater solution (Applied Biosystems, Foster City, CA) was 111 

added to 10 g of sample, and the mixture was homogenized in a sterile bag, using a 112 

stomacher apparatus (IUL Instruments, Barcelona, Spain) with three cycles at high 113 

speed, 1 min per cycle. Homogenized samples were then stored at -80°C until use. 114 

Faecal DNA extraction, 16S rRNA amplification sequencing of 16S rRNA gene-based 115 

amplicons and the sequence-based microbiota analysis were performed according to 116 

Hevia et al. 
19

. The raw sequences reported in this article have been deposited in the 117 

NCBI Short Read Archive (SRA) (study accession number: SRP028162). 118 

Statistical analysis 119 

Statistical analysis was performed using IBM-SPSS version 19.0 (SPSS-Inc., Chicago). 120 

For descriptive purposes, mean values were presented on untransformed variables. 121 

Linear regression analysis was used to investigate the association between the intake of 122 

dietary fibre (total and subtypes) and classes of phenolic compounds with faecal 123 

microbial genera. We also introduced sex, energy intake and age as covariates. The 124 

main food sources of the dietary components previously related to microbiota were 125 

selected and placed in a multiple stepwise regression analysis to explore whether their 126 
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association with microbial groups remained with independence of covariates and other 127 

related variables included in the model. The statistical parameters employed were β 128 

(standardized regression coefficient) and R
2
 (coefficient of multiple determinations). 129 

The conventional probability value for significance (0.05) was used in the interpretation 130 

of results.  131 
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RESULTS  132 

General characteristics of the sample, mean intake of energy, dietary fibre (total and 133 

subtypes) and polyphenol classes in allergy patients and controls are compared in Table 134 

1. No significant differences were found for any of the variables under study, with the 135 

exception of lignan intake, which was higher in the control group.  136 

Results from linear regression analysis between the intake of dietary components and 137 

microbial genera, in patients and controls are presented in Tables 2 and 3. Positive 138 

associations were identified between the intake of total and insoluble fibre with the 139 

relative abundance of Clostridium in allergic subjects (Table 2). Also, Clostridium, 140 

Lactococcus and Lactobacillus, were directly associated with phenolic acids, and 141 

Bacteroides with stilbenes (Table 3). Given the high correlation between phenolic 142 

compounds and fibres from foods, an additional stepwise regression analysis was 143 

conducted to explore the relative importance of total and insoluble fibre and phenolic 144 

acids intake on Clostridium. Phenolic acid intake was found to be an independent 145 

contributor to this microbial group (R
2
 = 0.338; β = 0.581; p = 0.004) data not shown). 146 

With the aim of exploring the associations observed in allergy subjects, the main food 147 

sources of phenolic acids and stilbenes were calculated (Figure 1). Coffee, identified as 148 

one of the top contributors of phenolic acids, was found to be an independent 149 

contributor to Lactococcus, Lactobacillus and Clostridium variation. Also, red wine, 150 

accounting for 95% of the intake of stilbenes, was positively associated with the relative 151 

abundance of Bacteroides in faeces (Table 4).  152 
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DISCUSSION  153 

The importance of a well-balanced colonic microbiota as a key factor in the modulation 154 

of human immunity is more and more recognized in the last years. Our results represent 155 

a first step in broadening the knowledge of the association between diet and microbiota 156 

in allergic patients, supporting the interaction between phenolic compounds and 157 

microbiota, and pointing to a specificity between them, to the extent that only certain 158 

microbial groups have been associated with the intake of these compounds, and because 159 

the observed associations in allergic were not extrapolated to the controls. Though a 160 

possible explanation could be the existence of differences in the intake of these 161 

compounds, we have not found any, except for lignans which represented a low 162 

proportion of total polyphenol intake and were not associated with any microbial 163 

genera. Thus, it seems more probable that intra-group variability in microbiota 164 

composition may involve the different diet-microbiota associations observed in allergic 165 

subjects with respect to those of the control 
20,21

. 166 

From all the evaluated dietary components previously associated with microbiota 
22,23

, 167 

phenolic acids and stilbenes were independently associated with some bacterial genera 168 

in the allergic patients. Despite the fact that the benefits of increasing the levels of 169 

Lactococcus, Lactobacillus, Clostridium and Bifidobacterium in allergic patients are not 170 

well documented, studies using animal models have proposed that the administration of 171 

some of these bacteria is able to modulate the allergic response, by means of T cell 172 

response regulation 
24

. In relation to this, it has been shown that oral administration of a 173 

mix of several Clostridium strains attenuated disease in a mice model of allergic 174 

diarrhoea through the activation of T regulatory cells 
25

.  175 
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Although a positive association between the intake of fibre and Clostridium was also 176 

detected, in accordance with scientific evidence about the interaction of this component 177 

on microbiota modulation 
26

, this appeared to be linked to phenolic acid consumption, 178 

since its association disappeared when the model was controlled by these phenolic 179 

compounds. In this regard, the nutritional assessment of the whole diet, carried out in 180 

this work, may have some advantages with respect to intervention studies, since the 181 

mixture of phenolic compounds provided by diet, together with other dietary 182 

components contained in the phenol-containing foods, such as fibres, may improve the 183 

faecal environment, interacting with the behaviour of some bacterial groups 
27

.  184 

In spite of the low coffee intake in our sample, in comparison with other European 185 

countries (mean 60.7 ml/d vs. 270 ml/d) 
28

, our results pointed to a positive association 186 

between this beverage and Lactococcus, Lactobacillus and Clostridium. The effect of 187 

coffee on intestinal microbiota is not yet clear. Results from an animal model indicate 188 

that this drink could limit the growth of some bacterial groups, such as Clostridium and 189 

Escherichia coli and, at the same time, encourage others as Bifidobacterium 
29

. This 190 

bifidogenic effect of coffee has also been found in intervention studies with humans 
30

, 191 

in accordance with our results. However, given the nature of this study, we are not able 192 

to analyse factors such as the variety of coffee, its degree of roasting or processing, that 193 

could have an impact on its polyphenol content 
31

. 194 

In relation to red wine, it has been suggested that the intake of one of its major stilbene, 195 

resveratrol, could prevent the development of some allergies 
32

. Therefore, apart from 196 

the antioxidant, anti-inflammatory and anti-allergic properties widely described for red 197 

wine phenolics 
33-35

, our results support a potential role for this beverage in microbiota 198 

modulation, by means of its association with Bacteroides, as has previously been 199 
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suggested 
7
. At this point, it should be taken into account that the statistical power of 200 

our study may be limited by the relatively small sample size, and that the intake of 201 

phenolic compounds in the sample could be insufficient, when compared with that of 202 

intervention studies, to have an impact on other members of the intestinal microbiota. 203 

Longitudinal studies considering the changes in the microbiota structure from the first 204 

ages of allergic individuals could be interesting to complement this work.  205 

Despite epidemiological analyses not establishing causality, these results support the 206 

association between polyphenol rich beverages, such as coffee and red wine, on faecal 207 

microbiota in allergic patients. These descriptive results will be useful for future 208 

research focused on the relationship between diet and microbiota, although more 209 

investigation is needed in order to corroborate these data before making dietary 210 

recommendations.  211 
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Table 1. General description of the studied variables in allergy patients and controls.  338 

 Allergic (N=23)  Control (N= 22) 

Age (y) 39.39 ± 11.28 39.18 ± 9.50 

Male sex (%) 43.5 31.8 

BMI (kg/m
2
)  26.27 ± 3.94 25.00 ± 3.63 

Energy (kcal /d) 
a
 1995.80 ± 429.14 2187.52 ± 565.21 

Total fibre (g/d) 
a,b 
 15.85 ± 6.88 17.53 ± 8.05 

Soluble fibre (g/d) 
a,b
 2.65 ± 1.24 2.62 ± 0.96 

Insoluble fibre (g/d) 
a,b
 13.21 ± 5.72 14.91 ± 7.14 

Phenolic compounds:    

Flavonoids (mg/d) 
a,b
 428.32 ± 259.88 383.39 ± 350.66 

Phenolic acids (mg/d) 
a,b
 333.21 ± 210.46 307.37 ± 262.16 

Lignans (mg/d) 
a,b
 0.78 ± 0.23 1.04 ± 0.50 * 

Stilbenes (mg/d) 
a,b
 1.59 ± 2.79 0.63 ± 0.77 

Multivariate analysis adjusted by 
a
 age, gender and 

b
 energy intake. Results are presented as 339 

estimated marginal mean ± SD and percentage (%). * p ≤ 0.05  340 

Page 19 of 24 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t



20 

 

Table 2. Linear regression analysis between dietary intake of fibre (total and subtypes) 341 

and dominant microbial genera, in patients with allergy and controls.  342 

  Total fibre 
a
 Soluble fibre 

a
 Insoluble fibre 

a
 

Bacteroides 
A -0.238 -0.228 -0.229 

C 0.135 0.262 0.117 

Bifidobacterium  
A -0.022 0.006 -0.028 

C -0.178 -0.220 -0.171 

Blautia 
A -0.272 -0.116 -0.301 

C -0.023 -0.055 -0.018 

Lactococcus  
A 0.099 -0.107 0.149 

C -0.067 -0.091 -0.064 

Lactobacillus  
A 0.564 0.252 0.549 

C -0.029 -0.039 -0.028 

Clostridium  
A    0.777* 0.524   0.809* 

C -0.290 -0.287 -0.289 

Faecalibacterium 
A -0.488 -0.516 -0.459 

C -0.334 -0.377 -0.327 

Streptococcus 
A -0.178 -0.294 -0.139 

C -0.021 -0.063 -0.016 

A = Allergy (N = 23); C = Control (N = 22). a Derived from a linear regression analysis 343 

including age, sex and energy intake as covariates. Results are expressed as β (standardized 344 

regression coefficient). Units: microbial genera (%), dietary components (g/d).* p ≤ 0.05. 345 
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Table 3. Linear regression analysis between dietary intake of phenolic compounds and 346 

microbial genera in patients with allergy and controls. 347 

  Flavonoids 
a
 Phenolic acids 

a
 Lignans 

a
 Stilbenes

 a
 

Bacteroides  
A -0.037 -0.333 0.073 0.631* 

C 0.093 0.047 -0.314 0.184 

Bifidobacterium  
A -0.443 0.146 0.053 -0.023 

C -0.300 -0.265 -0.240 -0.038 

Blautia 
A -0.141 -0.136 -0.024 0.317 

C 0.106 -0.006 -0.166 0.202 

Lactococcus  
A -0.031 0.635* -0.015 -0.193 

C -0.155 -0.159 -0.173 -0.240 

Lactobacillus  
A 0.162 0.567* -0.250 -0.349 

C -0.115 -0.005 -0.521 -0.098 

Clostridium  
A 0.125 0.630* -0.150 0.024 

C -0.067 -0.090 0.109 -0.005 

Faecalibacterium 
A 0.229 0.096 0.094 0.294 

C -0.111 -0.139 0.570 -0.082 

Streptococcus 
A -0.211 0.289 -0.151 -0.272 

C -0.173 0.203 -0.105 0.011 

A = Allergy (N = 23); C = Control (N = 22). 
a
 Derived from a linear regression analysis 348 

including age, sex and energy intake as covariates. Results are expressed as β (standardized 349 

regression coefficient). Units: microbial genera (%), dietary components (mg/d).* p ≤ 0.05, ** p 350 

≤ 0.001.   351 
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Table 4. Multiple stepwise regression analysis for prediction of bacterial genera relative 352 

abundance by the intake of the main food sources of phenolic acids and stilbenes in 353 

allergic patients.   354 

 Predictors  Intake (g/d)  R
2
 β p 

Bacteroides 
a
 Red wine 45.34 ± 79.64 0.325 0.570 0.004 

Lactococcus 
b
 Coffee 60.65 ± 56.08 0.434 0.659 0.001 

Lactobacillus
c
 Coffee  0.221 0.470 0.024 

Clostridium 
d
 Coffee  0.336 0.579 0.004 

(N = 23) β: standardized regression coefficient; R2: coefficient of multiple determinations. 355 

Variables included in the model: 
a 

age, gender, energy, red wine, strawberry, grape and grape 356 

juice intake; b, c, d age, gender, energy, beer, coffee, tea, apple, potato, red wine, tomato, orange, 357 

lettuce, orange juice, pear, banana and carrot intake. Only significant results are presented.358 
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Figure 1. (a) Main food sources of phenolic acids in allergic subjects. (b) Main food sources of stilbenes in allergic subjects.  359 

a 
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