This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Structure and gelation properties of casein micelles doped with curcumin under acidic conditions.

Aya N. Khanji,a,b Florentin Michaux,a Jordane Jasniowskia, Jeremy Petita, Emna Lahimer,a, Mohamed Cherif,a Dominique Salamehb, Toufic Rizkb, Sylvie Banona*.

*corresponding author
tel : +33 (0) 383596073
fax : +33 (0) 383595772

a Université de Lorraine, Laboratoire d’Ingénierie des Biomolécules (LIBio), 2 avenue de la Forêt de Haye, TSA40602-F-54518 Vandœuvre-lès-Nancy, France

b St Joseph University, Faculty of Sciences, UR TVA, Dept Chemistry, BP 11-514, Beirut 11072050, Lebanon.
17 **Highlights**

18 The positive values of enthalpy and entropy indicated that hydrophobic interactions were the
19 major binding forces governing curcumin and MC interactions.

20

21 The internal structure of micellar casein measured by SAXS did not vary upon curcumin
22 binding.

23

24 Curcumin did not produce any change of ζ-potential or size of micellar casein.

25

26 The ability of curcumin-doped micellar casein to produce acid gel was demonstrated.
Abstract

In this study, the ability of micellar casein (MC) to interact with curcumin during acidification and to produce acid gel were investigated. Steady-state fluorescence spectroscopy of curcumin variation and fluorescence quenching of caseins upon binding with curcumin molecules were evidenced. Increasing the temperature from 20 to 35 °C enhanced MC-curcumin interactions as reflected by the raise of binding constant from $0.6 \pm 0.3 \times 10^4$ to $6.6 \pm 0.6 \times 10^4$ M$^{-1}$. From changes in entropy, enthalpy and Gibbs free energy, hydrophobic interaction were proposed as major binding forces. Static fluorescence MC quenching was demonstrated for MC-curcumin complex during acidification. From pH 7.4 to pH 5.0, the binding sites number varied in the range from 1.25 ± 0.05 to 1.49 ± 0.05 and the binding constant k_b varied from $3.9 \pm 0.4 \times 10^4$ to $7.5 \pm 0.7 \times 10^4$ M$^{-1}$. Small Angle X-Ray Scattering profiles demonstrated that MC internal structure was unchanged upon curcumin binding. The ζ-potential value of curcumin-doped MC indicated that curcumin did not modify the global charge of MC particles. Acid gelation studied by oscillation rheology and static multiple light scattering at 20 and 35 °C led to similar behavior for native and curcumin-doped MC suspensions. For the first time, it was demonstrated that the colloidal and functional properties of MC were unchanged when doped with curcumin during acidification.
Introduction

Micellar caseins (MC) in milk are considered as functional proteins for bringing digestible protein to the neonate and preventing calcium phosphate precipitation in milk.1,2 Recent studies also demonstrated that MC can carry bioactive molecules to tissue and cells3–5 MC consists in colloidal particles of 100 nm radius built by interactions between about 104 casein molecules and 800 nanoclusters of amorphous calcium phosphate.2 Self-assembly of casein monomers occurs through hydrophobic areas and calcium bridges between phosphoserine residues. The internal structure of MC can be considered as a nano-gel6 and that contributes to its high sorption and loading capacity of small molecules.7,8 Many bioactives are hydrophobic and thus show poor aqueous solubility. In order to improve their dispersibility and bioavailability in aqueous media, native or modified MC have already been used as delivery systems, as well as α\textsubscript{s}- and β-casein monomers, and their self-assemblies. For example, the various α\textsubscript{s}- and β-casein forms are avid binders of polyphenols.9,10

Moreover, the acid-soluble calcium-phosphate bonds of MC and its sensitivity to proteolysis provide an efficient release mechanism activated in the gastric and pancreatic stages of digestion.3 MC presents also many advantages as labelled “Generally Recognized As Safe” food proteins and highly stable materials during heat treatment and high-pressure processing.11 Recent papers deal with the influence of food processing on curcumin binding with MC.

Curcumin is a natural polyphenol extracted from turmeric rhizome (Curcuma longa) that presents a broad spectrum of biological activities including antioxidant, anti-inflammatory, antimicrobial, antiamyloid and antitumor properties.12 It presents a very low solubility in water (2.99 × 10-8 M) at neutral or acid pH and becomes soluble in alkaline conditions albeit its very high sensitive to hydrolysis. It was recently taken advantage of the pH-dependent solubility of
curcumin and the self-assembly properties of sodium caseinate in the pH range from 7 to 12 in order to produce new MC delivery systems. Several studies have focused on curcumin/MC interactions using the fluorescent properties of individual components. The binding constant of curcumin with Ultra-High Pressure Homogenized MC (UHPH-MC) processed at 300 MPa was significantly increased compared to native MC. This was explained by the dissociation of MC into smaller micelles under high-pressure homogenization processing resulting in an increase in their specific surface area available for interaction with curcumin. Static high-pressure treatment of skim milk also enhanced the association of curcumin with MC, but the mechanism proposed in the literature, related to structural modifications of MC (solubilization of micellar calcium phosphate and MC size reduction), remains to be ascertained. Binding of curcumin to MC was increased after milk heat treatment as a consequence of the formation of heat-induced whey protein aggregates.

To the best of our knowledge, only a few recent works deal with the influence of polyphenol and curcumin on rennet-gelation of MC. Recently, it was shown that tea catechins interacting with MC impacted both the primary and the secondary stage of milk rennet aggregation but to our knowledge no study has been carried out on acid aggregation or gelation. Milk acidification produces colloidal gel at around pH 4.6. Moreover, milk acidification acts on MC stability by reducing the charge and inducing the solubilization of micellar material (casein monomers at low temperature and minerals).

This study aimed at understanding the behavior of MC-curcumin complexes during acidification. Direct steady-state fluorescence and tryptophan quenching were employed to evaluate the extent of curcumin-MC interactions. The internal and overall structure of curcumin-doped MC were analyzed by Small-angle X-ray scattering (SAXS) and Dynamic Light Scattering (DLS). The influence of temperature and pH on the stability of MC-curcumin
complexes and their gelation properties were investigated by fluorescence spectroscopy, static multiple light scattering and rheological measurements.

Results and Discussion

Study of curcumin-MC interactions by fluorescence

On the basis of interactions between the phenolic rings of curcumin and the hydrophobic amino acid residues of tryptophan (trp) in caseins, curcumin binding to MC was studied through fluorescence properties of both components (figures 1A and B). Fluorescence quenching at 344 nm indicated that MC tryptophan residues (1 to 2 trp residues per casein monomer) were interacting with curcumin (figure 1C). Higher curcumin fluorescence at increased MC concentrations indicated that curcumin molecules were transferred from the bulk to MC (figure 1D).

Quenching data was used to quantify curcumin-MC interaction from the modified Stern-Volmer equation:

\[
\frac{F_0}{F_0 - F} = \frac{1}{fK_{SV}[\text{Cur}]} + \frac{1}{f}
\]

where \(F_0\) was the initial fluorescence intensity, \(F\) was the fluorescence intensity in the presence of a quenching agent (such as curcumin), \(K_{SV}\) the Stern-Volmer quenching constant (M\(^{-1}\)) , [Cur] the curcumin (quencher) molar concentration (M), and \(f\) the fraction of accessible fluorophore to a more polar quencher that permitted to determine the fractional fluorescence contribution of the total emission for interaction with the studied quencher.\(^{23}\) The Stern-Volmer quenching constant \(K_{SV}\) was calculated from the plot of \(F_0/(F_0 - F)\) vs. \(1/[\text{Cur}]\) as the ratio between the y-axis intercept \((1/f)\) and the slope, \(1/(fK_{SV})\).\(^{23}\) At pH 7.4 and 6.5, \(K_{SV}\) were found at \(18.2 \pm 0.2 \times 10^4\).
and $18.8 \pm 0.9 \times 10^4 \text{ M}^{-1}$ respectively (table 1), which remained in the same order of magnitude as literature values, \textit{i.e.} $11.3 \times 10^4 \text{ M}^{-1}$ (280 nm excitation and 342 nm emission) and $8.3 \times 10^4 \text{ M}^{-1}$ (295 nm excitation and 344 nm emission wavelength), or $7.2 \times 10^4 \text{ M}^{-1}$ (280 nm excitation and from 300 to 450 nm emission).15

Concomitantly to the quenching of casein fluorescence by curcumin addition, a blue-shift of tryptophan spectrum was noticed (figure 1A). The fluorescence of tryptophan is sensitive to the polarity of its environment including hydration.14 The slight blue shift from 346.0 to 340.0 nm was attributed to a more apolar tryptophan microenvironment through increasing curcumin binding.14, 24 This effect was taken into account with the linearized form of the Stern-Volmer equation that permitted to determine the number of binding sites (n) and the binding constant (K_b):14

$$
\log_{10} \left[\frac{F_0}{F} \right] = \log_{10} K_b + n \log_{10} ([Cur])
$$

(2)

The modeling of the current study led to an average n value of 1.47 ± 0.02 that was relevant with the presence of one to two tryptophan residues per casein monomer in MC.2 The binding constant determined from quenching data (figure 1E) equaled $3.9 \pm 0.4 \times 10^4 \text{ M}^{-1}$ at pH 7.4 and was in good agreement with literature values14 ranging from 2.4×10^4 to $5.6 \times 10^4 \text{ M}^{-1}$. This binding constant range corresponds to non-covalent interactions.25

From the spectral overlap of trp emission and curcumin absorption, dynamic quenching can occur between the donor (trp) and the acceptor (curcumin). The quenching of donor (trp) fluorescence can then be due to acceptor (curcumin) located at different distances and orientations, and also to relative motions of donor and acceptor. All these contributions led to an apparent decay of donor fluorescence that could be related to an apparent distance distribution of acceptor. Considering very weak interactions between donor and acceptor, the evaluation of
distance between them can be evaluated from the Förster theory briefly described above and in
details elsewhere.26, 27 On the basis of the Förster theory, the energy transfer efficiency, E, from
the donor (trp) to the acceptor (curcumin) can be calculated from donor quenching:

$$E = 1 - \frac{F}{F_0}$$ \hspace{1cm} (3)

where F_0 and F, were the fluorescence intensity of tryptophan from MC in the absence and
presence of curcumin, respectively.26 The Förster critical distance, R_0, at which 50% of the
excitation energy was transferred from the donor to the acceptor can be calculated from equation
(4):

$$R_0^6 = 8.785 \times 10^{-5} \frac{\kappa^2 \phi_D J}{n^4}$$ \hspace{1cm} (4)

where κ^2, the orientation factor between donor and acceptor, was chosen equaled to 2/3 for a
random distribution. The quantum yield of donor in absence of acceptor, Φ_D, was fixed to 0.14
as proposed for tryptophan in water between 300 and 450 nm.26 The index of refraction, n, was
taken to be 1.332 in PBS. J was the overlap integral between donor and acceptor and it was
calculated from 300 to 450 nm according to:26

$$J = \sum_i F_D (\lambda_i) \varepsilon_A (\lambda_i) \lambda_i^4 / \sum_j F_D (\lambda_j)$$ \hspace{1cm} (5)

where F_D was the normalized fluorescence spectrum of the donor, ε_A was the molar absorption
coefficient of the acceptor. When ε_A and wavelength λ were expressed in $\text{M}^{-1} \cdot \text{cm}^{-1}$ and in nm,
respectively, then J was expressed in units of $\text{M}^{-1} \cdot \text{cm}^{-1} \cdot \text{nm}^4$ and the Förster distance, R_0,
calculated from equation (4) was in units of Å.26

Once the energy transfer efficiency and the Förster distance were known, the average distance
between donor and acceptor was calculated from.27
The Förster distance, R_0, for MC and curcumin was found at 27 Å that falls into the usual range of R_0 values for tryptophan as donor, i.e. from 12 Å to 40 Å. The average distance between MC and curcumin, r, was calculated at 33 Å. The distance r between pepsin and curcumin was recently found to be 24.5 Å within the curcumin-pepsin complex. For curcumin and bovine-α-lactalbumin complex R_0 and r were found at 4-5 and 5-9 Å, respectively. The overlap integral J and the energy transfer efficiency E were found at 1.6×10^{-14} M$^{-1}$ cm$^{-1}$ nm4 and 0.24 respectively. As a comparison, E was found equaled to 0.13 for curcumin and bovine-α-lactalbumin complex.

Curcumin fluorescence was measured at a curcumin concentration of 5 µM, and increasing MC concentration. The binding constant was estimated by the equation of Wang and Edelman (1971):

$$
\frac{1}{\Delta F} = \frac{1}{\Delta F_{\text{max}}} + \frac{1}{K_b \Delta F_{\text{max}} [\text{MC}]}
$$

where ΔF was the difference in fluorescence intensity at 500 nm between solutions with and without curcumin, ΔF_{max} the maximum change in fluorescence, K_b the binding constant (M$^{-1}$) of curcumin with MC and [MC] the casein micelle concentration expressed in molar unit. A binding constant K_b was calculated from the reverse plot of ΔF vs. [MC], as the ratio between the y-axis intercept, $1/\Delta F_{\text{max}}$, and the slope, $1/(\Delta F_{\text{max}} K_b)$ (figure 1F). In this study, a K_b value of $0.6 \pm 0.1 \times 10^4$ M$^{-1}$ was calculated by the double reciprocal method (cf. equation 7 and figure 1F, $R^2 = 0.995$), which corroborated literature values obtained in similar conditions with $0.6 \pm 0.3 \times 10^4$ M$^{-1}$ and 1.5×10^4 M$^{-1}$).
The ratios MC/curcumin ratios obtained at maximal quenching (figure 1C) and maximal curcumin fluorescence intensities (figure 1D) were chosen to determine the influence of curcumin addition on MC colloidal properties then on acid aggregation and gelation.

Influence of temperature on curcumin-MC interactions

Temperature was expected to influence curcumin-MC assemblies since hydrophobic interactions between phenolic rings of curcumin and hydrophobic amino acid residues of caseins were hypothesized. Moreover, it is well-known that the temperature range from 10 to 40 °C influence the solubilization of hydrophobic β-casein and the voluminosity of MC. It was then relevant to study curcumin-MC behavior over this temperature range by fluorescence.

From normalized fluorescence data of curcumin (at 5 µM) as a function of MC concentration, saturation curves (figure 2A) were obtained. Two behaviors were observed according to temperature: the first one at 20 and 25 °C and the other one at 30, 35, and 40 °C. To reach half of the maximal fluorescence intensity at 5 µM curcumin concentration, twice the casein concentration (12 µM vs 6 µM) was necessary at lower temperature (Figure 2 B). Increasing temperature from 20 to 35 °C increased the binding constant K_b from 0.6 to $6.6 \times 10^4 \text{ M}^{-1}$ (Table 2). The obtained binding constants values were moderate and could be attributed to non-covalent interactions. The increase in K_b values with temperature suggested that the binding reaction between curcumin and MC was endothermic. From K_b dependency to temperature, the van’t Hoff equation gave $\Delta H = +116.5 \pm 18.2 \text{ kJ.M}^{-1}$ and $\Delta S = +471.8 \pm 60.5 \text{ J.K}^{-1}.\text{M}^{-1}$. $\Delta H = +114.5 \text{ kJ.M}^{-1}$ and $\Delta S = +471.8 \text{ J.K}^{-1}.\text{M}^{-1}$. This led to Gibbs free energy values, ΔG varying from -21.7 to -28.8 kJ.mol$^{-1}$ from 20 to 35 °C. The negative change in ΔG supported that curcumin binding to MC was spontaneous. The positive values of enthalpy (ΔH) and entropy (ΔS)
indicated that hydrophobic interactions were the major binding forces governing interactions.25 The positive value of enthalpy (ΔH) may be related to two main factors: the loss of hydrophobic hydration structures when the curcumin molecules approached MC and the partial disintegration of the bound water structure surrounding the curcumin molecules when they came into contact with MC hydrophobic regions. The positive value of ΔS should be attributed to the release of combined water molecules from protein or curcumin to buffer medium when curcumin bound to MC. Another antioxidant molecule, α-tocopherol, showed the same thermodynamic profile for enthalpy, entropy and Gibbs energy when interacting with human-serum albumin.25 Another way to enhance hydrophobic interactions of MC with curcumin was to remove β-casein from the micellar system in order to increase the hydrophobic character of MC interior.30 This resulted in an increased binding of curcumin to modified-MC.30 MC contains 20 000 casein monomers and result from aggregation of α_s- and β-casein monomers with calcium phosphate then stabilized with κ casein in surface.33,34 The open MC structures permit small molecules like curcumin to enter and interact with α- or β-casein. In order to go further on the influence of curcumin binding on MC structure, a multiscale characterization of the MC internal and overall structure was performed. The influence of curcumin complexation on MC internal structure was studied by SAXS. Moreover, MC size variation upon curcumin addition was investigated by DLS.

Influence of curcumin on internal and overall MC structure in PBS buffer

Small angle scattering methods allow the investigation of the size and shape of the entire casein micelle or of its internal structure depending on the employed experimental q-range. The lower the q-value, the broader the observation window of the system. Experiments performed by Ultra Small Angle X-ray Scattering (USAXS) at low q-value of 3×10^{-4} Å$^{-1}$ were used to study the
entire casein micelle structure.35 In this study, the experimental q-range (from 4×10^{-3} to 0.7 Å$^{-1}$) was suitable for investigating the variations of casein micellar internal structure upon curcumin encapsulation. SAXS profiles of MC dispersion (superimposed and shifted in intensity) are presented in Error! Reference source not found.3A and 3B. Samples without curcumin have been analyzed at two sample-detector distances. The superimposition of the MC patterns acquired at both distances (cf. circles and diamonds) confirmed the validity of the mathematical treatment used to recover the absolute intensity in cm$^{-1}$. Mixtures of MC and curcumin have been analyzed only using the long distance configuration.

The shape of the MC scattering curves was consistent with literature data about small-angle scattering of casein micelles as reviewed recently.36 At low angles ($4 \times 10^{-3} < q (\text{Å}^{-1}) < 3 \times 10^{-2}$), a near q^{-4} slope was detected corresponding to the form factor of the overall casein micelles structure. An inflexion point was reported around 0.07 Å$^{-1}$ followed by a q^{-2} slope at high angles. This signal was related to the form factor of calcium phosphate nanoclusters.5,35 The addition of different curcumin concentrations to the MC suspension did not show any influence on the scattering profiles. All the curves were superimposed demonstrating that the internal structure of the MC was not modified upon curcumin addition. Different results were reported on the effect of tannins (epigallocatechin gallate, EGCG) addition on MC internal structure.5 EGCG addition to MC led to a higher scattered intensity at low angles due to an increase in the global electronic density of the casein micelle. Moreover, the presence of tannins significantly altered the scattering profile at high q values.5 Calcium chelation by EGCG resulted in the disappearance of the inflexion at 0.07 Å$^{-1}$.5 From our results, no sensible modification of the scattering signal was observed upon curcumin addition to MC. This can be explained by the difference in biomolecules concentration; indeed, in the work of Shukla et al.5, EGCG concentration was about thousand fold higher than the curcumin concentration of the current
study. More recently, Haratifar and Corredig found that up to 0.08 mg EGCG were bound per mg of milk protein.\(^ {18}\) No such high concentrations were tested with curcumin due to the fact that curcumin concentration (5 - 50 µM) was chosen with respect to the right biological activity usually found for example against bone cancer cells over healthy bone cells or U2OS osteosarcoma cells.\(^ {37,38}\)

DLS and ζ potential measurements were performed to acquire more information on size and stability of MC doped with curcumin. The influence of raising temperature from 20 to 35 °C on the size and charge of native and curcumin-doped MC was determined. The results obtained after addition of curcumin did not reveal significant change in average MC size. At 20 °C, MC size was determined at 187 ± 4 nm for control and 186 ± 3 nm after curcumin addition. Increasing temperature up to 35 °C gave lower size at 175.8 ± 8.7 nm for control and 177 ± 8 nm after curcumin addition. Less hydration and lower voluminosity with higher temperature explained such size variation.\(^ {39}\) The polydispersity index (PDI) was equal to 0.16 ± 0.01 at 20 °C and 0.14 ± 0.01 at 35 °C for native and curcumin-doped MC respectively, indicating narrow size distributions and no disturbance in overall MC structure. Either vitamin D\(_2\) or docosahexaenoic acid (DHA) could be incorporated into the hydrophobic core of re-formed MC (from Na-caseinate supplemented with phosphate, citrate, and calcium ions) without variation of MC size and morphology, as measured by dynamic light scattering and observed by TEM.\(^ {11}\) Small tannins were also carried by MC without change in its colloidal size.\(^ {5}\)

Curcumin addition to MC did not modify the overall charge and stability of MC. ζ potential values equaled -12.0 ± 0.7 mV for MC control and -11.5 ± 1.2 mV for MC doped with curcumin at 20 °C whereas -13.8 ± 0.7 mV and -14.1 ± 0.9 mV were respectively found at 35 °C.
X-ray and light scattering experiments revealed that the presence of curcumin did not modify the MC internal and overall structure. These results suggested that MC can carry curcumin without change in overall structure. The question then arises as to what the effect of loaded curcumin on acid gelation properties of MC is. Further investigations of the current work were focused on the influence of curcumin on MC colloidal stability under acidification in the 4.2–7.4 pH range between 20 and 35 °C. This was first studied by fluorescence spectroscopy.

Influence of acidification on curcumin-MC interactions

The quenching of trp fluorescence by curcumin binding to MC was observed after stabilization of mixtures at pH values ranging from pH 5.0 to 7.4 (figure 4). It was demonstrated that MC quenching by curcumin was stable during overall acidification and only a slight additional quenching due to pH variation was noticed as for the control (MC without curcumin). This slight MC quenching observed during acidification was probably due to more interactions between amino acid residues in the tryptophan environment in relation with protonation, demineralization and dehydration of MC. MC hydration (or voluminosity) decreased of about 30% from pH 6.6 to 4.8 while micellar calcium phosphate was fully solubilized.\(^{32-34}\). The pH-dependent quenching variation influenced the binding constant \(K_b\) (equation 2) which increased from pH 7.0 to 6.0 then decreased up to pH 5.0 while \(K_{SV}\) regularly increased with acidification (Table 1). Then, \(K_b\) appeared more sensitive than \(K_{SV}\) to the quenching effect due to MC acidification. The number of protein sites (n) was the second binding parameter calculated from equation 2 and it was also found to be pH-dependent with values in the 1.25-1.49 range (Table 2). At pH 7.4 in PBS, 1.47 binding sites were obtained for MC-curcumin complex, consistently with the 1.20 binding sites found for curcumin interacting with bovine-\(\alpha\)-lactalbumin.\(^{29}\)
The bimolecular quenching rate constant, \(\kappa_q \), was calculated from \(K_{SV} \) according to \(K_{SV} = \kappa_q \times \tau_0 \) where \(\tau_0 \) is the average lifetime of the biomolecule. For a biomolecule without a quencher, \(\tau_0 \) can be estimated at \(10^{-9} \) s. Then, in the pH range from 7.4 to 5.0, \(\kappa_q \) varied from \(1.8 \times 10^{14} \) to \(3.2 \times 10^{14} \) M\(^{-1}\) s\(^{-1}\) which is higher than the limiting diffusion constants of the biomolecules upon interaction with various quenchers (\(\kappa_q = 2 \times 10^{10} \) L\(\cdot \)mol\(^{-1}\)\(\cdot \)s\(^{-1}\)). Then, according to \(\kappa_q \) fluorescence, quenching arose mainly from static mechanism by complex formation in the ground state.

Influence of curcumin addition on the sol-gel transition measured by multiple static light scattering and rheological measurements

The sol-gel transition of MC samples acidified with GDL was followed by the evolution of the relative back scattered intensity (\(\Delta BS \)) all along the sample height every 5 min after GDL addition. One result concerning MC-curcumin sample at 35 °C is presented in Figure 5-A for instance. From the time of GDL addition, an increase in \(\Delta BS \) was reported corresponding to MC aggregation as the intensity of scattered light increased with particle size and concentration. This increase occurred all along the sample height, meaning that aggregation was homogeneous. No syneresis was evidenced, as the evolution was independent from sample height. The temporal evolution of the \(\Delta BS \) average (calculated between 15 and 45 mm sample height) is presented in Figure 5-B in relation with the elastic modulus G’ profile that illustrated gel formation. \(\Delta BS \) rapidly varied with acidification indicating that particle aggregation began much sooner than gelation ((classically considered to occur when G’ becomes greater than 1Pa)). Acid gelation followed by \(\Delta BS \) and G’ profiles was compared for MC controls and MC doped with curcumin at 20 and 35 °C (Figure 6). The addition of curcumin did not affect gelation.
occurring around pH 4.4 and 4.6 at 20 and 35 °C respectively. Three steps were identified from
ΔBS variation with pH at 20 and 35 °C: a first slight variation from the initial pH to around pH
5.2 when MC are demineralized, then a rapid increase was obtained from pH 5.2 down to pH 4.8
that might be related to an increase in particle size that is more pronounced at 35 °C than at 20
°C. Finally, a plateau value was reached whereas the sol-gel transition occurred when
aggregates interacted to form a colloidal gel.

In this study, higher binding constants were obtained at 35 °C compared to 20 °C indicating
more interactions between curcumin and MC with temperature. Increasing hydrophobic
interactions were proposed as the major contribution to the raise in binding constants. With
acidification below the isoelectric pH of caseins, enhancement of hydrophobic interactions was
expected as a consequence from protein charge neutralization and lower hydration of MC
whereas curcumin stays in neutral form (indeed, its pKₐ values were reported at pH 8.38 ± 0.04,
9.88 ± 0.02 and 10.51 ± 0.01).

It was recently observed that curcumin and resveratrol increased the delay of rennet gelation. Chelating calcium with polyphenols was proposed to inhibit rennet gelation by decreasing
calcium binding with caseins. The partial covering of MC with curcumin was also proposed to
compete with casein-casein interactions. During acidification, it was not evidenced any effect
of curcumin addition on MC gelation. The number of protein sites available for interaction with
curcumin (n) was found from 1.25 to 1.49. This low value should explained the preservation of
the main colloidal properties of MC, i.e. size, structure and charge. This indicated that curcumin
and certainly other hydrophobic biomolecules should be conveyed efficiently by MC in the
moderate acid conditions of yogurt-like products.
Material and methods

Material

The native-like phosphocaseins micelles (MC) used in this study were prepared by milk microfiltration and diafiltration using milk ultrafiltrate (Promilk 872 B, Ingredia Dairy Ingredients, Arras, France), prior to stabilization in powder form by spray-drying. It contained 95% (w/w) dry solids and, on a dry weight basis, 87% total proteins (about 80% phosphocaseins), 7.3% minerals, 5% lactose, and 0.8% fat. Bovine serum albumin (BSA), curcumin, glucono-delta-lactone, and sodium azide were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France). All other chemicals, of analytical grade, were provided by Carlo Erba (Milan, Italy).

Preparation of solutions

Stock solutions of curcumin (≥ 94% purity) were prepared in ethanol (96%) at 1.0 mg.mL\(^{-1}\) and stored protected from light at 4 °C. Different curcumin concentrations were obtained from the stock solution by dilution in ethanol just before use. Phosphate Buffered Saline (PBS) solution (adjusted to pH 7.4 with HCl) was prepared with ultrapure water and contained for one liter: 8 g NaCl, 0.2 g KCl, 1.44 g Na\(_2\)HPO\(_4\), 0.24 g KH\(_2\)PO\(_4\). In order to prevent bacterial growth, sodium azide (0.02% (w/v)) was added to PBS buffer. PBS buffer filtration through 0.2 µm polyethersulfone membrane (Millipore) was performed before use. MC were dispersed in PBS buffer (pH 7.4) and stirred overnight at room temperature (20 °C) in order to get maximal protein hydration and stabilization. MC concentration was determined by Lowry-Folin assay using BSA as reference protein.\(^4\) In the whole document, MC molar concentrations were always expressed in equivalent BSA concentrations. On a dry weight basis, 1g.L\(^{-1}\) MC was equivalent
to 16.7µM BSA. Curcumin and MC mixtures were prepared in order to not exceed 2% (v/v) addition of ethanol and thus avoiding protein denaturation. Controls were made with MC suspensions containing ethanol without curcumin at a level not exceeding 2% (v/v) of ethanol. Unless indicated, curcumin and MC mixtures were stirred for 1 h at room temperature before use. The influence of acidification on curcumin-MC interactions was investigated by hydrolysis of various amounts of Glucono-delta-lactone (GDL) in both kinetic and steady-state conditions. Acidification was monitored with the Lab 850 pH-meter (SCHOTT® Instruments, Germany). Each experiment was triplicated.

Fluorescence spectroscopy

The study of curcumin - MC interactions was carried out with a FLX spectrofluorimeter (Safas, Monaco), which was temperature-controlled from 20 to 35 °C (± 0.5 °C) by circulating water. Curcumin fluorescence was measured at 5 µM in the presence of MC concentrations varying from 0 to 55.8 µM. The emission spectra were recorded from 450 to 700 nm with an excitation wavelength of 420 nm. The slit widths used for curcumin fluorescence were 2.5 and 5 nm for excitation and emission, respectively. MC suspensions without curcumin were used as controls. MC quenching was determined at 8.9 µM for various curcumin concentrations ranging from 0 to 40 µM. The emission spectra were recorded from 300 to 450 nm at an excitation wavelength of 280 nm. Slit widths were 10 and 2.5 nm for excitation and emission respectively. Curcumin solutions free from MC were used as controls.

Curcumin solutions and MC suspensions were vigorously mixed during 30 s in a 5 mL-tube, then transferred into quartz cuvette (1 cm path length) for analysis. Each experiment was performed in triplicate.
Size measurements by Dynamic Light Scattering

The hydrodynamic diameter of MC was measured by Dynamic Light Scattering using the Zetasizer Nano-ZS (Malvern Instruments, Malvern, UK). The apparatus was equipped with a 532 nm frequency doubled DPSS laser He/Ne type. Particle size distributions were determined using a low volume disposable cuvette (Zen0112, Malvern Instruments, UK). CONTIN analysis model at 173° detecting angle was applied to transform the autocorrelation function into particle size distributions. Data were assessed by Zetasizer software 7.10 (Malvern Instruments). PBS buffer (1.332 refractive index and 0.86 mPa.s viscosity at 25 °C) was chosen as dispersant. MC and curcumin concentrations were fixed at 15.8 µM and 51.0 µM respectively in order to get a MC: curcumin ratio that corresponds to around 80% MC quenching (figure 1C). Absorption and real refractive indexes of protein were 0.001 and 1.450, respectively. A delay of 300 s between size measurements was to ensure sample equilibration at desired temperature.

ζ-potential measurements

The zeta potential is an indirect measure of the surface charge, which is an indicator of the colloidal stability of particles. This was determined using a dynamic light scattering instrument (Zetasizer Nano ZS, Malvern Instruments, Malvern, UK) fitted with a high concentration sample cell. The high concentration cell enabled the measurement of the MC zeta potential with no dilution of PBS buffer that was chosen as MC dispersant. MC concentration was fixed at 15.8 µM and curcumin at 51.0 µM. Each experiment was made in triplicate.

Small Angle X-Ray Scattering
SAXS measurements were carried out at SOLEIL synchrotron at the SWING beamline (12 keV energy). Two distances between sample and CCD camera, 1.47 and 2.97 m, were used to cover q-ranges from 8×10^{-3} to 0.7 Å$^{-1}$ and 4×10^{-3} to 0.4 Å$^{-1}$ respectively, where $q = 4\pi \sin(\theta)/\lambda$ is the modulus of the scattering vector, 2θ is the scattering angle, and λ is the X-ray wavelength. The q-range calibration was achieved with a silver behenate standard ($d_{ref} = 58.38$ Å). For the absolute intensity calibration, scattering patterns of the empty capillary and the capillary filled with deionized water were first recorded. The value of the constant intensity contribution of water is equal to 0.016 cm$^{-1}$ on the absolute scale. Then, the signal of the same capillary filled with the solvent solution was recorded for subtraction purposes before the introduction of the studied samples.

Multiple light scattering measurements for milk gelation

The aggregation of MC dispersions after GDL addition (3% (w/v)) was followed by multiple light scattering measurements using a Turbiscan Classic MA2000 apparatus (Formulaction, France) using a pulsed near-infrared light source ($\lambda = 850$ nm). Addition of ethanol in the mixtures of MC and curcumin (1 mg.mL$^{-1}$) did not exceed 2% (v/v). The low solubility of curcumin in ethanol (1 mg.mL$^{-1}$) implied limited addition of curcumin to high concentration of MC. The final concentrations for MC and curcumin equaled 501 and 51 µM respectively and this corresponded to the ratio MC/curcumin found in figure 1D for the maximal soluble curcumin concentration. Two synchronous detectors measured transmitted and backscattered light upon sample height by several scans all along a glass cylindrical cell from the bottom to the top of the sample (5 - 7 cm analysis height) by incremental movements of 40 µm. In the case of MC dispersions, only the backscattered light intensity (at 135° from the incident beam)
has been followed upon sample height since no transmitted light was detected. Backscattered intensities all along the sample have then been performed upon time. One scan has been recorded every 5 minutes after GDL addition (t_0). The first scan recorded at t_0 has been substracted from the following scans in order to highlight the system evolution upon time using Turbisoft software. Then, the relative percentage of backscattered intensity (ΔBS) upon sample height was reported. The evolution of the average backscattered intensity upon time has also been plotted using this software. An increase of ΔBS upon time all along the sample height corresponds to a homogenous aggregation of the particles. If an increase is detected at the bottom of the glass cell and a decrease is reported at the top, a sedimentation occurs. An evolution on the opposite way corresponds to a creaming of the dispersion. Measurements have been performed in triplicates. The entire Turbiscan device has been placed in an oven to perform the measurements at 35 °C. Turbiscan measurements began 3 min after GDL addition and stirring.

Viscoelastic measurements of acid milk gelation

The curcumin and MC mixtures were prepared as indicated in the previous section. GDL (3% (w/v)) was gently stirred in MC (501 µM) and curcumin (51 µM) mixtures for 3 min and a 20 mL aliquot was immediately transferred into the gap of coaxial cylinders (DIN C25) of the Kinexus rheometer (Malvern Instruments, UK). The sol-gel transition and the development of the gel structure was followed using 0.1% shear strain and 1.0 Hz frequency at controlled temperatures 20 and 35 °C. The time at which the storage modulus (G') became greater than 1 Pa was considered as the gelation point. Each test was performed in duplicate.
Conclusion

Curcumin interaction with MC was confirmed by fluorescence spectroscopy. From binding constant calculation, it was shown that higher temperature favored curcumin-MC interactions, as expected for hydrophobic molecules. X-ray and dynamic light scattering experiments revealed that curcumin did not modify MC internal and overall structures. MC ζ-potential remained unchanged after curcumin addition. Hence, MC can load curcumin without change in their overall structure and charge. The slight variation in binding constants in the pH range from 7.4 to 5.0 indicated that curcumin should be conveyed efficiently by MC in these moderate acid conditions. The acid milk gelation was not disturbed after curcumin addition at 20 and 35 °C. Further investigations should be necessary to understand the dependence of curcumin release by MC on temperature and pH variations. This would allow improving the controlled-delivery from MC during gastric and pancreatic digestion phases in order to favor curcumin and other polyphenols bioavailability in dairy foods.

Acknowledgements

Authors would like to thank Marie-José Stébé and Marianne Impéror for their help during SAXS experiments. This study was supported by grants from Erasmus Mundus (Program Element), Region Lorraine and Université de Lorraine (Program CPER 5, Nutralor). All of these are gratefully acknowledged.
References

Table 1: Values of the Stern-Volmer constant K_{sv}, the binding constant K_{b}, and the number of protein sites n, for curcumin-MC mixtures at different pH values. Experiments were made in triplicate at 25 °C.

<table>
<thead>
<tr>
<th>pH</th>
<th>K_{sv} ($\times 10^{4}$ M$^{-1}$)</th>
<th>K_{b} ($\times 10^{4}$ M$^{-1}$)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>18.8 ± 0.9</td>
<td>3.9 ± 0.4</td>
<td>1.47 ± 0.02</td>
</tr>
<tr>
<td>6.5</td>
<td>18.2 ± 0.2</td>
<td>7.8 ± 1.3</td>
<td>1.25 ± 0.06</td>
</tr>
<tr>
<td>6.0</td>
<td>21.9 ± 0.5</td>
<td>9.2 ± 1.6</td>
<td>1.25 ± 0.05</td>
</tr>
<tr>
<td>5.5</td>
<td>24.1 ± 1.5</td>
<td>7.7 ± 1.2</td>
<td>1.38 ± 0.06</td>
</tr>
<tr>
<td>5.0</td>
<td>32.5 ± 1.5</td>
<td>7.5 ± 0.7</td>
<td>1.49 ± 0.05</td>
</tr>
</tbody>
</table>
Table 2: Variation of K_b values (eq. 3) as a function of temperature. Experiments were made in triplicate.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>K_b ($\times 10^4$ M$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.6 ± 0.3</td>
</tr>
<tr>
<td>25</td>
<td>2.2 ± 0.5</td>
</tr>
<tr>
<td>30</td>
<td>3.8 ± 1.2</td>
</tr>
<tr>
<td>35</td>
<td>6.6 ± 0.6</td>
</tr>
</tbody>
</table>
Figures captions

Figure 1. Fluorescence emission induced by the binding of curcumin to casein micelles. (A) Intrinsic fluorescence emission spectra of 8.9 µM casein micelles in the presence of increasing concentrations of curcumin (0 - 50 µM, a-j curves). Excitation wavelength (\(\lambda_{\text{exc}}\)) was set at 280 nm. (B) Intrinsic fluorescence emission spectra of 5 µM curcumin (\(\lambda_{\text{exc}} = 420\) nm) at increasing concentrations of casein micelles (0 - 55.8 µM, a-k curves). (C) Fluorescence quenching of 8.9 µM casein micelles at \(\lambda_{\text{em}} = 344\) nm (\(\lambda_{\text{exc}} = 280\) nm) with increasing curcumin concentration (0 - 40 µM). (D) Fluorescence intensity of curcumin at \(\lambda_{\text{em}} = 500\) nm (\(\lambda_{\text{exc}} = 280\) nm) with increasing concentrations of casein micelles (0 - 55.8 µM). (E) Double logarithmic plot: \((F_0 - F)/F\) vs. [curcumin] from fluorescence quenching experiments. (F) Double reciprocal plot: \(1/(F-F_0)\) vs. \(1/[\text{casein micelles}]\) from fluorescence intensity experiments.

Figures 2. (A) Normalized fluorescence intensity of 5 µM curcumin at 500 nm (\(\lambda_{\text{exc}} = 420\) nm) in the presence of increasing casein micelles concentrations (0, 5.6, 11.2, 13.9, 16.7, 19.5, 22.3, 27.9, 33.5, 39, 44.6, 50.2, and 55.8 µM) at 20, 25, 30, 35, and 40 °C (n = 3). (B) Casein micelles concentrations at half maximal fluorescence in the 20 - 40 °C temperature range.

Figure 3. Small Angles X-Ray Scattering profiles of casein micelles dispersions. Circles and diamonds: 6.7 µM CM in the absence of curcumin respectively recorded at long and short sample-detector distances; squares, triangles, and orange triangles: 6.7 µM casein micelles and 1.5, 2.3, and 4.6 µM curcumin, respectively, recorded only at long sample-detector distance. (A) superimposed curves and (B) curves shifted for clarity purposes.

Figure 4. Fluorescence quenching of casein micelles (8.9 µM) after MC acidification overnight by hydrolysis of GDL at pH values from 7.5 to 5.0. \(\lambda_{\text{em}} = 344\) nm (\(\lambda_{\text{exc}} = 280\) nm) with increasing concentrations of curcumin (0 - 30 µM) at 25°C. Represented values are the mean of three replicates. Dotted lines correspond to kinetic induced by hydrolysis of GDL in MC suspension containing 0 and 20 µM curcumin. The fluorescence offset between pH stabilized and kinetic experiments performed with curcumin concentration of 0 and 20 µM is due to different apparatus configurations.

Figure 5. Backscattered intensity measurements on MC-curcumin sample at 35 °C: (A) Evolution of the relative percentage of backscattered intensity (\(\Delta BS\)) (t0 = reference) upon sample height after GDL addition during 115 min (one scan every 5 minutes). (B) Evolution of the \(\Delta BS\) average (calculated from sample height between 15 and 45 mm) and elastic modulus (\(G'\)) upon time after GDL addition.

Figure 6. Evolution of (A) the elastic modulus and of (B) the relative percentage of backscattered intensity upon GDL acidification of MC and MC-curcumin samples at 20 and 35°C.
Figure 1
Figure 2

A

B

Figure 2
Figure 3

A

B

Intensity (cm$^{-1}$) vs. q (Å$^{-1}$)

Intensity (a.u.) vs. q (Å$^{-1}$)

[curcumin] 4.6 µM
2.3 µM
1.5 µM
0 µM
Figure 4

Tryptophan fluorescence at 344 nm (a.u.) vs pH

- 0 µM
- 5 µM
- 10 µM
- 15 µM
- 20 µM
- 30 µM
- Kinetic 0 µM
- Kinetic 20 µM
Figure 5

A

Sample height (mm)

B

Time after GDL addition (min)

Elastic modulus G'

ΔBS (%)

ΔBS (%)
Figure 6

A

Elastic Modulus G' (Pa)

B

ΔBS (%)

pH

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

MC at 35 °C

MC-curcumin at 35 °C

MC at 20 °C

MC-curcumin at 20 °C