This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
The *ex vivo* antiplatelet activation potential of fruit phenolic metabolite hippuric acid

Abishek Bommannan Santhakumar*, 1,2, Roger Stanley3, Indu Singh1

1Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland 4222, Australia.
2School of Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland 4702, Australia
3Centre for Food Innovation, University of Tasmania, Tasmania 7250, Australia

* Corresponding author:
Dr. Abishek Bommannan, Santhakumar
School of Medical and Applied Sciences,
Central Queensland University, Bruce highway,
North Rockhampton, Queensland 4702, Australia
E-Mail: a.santhakumar@cqu.edu.au
Alternate E-Mail: sabishekbommanan@gmail.com
Tel.: +61 (0) 7 49309626
Fax: +61 (0) 7 49309209

Other author E-Mail:
Prof. Roger Stanley: Roger.Stanley@utas.edu.au
Dr. Indu Singh: i.singh@griffith.edu.au
Abstract

Polyphenol-rich fruit and vegetable intake has been associated with reduction in platelet hyperactivity, a significant contributor to thrombus formation. This study was undertaken to investigate the possible role of hippuric acid, a predominant metabolite of plant cyclic polyols, phenolic acids and polyphenols, in reduction of platelet activation-related thrombogenesis. Fasting blood samples were collected from 13 healthy subjects to analyse the effect of varying concentrations of hippuric acid (100 μM, 200 μM, 500 μM, 1 mM and 2 mM) on activation-dependant platelet surface-marker expression. Procaspe activating compound-1 (PAC-1) and P-selectin/CD62P monoclonal antibodies were used to evaluate platelet activation-related conformational changes and α-granule release respectively using flow cytometry. Platelets were stimulated ex vivo via the P$_2$Y$_1$/P$_2$Y$_12$– adenosine diphosphate (ADP) pathway of platelet activation. Hippuric acid at a concentration of 1 mM and 2 mM significantly reduced P-selectin/CD62P expression ($p=0.03$ and $p<0.001$ respectively) induced by ADP. Hippuric acid at 2 mM concentration also inhibited PAC-1 activation-dependant antibody expression ($p=0.03$). High ex vivo concentrations of hippuric acid can therefore significantly reduce P-selectin and PAC-1 expression thus reducing platelet activation and clotting potential. However, although up to 11 mM of hippuric acid can be excreted in the urine per day following consumption of fruit, hippuric acid is actively excreted with a recorded C$_{max}$ for hippuric acid in human plasma at 250-300 μM. This is lower than the blood concentration of 1-2 mM shown to be bioactive in this research. The contribution of hippuric acid to the protective effects of fruit and vegetable intake against vascular disorders by the pathways measured is therefore low but could be synergistic with lowered doses of antiplatelet drugs and help reduce risk of thrombosis in current antiplatelet drug sensitive populations.

Keywords: Platelet activation, polyphenol, hippuric acid, thrombosis, P-selectin
INTRODUCTION

According to a recent World Health Organisation report, 17.5 million people died from cardiovascular disease in 2012, representing 31% of all global deaths. Amongst several risk factors including smoking, hypertension, genetic association and obesity, poor nutrition has also been one of the important contributors. Several studies have reported the benefits of a healthy diet of fruit and vegetables in reducing the risk of vascular disorders. Interest in plant derived antioxidants and polyphenols such as anthocyanins and quercetin continues to grow as a result of their reported antithrombotic and cardiovascular benefits. Analysis of the pharmacokinetics and bioavailability of plant derived compounds after polyphenol/anthocyanin rich food intake has shown that the concentrations of anthocyanins and structurally related metabolites only reach micro-molar concentrations in vivo (less than 5 µM). However hippuric acid is a major metabolite post polyphenol consumption that is excreted in urine in up to millimolar concentrations in vivo. Consumption of prunes, black and green tea solids, cranberry juice, red wine, grape juice, and fruits/vegetables in general have been shown to increase urinary hippuric acid levels. According to a dietary intervention study by Toromanovic and colleagues, urinary excretion of levels of hippuric acid reached up to 11 mM per 24 hours after consumption of 300 g of edible fruits. The increased levels are believed to be due to plant derived simple phenolic compounds and the microbial degradation of anthocyanins, chlorogenic acids and quinic acid in the colon and their catabolism to benzoid type compounds. In spite of hippuric acid being a consistent biomarker/metabolite that can be excreted via the urine in grams per day, there are no well-documented cardiovascular benefits associated with it.

Several in vitro and in vivo trials have demonstrated the prospective bioactivity of natural dietary phenolics rich in antioxidants, such as anthocyanins and quercetin derivatives in reducing thrombotic risk by alleviating platelet hyperactivity/aggregation.
Hippuric acid, however, occurs in very high concentrations in vivo versus very low levels of most other phenolics. Similar to the action of current anti-platelet drugs such as aspirin and clopidogrel, polyphenols have been demonstrated to block platelet activation pathways (cyclooxygenase-1 – COX-1 and P₂Y₁/P₂Y₁₂) consequently reducing the risk of thrombosis. We hypothesize that, active metabolites occurring in vivo at high concentration such as hippuric acid, could also be partially responsible for the claimed anti-platelet properties of plant derived phenolic acids and polyphenols.

This ex vivo trial aimed to evaluate the effect of hippuric acid, a potential active metabolite, in targeting the P₂Y₁/P₂Y₁₂ pathway of platelet activation. We have analysed the effect of various concentrations of the metabolite on activation-dependant platelet surface receptor P₂Y₁/P₂Y₁₂ induced by adenosine diphosphate (ADP), a physiological platelet activator, by evaluating the expression of platelet activation-related conformation change and degranulation.

MATERIALS AND METHODS

Subject recruitment and sample collection

The study protocol was approved by the Griffith University Human Research ethics committee (GU Protocol no. MSC/13/11/HREC) and was performed in compliance with the relevant laws and institutional guidelines. Thirteen healthy subjects were recruited from the general population by means of advertisements placed around Griffith University, Gold Coast campus. Subjects were healthy, non-smokers with no history of metabolic or cardiovascular diseases and were not on any anti-inflammatory, anti-platelet medications or health supplements at least 7 days prior to blood collection. Informed consent was obtained from all
volunteers prior to commencement of the study. Fasting whole blood samples were collected from the median cubital vein by a trained phlebotomist at the School of Medical Science, Griffith University. Care was taken to ensure minimal sample handling or agitation to prevent platelet activation. No samples were obtained from traumatic phlebotomy procedures or contained obvious clots. Blood was drawn into tri-potassium EDTA (1.8 mg/mL) anticoagulant tubes (used for full blood examination - FBE) before collection into tri-sodium citrate (28.1 g/mL) tubes (used for platelet surface-marker expression) to avoid risk of collecting venepuncture activated platelets. Baseline FBE and biochemical profile was carried out for initial subject screening and recruitment using a Coulter® Ac.T™ 5diff CP haematology analyser (Beckman Coulter, Inc., Lane Cove, NSW, Australia) and Cobas Integra 400® plus biochemistry analyser (Roche diagnostics, Basel, Switzerland) respectively.

Hippuric acid

Hippuric acid used in the analysis was purchased from Sigma-Aldrich, Australia. Working solutions of 100 µM, 200 µM, 500 µM, 1 mM and 2 mM were prepared from a stock solution of 20 mM concentration diluted in 1x concentration of phosphate buffered saline (PBS). Aliquots of different concentrations of hippuric acid were stored at 4°C for a maximum of 2 weeks.

Activation dependant platelet surface-marker expression

Venous blood collected into tri-sodium citrate tubes were used to evaluate platelet surface marker expression. This analysis was performed and interpreted using the BD LSRFortessa cell analyser (BD Biosciences, North Ryde, NSW, Australia) and BD FACSDiva software (version 6.1.3, BD Biosciences, North Ryde, NSW, Australia) respectively. Platelet activation dependant monoclonal antibodies (mAb) were used to evaluate the expression of positive activated platelets induced by ADP agonist. CD42b-peridinin chlorophyll protein
(CD42b-PerCp-Cy5.5) conjugated mAb was used to identify the GPIb-IX receptors, the most abundant receptor on the platelet population. Platelet activity was assessed by activation-dependent platelet surface marker expression using PAC-1-fluorescein isothiocyanate (PAC-1-FITC) recognises activated conformational changes in the fibrinogen binding receptor GPIIb-IIIa) and P-selectin/CD62P- (expressed in activated de-granulated platelets) conjugated mAb. The antibodies and their respective isotype controls were purchased form BD Biosciences (BD Biosciences, North Ryde, NSW, Australia).

Whole blood was incubated with respective concentrations of hippoc acid and control (PBS) for 15 min at room temperature (25ºC). After incubation, the samples were then diluted in filtered modified tyrode’s buffer (pH 7.2) and incubated with CD42b, PAC-1, P-selectin mAb’s for 15 mins in the dark at room temperature. ADP (5 µM) was incubated with the blood-antibody mixture for 10 min in the dark at room temperature to stimulate the platelets via the P2Y12/P2Y1 platelet activation pathway. The suspension was then fixed with 1% paraformaldehyde solution (pH 7.2), incubated in the dark at room temperature for 15 min and analysed in the flowcytometer for antibody expression. The setup and optimal fluorescence compensation of the flowcytometer was validated using BD Cytometer Setup and Tracking beads and BD CompBead compensation particles (BD Biosciences, North Ryde, NSW, Australia). Ten thousand platelet events were acquired, gated on the basis of light scatter and CD42b MAb expression. Activation dependant-MAb (PAC-1 and P-selectin) expression by activated platelets was articulated as mean fluorescence intensity (MFI).

Statistical analysis

A two-way ANOVA following Tukey’s post comparison test was performed using GraphPad Prism version 6.0 for Windows (GraphPad Software, La Jolla, California, USA). A minimum sample size of 12 subjects in each group is required for 80% power to detect a 5% variation in the laboratory parameters measured, where a 3-5% standard deviation exists in the
population, assuming an alpha error of 0.05. All the data is expressed as mean ± standard deviation. Differences between the groups were considered to be significant when $p<0.05$. Any significant statistical interactions were included in the analysis where applicable.

RESULTS

The baseline full blood cell counts, inflammation marker and biochemical profile of the subjects under study were within normal reference ranges (Table 1) as established by the Royal College of Pathologists Australasia.

It was observed that whole blood ex vivo treatment with 1 mM and 2 mM concentrations of hippuric acid reduced ADP-induced P-selectin/CD62P expression by 7.5% ($p=0.03$) and 14% ($p<0.001$) respectively (Figure 1). Lower concentrations of hippuric acid (100 µM, 200 µM or 500 µM) did not have a statistically significant effect on P-selectin platelet surface marker expression but demonstrated a trend in inhibition of the activation-dependent monoclonal antibody expression (Figure 1).

Hippuric acid at a concentration of 2 mM inhibited the initial platelet activation phase, by 11% ($p=0.03$), involving its conformational change targeting the GPIIb-IIIa receptor, evident from PAC-1 activation-dependent monoclonal antibody expression (Figure 2). Lower concentrations of hippuric acid did not affect PAC-1 expression.

DISCUSSION

In this trial we have demonstrated the potential of hippuric acid in alleviating platelet activation stimulated by an exogenous agonist, ADP, which is responsible for thrombus formation and platelet adhesion in vivo. This potent platelet stimulant was used to activate
resting platelets ex vivo and target the P2Y1/P2Y12 receptor of platelet activation. Similar to
the action of the anti-platelet drug clopidogrel, i) hippuric acid at 1 mM and 2 mM
concentrations reduces P-selectin/CD62P mAb expression indicating its ability to inhibit
platelet degranulation consequently platelet activation ii) 2 mM concentration of hippuric
acid reduces PAC-1 mAb expression therefore suppressing the initial phase of activation –
GPIIb-IIIa platelet receptor-related conformational change induced by ADP platelet agonist.
However we did not observe inhibition of platelet activation by lower concentrations of
hippuric acid in relation to the expression of activation-dependant conformational change or
degranulation markers.

In platelet related thrombogenesis, platelets adhere to damaged endothelium; undergo
a conformational change followed by activation and degranulation. This activation results
in the binding of fibrinogen to platelet surface receptors consequently leading to thrombus
formation. Current antiplatelet drugs target different receptors on the surface of platelets or
their activation pathways in order to reduce platelet hyper-activation or hyper-aggregability.
For example, aspirin, the most commonly used antiplatelet drug and salicylate derived from
fruit and vegetables in the diet, inhibit platelet activity by targeting the cyclooxygenase-1
(COX-1) enzyme hence blocking the production of thromboxane A2 (TXA2), a pro-thrombotic
agent. Furthermore, clopidogrel binds irreversibly to the P2Y1/P2Y12-ADP platelet surface-
receptor consequently reducing ADP-induced platelet activation. In the current ex vivo trial
it was observed that 1 mM and 2 mM concentrations of hippuric acid efficiently target the
P2Y1/P2Y12 platelet surface-receptor induced by ADP. In an in vitro study performed by
Ostertag and colleagues, 100 µM hippuric acid did not inhibit collagen induced P-selectin
expression but reduced platelet aggregation. Furthermore, Rechner et al. demonstrated that
lower concentrations of hippuric acid (10 µM) did not exhibit an inhibitory effect on
thrombin receptor activating peptide induced P-selectin expression in an in vitro trial
evaluating the effect of anthocyanins and colonic metabolites of polyphenols on platelet function. The action of hippuric acid on platelet activation inhibition could also potentially be due to the internalization and metabolism by enzymes in platelets capable of modifying molecules by the addition of a methyl, sulphate or a glucorinide group. These functional groups, conjugated to polyphenols or their metabolites within the platelets, might impact the regulation of activation. Our results are in agreement with the above in vitro trials, where low concentrations of hippuric acid did not effectively block platelet activation dependant receptors. Studies had not previously been extended into the higher concentrations of 1-2 mM. Consumption of a 300 g portion of blueberries, cranberries and prunes resulted in excretion of 11 mM hippuric in 24 hours and other fruits such as raspberry, melon and blackberry resulting in excretions of 5-6 mM hippuric in 24 hours peaking at 10-15 hours. Children and adolescents eating fruit and vegetable averaged 2 mM hippuric acid per day in urine. Since this millimolar excretion of hippuric acid occurs via the portal circulation it is believed that high concentrations could also be detected in plasma post polyphenol rich fruit or vegetable consumption. Hippuric acid, following a bolus dose of benzoic acid, has a recorded maximum concentration (C$_{\text{max}}$) in human plasma of 250-300 µM with elimination of hippuric acid occurring at a first-order rate or in a non-saturable manner with the maximum urinary excretion rates of hippuric acid independent of the dose size. Serum hippuric acid concentrations were in the range 1.1 – 6.1 mM when 5g (28 mM) hippuric acid was bolus dosed for antibacterial effects. While the in vivo levels of hippuric acid in plasma that can be reached following fruit consumption have not been tested they are not likely to reach the recorded C$_{\text{max}}$ of 250-300 µM but could be higher than the 100 µM hippuric acid shown by Ostertag and colleagues to reduce platelet aggregation in vitro. Although several dietary intervention and in vivo studies have shown the mechanism of inhibition of platelet function and anti-clotting activity by polyphenols, the prospective of active metabolites such hippuric
acid being a possible reason for the observed anti-thrombotic effect has not been
demonstrated. We have shown the potential of the metabolite in reducing platelet activation
related conformational change and inhibition of α-granule release although at a level at least
three times higher than what is currently known to occur \textit{in vivo} as a result of fruit and
vegetable consumption.

Microbial degradation of polyphenols especially anthocyanins and quinic acid or
chlorogenic acid in the colon, followed by hepatic conjugation with glycine, is believed to be
responsible for the observed increased levels of hippuric acid 20, 21. It has also been suggested
that majority of the hippuric acid seen in urine is due to synthesis from quinic acid present in
antioxidant rich fruits 21. Ronald W. Pero recently proposed that quinic acid and its end
catabolite, hippuric acid may themselves not be efficacious but may lead to the production of
increased levels of nicotinamide and tryptophan as antioxidants through the shikimate
pathway 21. The present study shows the anti-thrombotic effect of acute \textit{in vitro} addition of
varying concentrations of hippuric acid to whole blood directly. It is unclear whether a
similar effect of active metabolites can be seen after prolonged consumption of large
quantities of polyphenol rich food.

In addition to increased levels of hippuric acid post consumption of a polyphenol rich
diet, it is also a metabolite of acetylsalicylic acid (aspirin). The other major metabolites of
aspirin include salicyluric acid and gentisuric acid which have very similar structural moieties
as hippuric acid 37. Acetylsalicylic acid is converted to salicylic acid and conjugates with
benzoic acid in the liver to result in the synthesis of hippuric acid. This pharmacokinetics of
acetylsalicylic acid might partly explain the reason behind the anti-thrombotic activity of its
potential metabolite, hippuric acid. Aspirin alleviates platelet activation by blocking the
COX-1 pathway resulting in reduced arachidonic acid production hence preventing
thromboxane synthesis consequently thrombus formation. Further mechanistic studies
evaluating the potential of hippuric acid in reducing arachidonic acid induced platelet
activation by blocking the COX-1 pathway of platelet activation is warranted.

It has also been demonstrated that thiol derivatives of antiplatelet drugs such as
clopidogrel and ticlopidine bind in a covalent manner to the \(P_2Y_1/P_2Y_{12}\) ADP receptor and
block the activation of platelets \(^{38}\). Hippuric acid at concentrations attained \textit{in vivo} post
polyphenols rich food consumption could potentially help block the ADP receptor of
activation thereby mimicking the action of anti-platelet drugs. We hence believe that
consumption of polyphenols rich foods could be synergistic with lowered doses of
antiplatelet drugs and help platelet activation inhibition and thus reduce risk of thrombosis in
current antiplatelet drug sensitive populations.

ACKNOWLEDGEMENTS

We would like to thank the Griffith Health Institute, Griffith University for their resources
and all the volunteers for their participation in this trial.

CONFLICT OF INTEREST AND FUNDING DISCLOSURE

The authors of this manuscript have no conflicts of interest to declare. This work was not
financially supported by any external funding or grants.
REFERENCES

Figure 1: The effect of varying concentrations of hippuric acid on P-selectin/CD62P surface marker expression. Hippuric acid at 1 mM and 2 mM concentration inhibits P-selectin activation dependant monoclonal antibody expression consequently platelet de-granulation/α-granule release (\(\downarrow 45.9 \pm 50.3, p=0.03\) and \(\downarrow 89.6 \pm 74.6, p<0.001\) respectively). N=13 and the data is represented as mean fluorescence intensity (MFI) versus hippuric acid concentrations. *signifies statistical significance \(p<0.05\). **signifies greater statistical significance \(p<0.001\). Data expressed as Mean ± SD.
Figure 2: The effect of different concentrations of hippuric acid on PAC-1 activation-dependent surface marker expression. Hippuric acid at 2 mM concentration reduces activation-dependent conformational changes in platelets ($\downarrow 53.0 \pm 81.2, p=0.03$). N=13 and the data is represented as mean fluorescence intensity (MFI) versus hippuric acid concentrations. *signifies statistical significance $p<0.05$. Data expressed as Mean ± SD.
Table 1: Baseline parameters of subjects under study

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean± SD</th>
<th>Reference ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (M/F)</td>
<td>13</td>
<td>NA</td>
</tr>
<tr>
<td>Age (y)</td>
<td>30 ± 3</td>
<td>NA</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>73 ± 8</td>
<td>NA</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.6 ± 0.7</td>
<td>20 – 25</td>
</tr>
<tr>
<td>Haemoglobin (g/L)</td>
<td>140 ± 10</td>
<td>120 – 180</td>
</tr>
<tr>
<td>Haematocrit (%)</td>
<td>42 ± 2</td>
<td>40 – 54</td>
</tr>
<tr>
<td>RBC (×10¹²/L)</td>
<td>4.9 ± 0.4</td>
<td>3.8 – 6.5</td>
</tr>
<tr>
<td>WBC (×10⁹/L)</td>
<td>6.2 ± 1.2</td>
<td>4.0 – 11.0</td>
</tr>
<tr>
<td>Platelet (×10⁹/L)</td>
<td>217 ± 13</td>
<td>150 – 400</td>
</tr>
<tr>
<td>MPV (fL)</td>
<td>9.0 ± 0.9</td>
<td>7.5 – 11.5</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>4.40 ± 0.81</td>
<td>3.10 – 6.50</td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>1.52 ± 0.32</td>
<td>> 1.0</td>
</tr>
<tr>
<td>Triglycerides (mmol/L)</td>
<td>0.85 ± 0.35</td>
<td>0.20 – 1.90</td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>2.49 ± 0.72</td>
<td>< 6.00</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>4.87 ± 0.62</td>
<td>3.0 – 6.0</td>
</tr>
<tr>
<td>Uric acid (µmol/L)</td>
<td>274.7 ± 75.5</td>
<td>200 – 430</td>
</tr>
<tr>
<td>HS-CRP (mg/L)</td>
<td>0.85 ± 0.76</td>
<td>0.0 – 6.0</td>
</tr>
</tbody>
</table>

BMI, body mass index; RBC, red blood cell; WBC, white blood cell; MPV, mean platelet volume; HDL, high density lipoprotein; LDL, low density lipoprotein, HS-CRP, high sensitivity C-reactive protein, NA, Not applicable.