This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Stability of polyphenols and carotenoids in strawberry and peach yoghurt throughout in vitro gastrointestinal digestion

Ana Oliveira¹, Manuela Pintado¹*

¹Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, 4202-401 Porto, Portugal

*Corresponding author. Tel.: +351 225580097. E-mail address: mpintado@porto.ucp.pt (Manuela Pintado).
Abstract

The aim of this research was to evaluate the influence of the in vitro gastrointestinal digestion on the stability and bio-accessibility of phenolic compounds and carotenoids, as well as on the antioxidant activity in strawberry and peach enriched yoghurt.

The radical scavenging capacity of strawberry and peach yoghurt was 480 and 550% higher, respectively at the level of the intestine than in fruit yoghurt not submitted to digestion. In strawberry the amount of bio-accessible anthocyanins increased during gastric digestion and the transition to the intestinal compartment produced a decrease in all the analyzed classes of polyphenols, being more pronounced on pelargonidin-3-glucoside (65%) and pelargonidin-3-rutinoside (58%).

In peach (+)-catechin content strongly decreased (80%), neochlorogenic, chlorogenic acid, rutin and the carotenoid zeaxanthin decreased at lower levels, between 32-45%, while β-carotene was rather stable under gastric conditions (increased 12%) during intestinal digestion.

Despite the decrease in the concentration of these bioactive compounds after being subjected to the in vitro gastrointestinal digestion, results suggest that fruit yoghurt is an important source of bio-accessible polyphenols and carotenoids that despite some losses induced by digestion conditions, still release relevant amounts at the level of intestine to be absorbed and promote the health benefits.

Keywords: Fragaria × ananassa, Prunus persica, yoghurt, gastrointestinal system
1. Introduction

Consumption of fruits has been associated to their health benefits usually related to their vitamin, mineral or specific antioxidant compounds, in particular polyphenols. Among the principal issues concerning the beneficial effects of polyphenols, their bioavailability and metabolic fate must be considered. The bioavailability of a dietary compound is dependent on its digestive stability, its release from the food matrix (referred as bio-accessibility), and the efficiency of its transepithelial passage. Bioavailability differs greatly from one polyphenol to another, and for some compounds it depends on dietary source\(^1,2\).

Other factors involved in determining the bioavailability of polyphenols are the stability under gastrointestinal conditions and the release from the food matrix, especially from the solid one. For example, the very low bioavailability of anthocyanins can be attributed, at least partially, to the high instability of these molecules in the mild alkaline condition of the small intestine\(^1,3\).

Various studies report the effect of *in vitro* gastro-intestinal digestion on the stability and release of polyphenols from beverages as reported for anthocyanins release from red wine\(^4\), from an extract made from raspberries\(^5\), cocoa flavanols and procyanidins\(^6\), anthocyanins and phenolic compounds from pomegranate juice\(^3\), catechins from green and black tea\(^7\) and polyphenols from chokeberry juice\(^8\).

However, only few studies have been carried out on the solid food matrices. Saura-Calixto, et al.\(^9\) studied the changes on total polyphenols of a Spanish Mediterranean diet, Vallejo, et al.\(^10\) studied the availability of phenolic compounds, glucosinolates, and vitamin C of broccoli inflorescences submitted to digestion under *in vitro* gastrointestinal conditions and Serrano, et al.\(^11\) studied carotenoids bio-accessibility from digested green leafy vegetables.
Researches concerning the bio-accessibility of polyphenols from the solid matrices are important, since only the compounds released from the food matrix are potentially bio-accessible and after gastrointestinal tract effect in condition to exert their beneficial effects.1

Strawberry fruit, contains a large spectrum of phenolic components including not only the coloured anthocyanins, but also the colourless phenolics (particularly ellagic acid, quercetins, etc.) contributing to its high antioxidant activity12, 13. Peaches are rich in polyphenols (like chlorogenic acid, neochlorogenic acid, catechin, epicatechin and quercetin 3-rutinoside)14, 15 and carotenoids (particularly rich in lutein, zeaxanthin, β-cryptoxanthin and β-carotene)16, 17. It has been proven that flavonols have protective effect against cardiovascular disease18, 19 and reduction of digestive tract cancer risk20 and that carotenoids are associated with protective effects against some types of cancer, age-related macular degeneration, and heart disease.

It is considered by nutritionists that yoghurt have a high nutritional value and positive bio-active effects, usually reinforced by the addition of prebiotic ingredients21 and probiotic bacteria22-24. Fruit yoghurt is among the most common fermented dairy products consumed around the world25. To increase the functionality and antioxidant capacity of these dairy products, food ingredients such as fruit is commonly added22, 26, 27.

Despite the interest in the health benefits of phenolics, little is known about their \textit{in vivo} free content and antioxidant capacity in the presence of dietary factors that may interact with phenolics during digestion interfering in their bio-accessibility28. Information is available on the effect of protein on the antioxidant properties of phenolics through hydrogen bond and hydrophobic interactions29, 30 and about the
effect of other components such as polysaccharides that can affect the interaction between polyphenols and proteins.\[31-35\].

In the present study we investigated the bio-accessibility of the major classes of polyphenols from strawberry and peach preparations incorporated on a yoghurt matrix using an \textit{in vitro} model that simulated some physical (temperature, and movements by agitation), chemical (pH, temperature and bile salts) and biological (gastric and pancreatic enzymes) gastro-intestinal conditions. In addition, changes in the antioxidant activity during the digestion were also investigated.

\section*{2. Materials and methods}

\subsection*{2.1. Reagents list}

The 2,2'-azo-bis-(2-methylpropionamidine)-dihydrochloride (AAPH), formic acid, fluorescein, 6-hydroxy-2, 5, 7, 8-tetramethylbroman-2-carboxylic acid (trolox), α-amylase, methanol, pepsin, pancreatin were purchased from Sigma–Aldrich (Sintra, Portugal). Hydrochloric acid (HCl) was purchased on Merck (Algés, Portugal), calcium chloride (CaCl\(_2\)) and sodium hydrogen carbonate (NaHCO\(_3\)) on VWR International (Carnaxide, Portugal). Polyphenol standards (+)-catechin, chlorogenic acid, ellagic acid, neochlorogenic acid, quercetin-3-rutinoside and β-carotene were obtained from Sigma–Aldrich (Sintra, Portugal), cyanidin-3-glucoside, pelargonidin-3-glucoside, pelargonidin-3-rutinoside and zeaxanthin were purchased from Extrasynthése (Lyon, France). Bile salts were purchased at OxoidTM, Hampshire, UK.

\subsection*{2.2. Preparation of strawberry and peach formulations}
Individually quick frozen (IQF) strawberry \((Fragaria \times ananassa \text{ Duch.})\) was blended to purée (50%) and were mixed with sugar (27%), glucose and fructose syrup (8%) in a mixed reactor with jacket heating and cooling. Carrageenan (0.38%), starch (2%), cochineal carmine (0.0095%) and strawberry aroma (0.48%) were dispersed in cold water separately and these ingredients were added to the strawberry.

Peach \((Prunus persica \text{ (L.) Batsch ‘Diamond Princess’})\) purée (50%) was mixed with, xanthan gum (0.05%), carrageenan (0.1%) and starch (2.3%) in a mixed reactor with jacket heating and cooling. Next, the flavors (0.19%), sweeteners (0.17%) and citric acid (0.07%) were added to the peach. All the ingredients were dispersed in cold water separately before addition to peach.

Both mixtures were pasteurized at 90 °C for 3 min.

2.3. Preparation of strawberry and peach yoghurt samples

Low fat plain yoghurts were acquired, at the beginning of their 30 d shelf-life, in a local market and were used to incorporate industrial strawberry preparations under aseptic conditions. Strawberry preparation was added in a proportion of 20% of the yoghurt weight. Fruit preparations are generally added to yoghurt products within the range of 10-20% level in the final product \(^{36}\).

The yoghurt-fruit mixture was distributed in 100 mL sterile polypropylene containers and kept during 72 h at 2 °C. Each sample was prepared in duplicate.

2.4. In vitro simulated gastrointestinal (GI) digestion

To monitor the release of individual polyphenols from strawberry and peach yoghurt matrices at different stages of digestion, samples of yoghurt were collected from mouth (ca. 20 mL), gastric digest (ca. 20 mL), intestinal digest (ca. 20 mL) and
used to make extracts to further analyse polyphenols and carotenoids. Two replicas from the GI system were made and two replicas of blanks were prepared with identical chemicals but without enzymes, and underwent the same conditions as the samples.

The simulated GI system was performed according Madureira, et al. with some modifications. Mouth digestion was conducted with 0.6 mL of α-amylase solution (100 U/mL) and incubation took place for 1 min at 37 °C and 200 rpm. For gastric digestion the pH was adjusted to 2.0 with concentrated HCl (1N) and the mixture was incubated with pepsin (25 mg/mL) (from porcine stomach mucosa, pepsin A) at a rate of 0.05 mL/mL of sample in a shaking bath for 60 min at 37 °C. Intestinal digestion was performed by adjusting pH to 6.0 with NaHCO₃ (1M) before addition of pancreatin (from porcine pancreas, 2 g/L) and bile salts (12 g/L) at a ratio of 0.25 mL/mL of sample and further incubation of the mixture for an additional 120 min at 37 °C.

The same procedure was applied to the mixtures without enzymes, where the volume of enzyme added was replaced by the solvent used in their dissolution. The CaCl₂ at 1 mM was used to replace α-amylase, 0.1N HCl as pepsin and NaHCO₃ at 0.1M for pancreatin and bile salts.

2.4. Extraction of polyphenols and carotenoids for chemical analyses

Strawberry and peach hydrophilic antioxidants were obtained according to Redeuil, et al. with some modifications. Strawberry and peach yoghurt (20 g) was homogenised with 30 mL of methanol acidified with formic acid (9:1 v/v) using an ultra-turrax (IKA T18. Wilmington. USA) at 24000 rpm for 1 min. The homogenised sample was kept at -20 °C during 1 h to allow protein precipitation. The slurry was then centrifuged at 4000 × g at 4 °C for 10 min and the supernatant filtered through a 3 kDa cutoff membrane (Vivaflow® 50, Sartorius) to remove soluble proteins.
A 25-mL aliquot of the extract was evaporated to dryness in a RVC 2-18 speed-vacuum evaporator (Christ. Osterode am Harz. Germany) at 30 ºC and the residue dissolved in 2 mL of methanol to further analysis.

Carotenoids were extracted as described by Wright and Kader \(^{39}\). Briefly, 5 g of peach yoghurt were suspended in 5 mL of cold ethanol and homogenized at 24000 rpm for 3 min using an ultra-turrax. Hexane (4 mL) was added to the homogenate and the resulting mixture was homogenized for an additional 2 min before the slurry was centrifuged for 10 min at 4000 \(\times g\). The hexane layer containing the carotenoids was transferred to a polypropylene tube and a solution of saturated sodium chloride (2.5 mL) and an additional 4 mL of hexane were added and the resulting mixture and homogenized for 1 min. The mixture was centrifuged as described above, and the hexane layer recovered for analyses. All extracts were performed in triplicate samples.

The results of each extract determination (on time zero of digestion (\(T_0\)), after mouth, gastric and intestinal digestion) were reported to the fresh weight of strawberry and peach purée concentrate used in 20% of yoghurt weight. Results as mg per gram of biomass was obtained to according Eq.(1).

\[
C(\text{mg/g biomass}) = \frac{(\text{mg/mL}) \times \text{Extract volume (mL)}}{g \text{ biomass}}
\]

Eq.(1)

2.5. Analysis of total antioxidant activity

The total antioxidant activity was measured by the Oxygen radical absorbance capacity (ORAC-FL) assay and was performed according that proposed by Contreras, et al. \(^{40}\). Briefly, the reaction was carried out at 40 ºC in 75 mM phosphate buffer (pH 7.4) and the final assay mixture (200 \(\mu\)L) contained fluorescein (70 nM), AAPH (14 mM), and antioxidant [Trolox (9.98 \(\times 10^{-4} - 7.99 \times 10^{-3}\) \(\mu\)mol/mL) or sample (at different concentrations)]. The fluorescence was recorded during 137 min (104 cycles). A
FLUOstar OPTIMA plate reader (BMG Labtech, Offenburg, Germany) with 485 nm excitation and 520 nm emission filters was used. The equipment was controlled by the FLUOstar Control software version (1.32 R2) for fluorescence measurement. Black polystyrene 96-well microplates (Nunc, Denmark) were used. AAPH and Trolox solutions were prepared daily and fluorescein was diluted from a stock solution (1.17 mM) in 75 mM phosphate buffer (pH 7.4). All reaction mixtures were prepared in duplicate and at least three independent runs were performed for each sample. Final ORAC-FL values were expressed as mg of Trolox equivalent/mL.

2.5- HPLC-DAD analysis

Profiles of polyphenols were determined by HPLC-DAD (Waters Series 600, Mildford MA, USA). Separation was performed in a reverse phase Symmetry® C18 column (250 × 4.6 mm i.d., 5 µm particle size and 125 Å pore size) with a guard column containing the same stationary phase (Symmetry® C18).

Chromatographic separation of phenolic compounds from strawberry was carried out with a solvent A-water/methanol/formic acid (92.5:5:2.5 v/v/v) and solvent B-methanol/water (94:6 v/v) under the following conditions: linear gradient starting at 0 to 30% B in 40 min, 30 to 50% B in 20 min and from 50 to 0% B in 10 min at 0.75 ml/min with an injection volume of 50 µl. Detection was achieved by a diode array detector (Waters, Milford, MA, USA) at wavelengths ranging from 200 to 600 nm in 2 nm intervals. Absorbance was measured at 280 nm (flavan-3-ols), and 350 nm (flavonols). Standards used were: (+)-catechin, quercetin-3-rutinoside, ellagic acid (Sigma, Sintra, Portugal) expressed as µg/g fruit. Anthocyanins were separated with the same solvents and with a linear gradient starting at: 15 to 30% B in 20 min, 30 to 35% B in 5 min, 35 to 0% B in 15 min and kept at 0% B during 5 min with flow rate of 0.75 ml/min.
Injection volume was 50 µl and the UV–vis detector was set at 510 nm. Pure standards used were cyanidin-3-glucoside, pelargonidin-3-glucoside and pelargonidin-3-rutinoside (Extrasynthése, Lyon, France) expressed as µg/g strawberry. The analyses were made in triplicates from each extract performed for each condition analysed.

For polyphenols from peach yoghurt the elution of extracted compounds follows a linear gradient starting with 0% solvent B which increased to 30% B in 40 min, 30 to 50% B in 20 min and from 50 to 0% B in 10 min at a flow rate of 0.75 ml/min. Retention times and spectra of compounds were analysed by comparison with pure standards and quantification performed by the calibration curves of (+)-catechin, chlorogenic acid, neochlorogenic acid and quercetin-3-rutinoside and expressed as µg/g peach. Carotenoids from peach yoghurt extracted as described above were eluted using the mobile phase composed by acetonitrile (55%), methanol (22%), dichloromethane (11.5%) and hexane (11.5%). Ammonium acetate was added at 0.02% to stabilize carotenoids under isocratic conditions at 1.0 mL/min flow rate during 20 min, at 25 ºC with an injection volume of 40 µL. β-Carotene and zeaxanthin were quantified using a calibration curve built with pure standards and expressed as µg/g peach.

2.6- Statistical analysis

Statistical analysis was performed using GraphPad Prism version 5.00 for Windows. Normality of data distribution was tested by Kolmogorov-Smirnov method. Statistically significant values of the groups’ means were determined by one-way analysis of variance with Tuckey post hoc test to compare groups’ means. The statistical analyses performed were considered significant when $P < 0.05$.

3. Results and Discussion
3.1. Effect of simulated GI digestion on total antioxidant capacity of fruit yoghurt

A strawberry methanolic extract made from 20% fruit enriched yoghurt prepared as described in 2.2 and 2.3 presented an antioxidant capacity determined by oxygen radical absorbance capacity (ORAC) of ca. 45 mg trolox equivalents per gram of strawberry. During the passage throughout simulated GI system an overall increase in the radical scavenging capacity of strawberry incorporated on yoghurt matrix was observed. In mouth, antioxidant capacity was the same as the observed for the strawberry yoghurt before initiate the digestion. When the yoghurt mixture was submitted to stomach digestion ORAC values increased to 182 mg trolox/g strawberry corresponding to an increase of 300%. Under intestinal conditions the antioxidant capacity continues to increase until reach 261 mg trolox/ g strawberry being 43% higher than in the stomach. It was possible to observe that the antioxidant capacity of strawberry increased 480% on the level of the simulated intestinal digestion (Figure 1).

In the case of simulated GI system without enzymes (only pH and bile salts) the highest (P < 0.05) antioxidant capacity values were obtained on the stomach digestion presenting more 100% than that measured at the level of mouth or intestine (Figure 1). So, the increase of antioxidant capacity previously described on the intestine may be related with enzymes action.

Peach methanolic extract made from peach enriched yoghurt presented an antioxidant capacity of 23 mg trolox/ g peach. On mouth digestion no significant differences were observed, however, when submitted to stomach conditions a 417% increase on ORAC was observed. From stomach to intestinal compartment antioxidant capacity increased 26% (Figure 2). Similarly to strawberry yoghurt, peach incorporated on yoghurt matrix presented on the intestine more 550% of radical scavenging capacity than yoghurt not submitted to critical digestion conditions. The simulated system
without digestive enzymes presented the same result as strawberry, where on stomach
antioxidant activity was only 40% higher ($P < 0.05$) than that observed for mouth or
intestine digestion (Figure 2).

For both strawberry and peach, the increased antioxidant capacity on stomach
seemed to be a result of pH lowering effect together with enzymes action leading to
higher extractability of polyphenols due to acidification and enzymatic release from
protein/ polysaccharide matrix on stomach. According to Baublis, et al. 41, GI pH
conditions caused a dramatic increase in antioxidant activity of aqueous extracts of
wheat-based ready-to-eat (RTE) breakfast cereals, since gastric conditions may
influence phenolic compositions esterified to sugars or acids. Higher antioxidant
capacity can be also a result from anthocyanins content increase since their stability
under acidic conditions of stomach was already reported by Bermúdez-Soto, et al. 8 on
chokeberry, on raspberry 5 and on pomegranate 3. In fact anthocyanins increase after
stomach in vitro digestion was attributed to the lower pH of the sample, which renders
an increase of the flavylium cation in the solution 3.

It is known from the literature that the radical scavenger activity of polyphenols
is strongly pH-dependent, where usually higher pH values lead to an increase of this
capacity. This increase has been attributed to the deprotonation of the hydroxyl moieties
present on the aromatic rings of the phenolic compounds. Theoretically, upon
deprotonation of a hydroxyl moiety, the additional negative charge generated in the
molecule may decrease the energy required for homolytic O-H bond dissociation, and,
thus, facilitate hydrogen atom donation reactions 42, 43. However, our results are not in
accordance with those reports since the increase of pH from stomach to intestine lead to
a decrease in the antioxidant capacity, when GI pH conditions were simulated (Figure 1
and 2).
However, when enzymes were present antioxidant capacity increased from stomach to intestine. The antioxidant activity of extracts may be produced from the combined action of phenolic constituents and other compounds such as extractable proteins, hemicellulose, amino acids, peptides, soluble sugars. Cereal proteins have been known to exert strong antioxidant properties and hence some water soluble proteins as well as phenolics might be present in the extracts, which could contribute to the antioxidant activity observed mainly at the level of intestine, where the antioxidant capacity was higher.

3.2. Effect of simulated digestion on the profile of polyphenols from strawberry yoghurt

The strawberry extract made in each compartment of the simulated GI system with and without enzymes was analysed by HPLC-DAD and the compounds variations identified are listed on Table 1.

The (+)-catechin content presented no significant changes from the beginning of digestion to stomach. However, on the level of the intestine it was possible to observe a significant decrease \((P < 0.05) \) of 47%. On the simulated GI system without enzymes only a decrease of 14% was observed in catechin content (Table 1). Tagliazucchi, et al. found on pure flavonoids (catechin and quercetin) that they were only slightly degraded in the mild alkaline environment. In contrast, Bermúdez-Soto, et al. found a loss of 58% of catechin when incubated in simulated intestinal fluid. The interactions between catechin and digestive enzymes could mask catechin and make it undetectable with HPLC analysis. Laurent, et al. found a decrease of 41% in catechin after intestinal digestion. Besides phenolics they also reported decrease of some cells enzyme activities, such as alkaline phosphatase, sucrase-isomaltase and aminopeptidase N as a
result of interaction with polyphenols. It is well known that phenolic compounds can
have strong affinities with proteins and particularly with human salivary proline rich
proteins and histatins \cite{48-51} to form both non-covalent and covalent associations
according to the phenolic compound size. According to Arts, et al. \cite{52} and de Freitas and
Mateus \cite{48} the (+)-catechin and (-)-epicatechin were able to interact with proline rich
proteins such as ß-casein. Rohn, et al. \cite{53} reported a loss of pancreatic α-amylase and
trypsin activities in the presence of phenolic compounds.

Quercetin-3-rutinoside presented a decrease of 40% along the GI system while
in the control digestion without enzymes a decrease of 88% was detected. These results
make evidence that quercetin content was more strongly affected by the alkaline pH on
intestine than by the presence of the enzymes. Bermúdez-Soto, et al. \cite{8} reported a higher
stability on pure quercetin-3-rutinoside (3% losses) under gastric and intestinal
digestion. The difference between results obtained and reported could be explained by
the matrix, since quercetin-3-rutinoside can bind to milk proteins becoming less bio-
accessible and prone to degradation \cite{54}.

The ellagic acid was very stable along with the simulated GI system, presenting
variations of 3%, while under the simulated conditions of pH, the ellagic acid presented
an increase of 19% after the entire digestion system, proving that pH had an important
role in ellagic acid release. Free ellagic acid could be the result of release from the ester
form in the ellagitannins during the alkaline treatment leading to an increase of this
compound during digestion \cite{55}.

Concerning the anthocyanins content the higher variation was observed on the
intestine compartment. Mouth digestion only affected in a significant way the
pelargonidin-3-glucoside, promoting a decrease of 28%. The amount of bio-accessible
anthocyanins on the level of stomach increased, being just significant for pelargonidin-
3-glucoside (55%). The transition from the acidic gastric to the mild alkaline intestinal environment caused a decrease in the amount of bio-accessible anthocyanins. At the end of the entire phase of digestion the bio-accessible anthocyanins content were 46, 65 and 58% lower for cyanidin-3-glucoside, pelargonidin-3-glucoside and pelargonidin-3-rutinoside, respectively (Table 1). Anthocyanins are highly unstable and easily susceptible to degradation. In foods, the stability of anthocyanins is affected by pH, temperature, light, and oxygen, as well as by the presence of proteins. Association between anthocyanins and milk proteins can allow protection from degradation during the GI system. Viljanen, et al. observed that in aqueous phase 20% of anthocyanins can be associated with proteins. It was reported that β-LG can form non-disulphide covalent linkages with sour cherry anthocyanins. Other studies reported the high instability of anthocyanins at neutral or slightly basic pH and is attributable to the formation of the colourless chalcone pseudobase resulting in the destruction of anthocyanin chromophore. Our results support these previous findings suggesting that strawberry anthocyanins are highly stable in the acidic conditions of the stomach while they are degraded in the alkaline conditions of the intestine. The pH influence on anthocyanins was corroborated in this study by the result obtained on the major strawberry anthocyanin (pelargonidin-3-glucoside) content, which increased 88% on simulated conditions on stomach without enzymes (Table 1).

The control digestions carried out without mouth, gastric and pancreatic enzymes showed significant decreases on some compounds indicating that the extraction of polyphenolic compounds during the in vitro, gastric and pancreatic digestions was also a result of the chemical conditions, such as pH values. The significant variations (P < 0.05) observed were obtained for the content of (+)-catechin
(14%), quercetin-3-rutinoside (88%), pelargonidin-3-glucoside (41%) and pelargonidin-
3-rutinoside (46%) (Table 1).

The higher decrease in polyphenols content in simulated system could indicate
that enzymes could be promoting the release of polyphenols from interactions with
matrix becoming more bio-accessible and consequently more susceptible to be degraded
by the action of chemical (pH) and temperature conditions. Kırca and Cemeroğlu reported a very fast degradation of anthocyanins in coloured juices and nectars stored at
37 ºC and reported blackberry anthocyanins degradation when juice and concentrate
were stored between 5-37 ºC.

3.3. Effect of simulated digestion on the profile of polyphenols and carotenoids

from peach yoghurt

Peach extracts obtained from peach yoghurt submitted to the GI system
presented a significant ($P < 0.05$) decrease in the content of the polyphenols (+)-
catechin (80%), chlorogenic acid (45%), neochlorogenic acid (39%), quercetin-3-
rutinoside (32%) (Table 2).

Other studies supported these findings; Tarko, et al. reported a 30% decrease in black
chokeberry in neochlorogenic and chlorogenic acids after the digestion. Bermúdez-Soto,
et al. reported a decrease in the levels of pure chlorogenic acid and the formation of
neochlorogenic acid during the pancreatic incubation period, which occurred with a
concurrent increase of the final pH of the incubation mixture (from 7.5 to 8.5).

The phenolic instability under alkaline pH suggests that these compounds
undergo several chemical reactions, mainly oxidation and polymerization, leading to the
formation of other phenolic derivatives, such as chalcones, which are not available for
absorption because of their high molecular weight and low solubility. In fact, it has
been reported that alkaline conditions transform 50–60% of flavanones into chalcones [62]. Furthermore, some dietary constituents such as fiber, proteins, and iron reduce the solubility and availability of phenolic compounds [9, 28].

Concerning carotenoids, only zeaxanthin decreased (38%) in a significant way, but β-carotene was very stable during all the simulated system (Table 2).

Rodríguez-Roque, et al. [61] observed a decrease of 31 and 69% on blended fruit juice (orange, pineapple, and kiwi) carotenoids in the small intestinal digestion when compared to gastric digestion. Hedren, et al. [63] showed that 3% of β-carotene from raw carrot pieces was bio-accessible and an increase of β-carotene bio-accessibility was observed in the presence of oil. Food matrix has a significant influence on the bio-accessibility of carotenoids, such as β-carotene, lutein, and β-cryptoxanthin, when a blended juice was combined with whole milk (up to 148%) than with skimmed or soy milk (up to 63 and 38%, respectively) [64].

The β-carotene was very stable along all the in vitro GI system. It was previously observed that the fat present in food like chicken probably promoted micellarization of β-carotene from mango and the fat emulsification could be stabilised by protein [65].

On the level of mouth and stomach no significant differences were observed, however, a slight increase in compounds content was observed on the level of stomach digestion. These results suggest that gastric digestion improves the release of carotenoid compounds from the yoghurt matrix. Stomach plays a significant role in the bioavailability of carotenoids by initiating their transfer from the vegetable matrix to the fat phase of the meal [66]. This fact could be mainly attributed to the acidic pH and enzymatic activity during this digestive phase, which can induce the hydrolysis of some phenolic compounds bound to other food constituents such as proteins [41, 67, 68]. Saura-
Calixto, et al.9 reported that phenols linked to high molecular weight compounds, such as proteins and carbohydrates, may be released by digestive enzyme action, leading to a significant increase in their concentrations after gastric digestion.

The intestinal digestion was the main step responsible for the foremost polyphenolic and carotenoids changes.

Along the GI system without enzymes carotenoids presented a significant decrease mainly on zeaxanthin ($P < 0.05$, 42\%) and a slight and non-significant decrease on β-carotene (8\%) when exposed to pH conditions of the stomach. Carotenoids are known to be unstable in acidic media, because they are susceptible to oxidation owing to the numerous double bonds of their chemical structure63. Considering peach carotenoids under intestine conditions, only zeaxanthin decreased (87\%), significantly. This decrease was higher than that observed in the presence of enzymes and the same was observed by Hedren, et al.63 who observed that the amount of released β-carotene decreased by 80\% when bile salts were omitted from the digestion mixture and was probably dissolved within lipid droplets originating from the carrot mixture.

In the simulated GI system without enzymes only (+)-catechin increased 67\%, while the remaining compounds analysed presented no significant changes in their content (< 30\%).

To have a better understanding about the potential effect of the available fruit phenolics after interaction with yoghurt components and after human digestion further studies \textit{in vivo} should be performed. Some \textit{in vivo} studies have described the potential of developing functional foods such as Morato, et al.47 which described the benefits of developing functional foods such as Morato, et al.47 which described the benefits of omega-3 enriched chocolate milk in reducing damaged muscle of post-exercised rats and Lollo, et al.48 described that the benefits of probiotic fermented milk in the immune system of rats exercised to exhaustion.
Conclusions

Results obtained in this research revealed the amount of bioactive compounds from a strawberry and peach yoghurt that could be released from the yoghurt matrix and could be available for absorption in vivo. Therefore, in vitro methodologies, allow rapid progress in understanding physicochemical changes, interactions, and bio-accessibility of bioactive compounds.

The antioxidant capacity from the both fruits added to yoghurt increased by influence of intestinal digestion, probably due to chemical changes on polyphenols and carotenoids structure, like hydroxylation processes. In strawberry individual compounds presented a significant decrease with pelargonidin-3-glucoside presenting the highest variation. The pH had an important role in strawberry anthocyanins content variation. In peach (+)-catechin was the polyphenol with the highest variation, while the remaining polyphenols and zeaxanthin content decreased in lower extent.

The ellagic acid in strawberry and β-carotene in peach were the most stable compounds along entire in vitro GI system. Results suggest that, despite the significant decrease in the concentration of bioactive compounds, matrix allowed to protect some compounds from degradation, being now bio-accessible to be absorbed and utilized.

The results obtained in this research should be compared with additional in vivo studies to correlate the bio-accessibility of bioactive compounds between in vivo and in vitro methodologies.

Acknowledgements

The work was financially supported by Agência de Inovação, Portugal and Quadro de Referência Estratégico Nacional (QREN Portugal) through project Frutamais –
Preservation of functional nutritional and organoleptic characteristic of fruits and derived food (QREN-ADI 3436). This work was supported by National Funds from FCT – Fundação para a Ciência e a Tecnologia through project PEst-OE/EQB/LA0016/2013 and by the PhD grant SFRH/BD/75041/2010 to A. Oliveira.

We thank Frulact. S.A. for kindly providing the fruit preparates incorporated in yoghurts.

References

List of Tables

Table 1 - Polyphenols quantitative profile (obtained by HPLC-DAD) of extracts prepared from strawberry enriched yoghurt (µg/mL) during a simulated gastrointestinal digestion with and without enzymes.

Table 2 - Polyphenols quantitative profile (obtained by HPLC-DAD) of extracts prepared from peach enriched yoghurt (µg/mL) during a simulated gastrointestinal digestion with and without enzymes.
Table 1

Values are shown as means ±SD (n = 6).
Percentage of variation at the end of the digestion process, where negative signal represents decrease and positive represent increase.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Original</th>
<th>Mouth digestion</th>
<th>Gastric digestion</th>
<th>Intestinal digestion</th>
<th>% variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Catechin</td>
<td>534.8±37.9<sup>a</sup></td>
<td>426.3±10.1<sup>a</sup></td>
<td>476.6±29.8<sup>a</sup></td>
<td>283.3±2.8<sup>b</sup></td>
<td>(-) 47</td>
</tr>
<tr>
<td>Quercetin-3-rutinoside</td>
<td>11.0±0.9<sup>a</sup></td>
<td>7.11±0.4<sup>b</sup></td>
<td>9.0±0.3<sup>ab</sup></td>
<td>6.6±0.6<sup>b</sup></td>
<td>(-) 40</td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>8.6±0.7<sup>a</sup></td>
<td>7.92±2.7<sup>a</sup></td>
<td>8.0±0.2<sup>a</sup></td>
<td>8.3±0.6<sup>b</sup></td>
<td>(-) 3</td>
</tr>
<tr>
<td>Cyanidin-3-glucoside</td>
<td>6.5±0.3<sup>a</sup></td>
<td>6.6±0.2<sup>a</sup></td>
<td>6.7±0.5<sup>b</sup></td>
<td>3.5±0.9<sup>b</sup></td>
<td>(-) 46</td>
</tr>
<tr>
<td>Pelargonidin-3-glucoside</td>
<td>70.6±0.3<sup>b</sup></td>
<td>50.8±0.7<sup>c</sup></td>
<td>78.8±0.2<sup>a</sup></td>
<td>24.5±2.9<sup>d</sup></td>
<td>(-) 65</td>
</tr>
<tr>
<td>Pelargonidin-3-rutinoside</td>
<td>6.7±0.3<sup>ab</sup></td>
<td>5.5±0.2<sup>b</sup></td>
<td>8.5±0.6<sup>a</sup></td>
<td>2.8±0.2<sup>c</sup></td>
<td>(-) 58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Original</th>
<th>Mouth digestion</th>
<th>Gastric digestion</th>
<th>Intestinal digestion</th>
<th>% variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+)-Catechin</td>
<td>469.4±32.0<sup>a</sup></td>
<td>423.8±26.2<sup>a</sup></td>
<td>492.0±63.8<sup>a</sup></td>
<td>404.3±27.3<sup>a</sup></td>
<td>(-) 14</td>
</tr>
<tr>
<td>Quercetin-3-rutinoside</td>
<td>13.4±2.0<sup>a</sup></td>
<td>6.3±1.0<sup>b</sup></td>
<td>8.4±0.4<sup>b</sup></td>
<td>1.5±0.1<sup>c</sup></td>
<td>(-) 88</td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>14.6±2.3<sup>a</sup></td>
<td>3.9±1.2<sup>b</sup></td>
<td>6.7±0.6<sup>b</sup></td>
<td>17.4±2.5<sup>a</sup></td>
<td>(+) 19</td>
</tr>
<tr>
<td>Cyanidin-3-glucoside</td>
<td>4.8±0.3<sup>a</sup></td>
<td>3.0±0.9<sup>a</sup></td>
<td>4.9±0.5<sup>a</sup></td>
<td>4.8±0.1<sup>a</sup></td>
<td>0</td>
</tr>
<tr>
<td>Pelargonidin-3-glucoside</td>
<td>63.9±3.2<sup>b</sup></td>
<td>41.2±21.1<sup>b</sup></td>
<td>120.0±25.7<sup>a</sup></td>
<td>37.5±4.8<sup>b</sup></td>
<td>(-) 41</td>
</tr>
<tr>
<td>Pelargonidin-3-rutinoside</td>
<td>8.0±1.4<sup>a</sup></td>
<td>5.8±0.7<sup>a</sup></td>
<td>9.5±1.6<sup>a</sup></td>
<td>3.7±0.0<sup>a</sup></td>
<td>(-) 46</td>
</tr>
</tbody>
</table>

^a Different letters represent significant differences (P < 0.05) in comparison to the original content.
Table 2

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Mouth digestion</th>
<th>Gastric digestion</th>
<th>Intestinal digestion</th>
<th>% variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>With enzymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-Catechin</td>
<td>35.5±1.9</td>
<td>34.13±0.4</td>
<td>28.2±2.6</td>
<td>7.1±0.9</td>
<td>(--) 80</td>
</tr>
<tr>
<td>Neochlorogenic acid</td>
<td>50.4±1.3</td>
<td>51.3±9.3</td>
<td>54.7±4.0</td>
<td>27.7±1.1</td>
<td>(--) 45</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>46.4±0.5</td>
<td>49.1±6.5</td>
<td>51.0±3.8</td>
<td>28.5±1.1</td>
<td>(--) 39</td>
</tr>
<tr>
<td>Quercetin-3-rutinoside</td>
<td>7.7±0.7</td>
<td>6.9±0.2</td>
<td>8.3±0.9</td>
<td>5.2±0.0</td>
<td>(--) 32</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>6.3±0.7</td>
<td>6.2±0.6</td>
<td>7.5±0.5</td>
<td>3.9±0.5</td>
<td>(--) 38</td>
</tr>
<tr>
<td>β-Carotene</td>
<td>4.1±0.3</td>
<td>4.5±0.6</td>
<td>4.9±1.3</td>
<td>4.6±0.3</td>
<td>(++) 12</td>
</tr>
<tr>
<td>Without enzymes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)-Catechin</td>
<td>42.8±7.6</td>
<td>50.9±1.9</td>
<td>47.8±7.2</td>
<td>71.4±1.3</td>
<td>(++) 67</td>
</tr>
<tr>
<td>Neochlorogenic acid</td>
<td>66.1±10.2</td>
<td>68.1±2.8</td>
<td>40.8±8.8</td>
<td>57.5±3.9</td>
<td>(--) 13</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>60.2±10.9</td>
<td>63.3±3.5</td>
<td>40.7±7.5</td>
<td>54.0±1.6</td>
<td>(--) 10</td>
</tr>
<tr>
<td>Quercetin-3-rutinoside</td>
<td>8.4±1.4</td>
<td>9.7±0.4</td>
<td>7.1±0.5</td>
<td>8.8±0.1</td>
<td>(+) 4</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>7.1±0.0</td>
<td>9.8±0.6</td>
<td>4.1±0.4</td>
<td>0.9±0.2</td>
<td>(--) 87</td>
</tr>
<tr>
<td>β-Carotene</td>
<td>3.8±0.9</td>
<td>4.9±0.3</td>
<td>3.5±0.3</td>
<td>2.7±0.6</td>
<td>(--) 29</td>
</tr>
</tbody>
</table>

Values are shown as means ±SD (n = 6).

Percentage of variation at the end of the digestion process, where negative signal represents decrease and positive represent increase.

Different letters represent significant differences (P < 0.05) in comparison to the original content.
List of Figures

Figure 1- Antioxidant activity (ORAC) of strawberry yoghurt (mg trolox/g biomass) after mouth, gastric and intestinal *in vitro* digestion with and without enzymes.

Figure 2- Antioxidant activity (ORAC) of peach yoghurt (mg trolox/g biomass) after mouth, gastric and intestinal *in vitro* digestion with and without enzymes.
Figure 1

![Graph showing comparison of mg Trolox/g biomass with and without enzymes across different sections (Mouth, Stomach, Intestinal).]

Figure 2

![Graph showing comparison of mg Trolox/g biomass with and without enzymes across different sections (Mouth, Stomach, Intestinal).]
Graphical Abstract