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Abstract 

 

Low cost pollution sensors have been widely publicized, in principle offering increased information on 

the distribution of air pollution and a democratization of air quality measurements to amateur users. 

We report a laboratory study of commonly-used electrochemical sensors and quantify a number of 

cross-interferences with other atmospheric chemicals, some of which become significant at typical 

suburban air pollution concentrations. We highlight that artefact signals from co-sampled pollutants 

such as CO2 can be greater than the electrochemical sensor signal generated by the measurand. We 

subsequently tested in ambient air over a period of three weeks, twenty identical commercial sensor 

packages alongside standard measurements and report on the degree of agreement between references 

and sensors.  We then explore potential experimental approaches to improve sensor performance, 

enhancing outputs from qualitative to quantitative, focusing on low cost VOC photoionization sensors.  

Careful signal handling for example was seen to improve limits of detection by one order of 

magnitude. The quantity, magnitude and complexity of analytical interferences that must be 

characterised to convert a signal into a quantitative observation, with known uncertainties, makes 

standard individual parameter regression inappropriate. We show that one potential solution to this 

problem is the application of supervised machine learning approaches such as Boosted regression trees 

and Gaussian processes emulation.  
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Introduction. 

 

Long-term atmospheric monitoring of classical pollutants such as NOx, O3, SO2, CO, Volatile Organic 

Compounds (VOCs) and Particulate Matter (PM) has typically been conducted to support air quality 

compliance and national frameworks for pollution control. Such data has also made vital contributions 

that have supported research in more general atmospheric chemistry, for emissions assessment and in 

many epidemiological studies of health impacts
1
. Historically the users of air pollution 

instrumentation, and the resulting data, have been technical specialists in the field, supported by 

established protocols for gas and particle metrology. The most common observational strategy for 

urban atmospheric chemistry has been to make high accuracy air pollution measurements at small 

numbers of notionally representative urban/suburban locations, with modeling used to support 

interpolation to unmonitored locations
2
. The constituency and user-base for surface air pollution 

measurements has been largely static for perhaps fifty years, and changes in the methodologies and 

technologies employed for measurement have been incremental, most notably an evolution in methods 

used for regulatory monitoring of particulate matter. The situation for technologies that measure air 

pollution from space is rather different, but is outside of this discussion. 

A fundamental change to the surface monitoring status quo, enabled by low cost air pollution sensors, 

has been mooted for more than a decade
345

 and gained much media attention in recent years [in the last 

year, for example: The Times, 2014; New York Times, 2015; The Guardian, 2015]
678

. Such a 

technology shift has enormous attractions for research users; dense or portable networks of 

measurement would give unprecedented insight into human exposure
9
, into CFD and high-resolution 

model performance, into emissions and much more. Possibly more significant than the research value, 

such technologies could result in the democratization of air quality observations to the general 

public
10

, making local air pollution measurement as common, or more so than amateur meteorological 

stations. 

Whilst there is no single agreed definition of what constitutes a low cost sensor (the phrase naturally 

being rather subjective), in this paper we are referring to devices that purport to make autonomous 

observations of multiple pollutant parameters at a capital cost in the range of 100-10000 USD per 

observing location. This contrasts with traditional multi-pollutant analytical capability, such that 
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would meet prescribed US or European requirements for air quality compliance assessment, that have 

costs of the order >100,000 USD per observing location. 

If one considers low cost air pollution sensors as just another type of atmospheric instrumentation, 

their development and user adoption has differed fundamentally from most other new analytical 

technologies. The traditional pathway for new analytical capability is for instruments to emerge from 

either technology-intensive private companies or research laboratories, and be used first by a small 

number of high-skill early adopters. The atmospheric early adopters typically test, refine and often 

improve the early versions of instruments, and publish peer-reviewed papers that give the early 

adopter scientific advantage, by the very fact they have measured something in a novel way. If 

successful, instruments then propagate into more widespread use, the extent of which depends on the 

parameter being measured. For classical air pollutants, instruments may ultimately meet requirements 

for legal compliance or regulatory emission measurements. 

Sensors however have followed a somewhat different pathway. Many of the basic sensing 

technologies used in current commercial devices were created for other applications, often combustion 

or occupational health measurement, and have been co-opted into ambient measurements at a later 

date. There have been a range of developers including university labs
1112

, private companies and even 

devices created via crowd-sourced funding
13

 [e.g. AirQuality Egg,].  There is a small body of literature 

that address issues around interferences, notably water vapour
14

, data usability
15

 and field 

calibration
16171819

 , and the conceptual advantages for developing countries
20

 . We have struggled 

however to find examples in the peer-reviewed literature where a research user has unlocked new 

atmospheric understanding through the deployment of an air pollution sensor network, and this seems 

unusual when compared with historical technological precedent. Whilst academic useage has been 

modest, public uptake of air pollution sensors has been growing, for example in London, Breathe 

Heathrow
21

 and Change London
22

 are private initiatives that propose the use of large numbers of air 

pollution sensors, the latter suggesting up to 10,000 may be installed. A consequence is that whilst the 

concepts and potential for such devices are well-established in the community – from researchers 

through to legislators - the peer reviewed literature on quantitatively successful deployments is 

limited.  

Ultimately low cost sensors are attempting something exceptionally challenging. To make a trace gas 

measurement to a usable degree of accuracy and precision, and with stability over time is very hard. 
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However since exposure to air pollution is a legally defined quantity in most countries it seems 

surprising that there are relatively few detailed published measures of performance, particularly for 

analytical technologies that already have the general public as a user.   

In this paper we report i) a detailed laboratory analytical study of common sensor sensitivities and a 

comprehensive analysis of cross interferences to other atmospheric constituents including other air 

pollutants and also variable species such as CO2, H2 and H2O. ii) report on initial performance of a 

commercial low cost air pollution sensing system when compared alongside to more traditional 

measurement technologies and iii) we describe the development of a scientific concepts that may 

exploit total VOC sensors and establish analytical performances and interferences.  Our intention is to 

provide a snapshot of performance using current state of the art; we do not speculate on future 

advances, or attempt to make a valuation of non-research aspects of existing of low cost sensor 

devices, for example in prompting public engagement with the topic area or related policy issues. 

Results and Discussion 

Electrochemical sensor interferences. 

Air pollution sensors are typically not as analytically specific as current air pollution reference 

methods (e.g. UV, chemiluminescence, gas chromatography, mass spectrometry etc), and there is 

potential that sensor measurements may suffer from interferences. Changes in ambient water vapour 

and temperature have long been known to affect sensor performance
23

, but there is also potential 

interference due to exposure and response to other co-pollutants
24,25

. A small number of previous 

studies have quantified some of these interferences and then applied corrections to ambient 

observations
26

. The problem is potentially exacerbated by high concentration co-pollutants, for 

example CO2, that are in excess of the measurand often by many orders of magnitude.  In an urban 

setting many gaseous pollutants are correlated in their temporal behaviour to some degree, and 

interferences may be difficult to distinguish from examination of ambient data alone.  

The performance of five commercially available electrochemical sensors designed for the 

measurement of CO (CO-B4, Alphasense Ltd), O3 (OX-B421, Alphasense Ltd), NO (NO-B4, 

Alphasense Ltd), NO2 (NO2-B4, Alphasense Ltd) and SO2 (SO2-B4, Alphasenase Ltd) in ambient air 

were evaluated in the laboratory. [Datasheets are available from http://www.alphasense.com/]. Our 

aim was to establish the selectivity of these sensors to their target compounds, and quantitatively 

characterise chemical interference to other pollutants. We then evaluate the scale of impacts of co-

pollutants through an inter-comparison exercise alongside reference measurements of the same 

pollutants in ambient air. 

All sensors were housed within a single 3D printed PLA flow cell (Makerbot) with calibration or 

ambient air introduced to the sensor heads simultaneously under controlled conditions. The data 

acquisition rate was 1 Hz (average to 5 minute intervals) using a Labjack U6 (Labjack) measurement 

and automation device and Labview software (Labview 2012). All gas lines used were ¼” PTFE with 

stainless steel fittings (Swagelok). Since previously studies have indicated that pressure, humidity, 

temperature and flowrate can effect sensor response, we recorded these using an LM35 temperature 

                                                
23

 M.L. Hitchman, N.J. Cade, K.T. Gibbs, N.J.M. Hedley, Analyst, 1997, 122 , 1411–1418 
24

 C. Austin, B. Roberge, N. Goyer. J. Environ. Monit., 2006, 8 , 161–166. 
25
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VCH , 2007. 
26

 M.I. Mead, O.A.M. Popoola, G.B. Stewart, P. Landshoff, M. Calleja, M. Hayes, J.J. Baldovi, M.W. 
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sensor (Texas Instruments), MPX4200A absolute pressure sensor (Freescale Ltd) and an HIH-4000-

001 humidity probe (Honeywell). During the analysis periods, in line gas temperature and pressure 

were consistent, 20.2 ± 0.7 °C, 1.0003 ± 0.0009 Bar respectively, minimising their effects upon the 

sensors. 

Chemical interferences of co-pollutants 

The experimental set-up used a pure air generator (PAG003, Eco-physics) to create the balance gas. 

Zero air from the generator during these experiments was measured and contained  < 10 ppt, < 5 ppt, < 

10 ppt, <10 ppt and < 50 ppt of NO, NO2, O3, SO2 and CO respectively. Before work commenced each 

sensor’s working electrode voltage (WE) and auxiliary electrode voltage (AE) offset was determined 

using the zero gas. Zero air was then humidity controlled using deionised water with a dew point 

generator (DG-3, Michell Instruments).  Finally known gas phase mixtures of NO, NO2, SO2, CO2, H2 

and CO were blended into air from calibration standards in N2 (BOC) using a gas dilution device 

(Multi-gas calibrator, S6100, Monitor Europe). O3 concentrations were generated in situ using a gas 

dilution device and mercury UV lamp, the output concentrations from which were confirmed using a 

separate online monitor (Thermo, model 49i). Humidity dependent WE and AE sensitivities toward 

the listed compounds were evaluated using five concentrations and linear regression analysis each 

performed at 4 different humidities (Table 1). Mole fraction test ranges used were 0 - 200 ppb for CO, 

0 - 350 ppb for O3, 1 – 160 ppb for NO, 0 – 160 ppb for NO2, 0 – 400 ppm for CO2 and 0 - 40 ppb for 

SO2, with each measurement point performed at 15, 30, 45, 60 %RH. 

No observable change in AE voltage was observed during the experiments, and only the effect upon 

the WE voltage is shown here. We summarise the mV interference induced on a sensor for each co-

pollutant in Table 1. There is a complex set of interconnections between co-pollutant and measurand. 

In some cases the absolute interferent signal induced by a co-pollutant is very small, e.g. see CO2 

impacts on the SO2 or NOx sensors. However the relative amounts of certain co-pollutants to the 

measurand is such that the overall response of a given sensor could be dominated by the co-pollutant 

response.  
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Sensor     Compound 

  

          

  CO SO2 NO O3 NO2 CO2 H2 %RH
 a 

CO - B4 0.378 -0.013 0.000 0.0200 0.032 0.000 -0.032 0.201 

OX-B421 0.000 -0.016 -0.110 0.439 0.44 9.5 x 10
-5   0.560 

SO2-B4 0.013 0.210 0.023 -0.014 -0.32 9.8 x 10
-6   0.000 

NO-B4 0 0.007 0.558 -0.011 -0.590 1.8 x 10
-5   -0.303 

NO2-B4 0 0.004 -0.008 0 0.148 2.3 x 10
-5   0.000 

  

Table 1. Working electrode responses (in mV ppb
-1

 of co-pollutant) induced by the presentation of co-

pollutants in zero air across five electrochemical sensors, with a four point humidity correction 

calibration applied via working electrode offset correction (mV / %RH). 

 

The scale of interferences in ambient air. 

We next performed a set of ambient measurements using the five sensors, plus separate reference 

measurements of the interferent co-pollutants shown in Table 1.  We use the ambient measurements to 

provide us with a representative range of co-pollutant values for which possible sensor interferences 

may be calculated.  

The reference instruments used in this study, and for the later section 2, were as follows: For O3, the 

reference instrument was a Thermo Environmental Instruments (TEI) 49C UV absorption analyser 

which is a United States Environmental Protection Agency (USEPA) equivalent method. Calibration 

of the instrument was carried out using a TEI Primary Ozone standard, which itself is certified yearly 

by the UK National Physical Laboratory (NPL). The instrument provided minute averaged data. NOx 

was measured using a custom built, high sensitivity instrument (Air Quality Design Inc). The 

instrument uses two channels, with NO measured using the well known chemiluminescence technique.  

NO2 was quantified using the second channel, with NO2 being converted to NO using a blue light LED 

converter centred at 395 nm. The NO2 mixing ratio is derived from the difference between total NOx 

and NO mixing ratios. This method provides an accurate and largely interference free method of NO2 

detection, in contrast to commercially available NOx analysers which typically use heated 

Molybdenum catalysts to convert NO2 to NO, which are known to be subject to significant 

interferences from other reactive nitrogen species
27

 .  The instrument is calibrated via addition of 5 

sccm of known NO concentration (from a 5 ppm NO in Nitrogen standard cylinder (BOC - tied to the 

NPL scale)) to the ambient sample, which is scrubbed of NOx during the calibration procedure. The 

conversion efficiency of the LED converter is measured in each calibration using gas phase titration of 

the NO to NO2 on addition of O3. A more detailed description of a similar system can be found in Lee 

et al.
28

. the instrument produces data at 1 second average. The O3, NO and NO2 reference data were 

subsequently averaged to 15 minutes for comparison with the sensors.  Carbon dioxide concentrations 

                                                
27

 M. Steinbacher, C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordóñez, A. S. H. 
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28

 J.D. Lee, S.J Moller, K.A. Read, A.C. Lewis, L. Mendes and L.J. Carpenter, L. J. Geophys. Res., 

2009, 114, D21302. 
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were determined every 5 minutes using a Dual Column SRI 8610C GC. The dual channel GC has both 

a flame ionisation detector (FID) and electron capture detector (ECD); CO2 measurements were made 

on the FID channel. Ambient air was flowed through the sample loop at a rate of 100 ml min
-1

 to flush 

and fill the sample loop. The sample is then injected onto the GC column (3 m Haysep D packed 

column) held at a temperature of 60 
o
C for the duration of the GC run. Hydrogen is used as the carrier 

gas. After exiting the GC column the effluent is passed through a methanizer packed with a nickel 

catalyst and held at 320 
o
C to convert the CO2 into methane for detection by the FID. Ambient air was 

introduced to the flow cell from the main sample inlet using a stainless steel diaphragm metal bellows 

pump (Senior Aerospace, MB302) flow regulated to 1 slpm using a needle valve (Swagelok). Sensor 

and reference measurement data was averaged to 5 minute intervals and evaluated over an 18 day 

period (7/8/2015 – 25/8/2015).  

Average mixing ratios in ambient air determined from the reference measurements were 23.6 ± 12.3, 

1.3 ± 7.2, 5.1 ± 0.2, 0.2± 0.1, 106 ± 24, 676 ± 161 ppb and 389 ± 24 ppm for O3, NO, NO2, SO2, CO, 

H2 and CO2 respectively. Ambient humidity was 59.1 % ± 12.1. Using the ambient measurements over 

a 18 day period we then calculate the interference induced on each sensor. We take the mean mixing 

ratio of each co-pollutant and then express the effect of this in inducing an artefact sensor signal. We 

show the scale of this interference signal as a percentage of the measurand, which was determined 

independently using a reference method. 

 

Sensor        

 CO SO2 NO O3 NO2 CO2 H2 

Observed 

ppb 

106 ± 24, 0.2± 0.1 1.3 ± 7.2 23.6 ± 12.3 5.1 ± 0.2 389 ± 24 

(ppm) 

676 ± 161 

CO - B4 - -0.01 0.00 1.40 0.40 0.00 -53.98 

SO2 - B4 4270.57 - 1.25 -9967.40 5194.90 12063.45   

NO - B4 0 0.14 - -34.12 -415.71 -985.32   

OX- B421 0.00 0.00 20.60 - 22.49 365.79   

NO2 - B4 0 0 -20.61 0 - 118.94   

 

Table 2. First row: Observed mean ambient pollution mixing ratio and one sigma range over 18 days. 

Subsequent rows show the impact of the signal induced by a co-pollutant expressed as a percentage of 

the mean ambient mixing ratio of the measurand. 

 

What is significant in our test study is the relative scale of impact that co-pollutants have on the 

induced sensor signal when the analyte pollutant is at typical European suburban values. In our study 

the ambient mean NO2 mixing ratio is around 5 ppb which generates a mV sensor signal that is 

approximately the same as the artefact mV signal induced by the presence of ambient CO2. SO2 is a 

more extreme example: here our ambient measurements are very low, typically 0.2 ppb, such that the 

interference signals from the more abundant co-pollutants CO, O3, NO2 and CO2 swamp any direct 

analytical signal from SO2 itself. The impacts of co-pollutants in our test location are severe for certain 

sensors although we would stress that the scale of impact depends very much on the ratio of 

measurand to co-pollutant.  
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We show in Figure 1 the relative responses that are induced in a NO2 sensor arising from co-exposure 

to a range of different CO2 and NO2 mole fractions. At polluted roadside locations, for example central 

London, kerbside NO2 can be as high as 500 ppb, with corresponding CO2 around 750 ppm .  With 

this pollutant mixture the sensor response would be overwhelmingly (>98%)  due to the signal induced 

by NO2 gas and only a small contribution from CO2. The fractional contribution to this particular 

sensor signal then changes markedly as one moves from a polluted roadside scenario to suburban or 

background values. At typical suburban values of 450 ppm CO2 and 10 ppb NO2, the signal induced 

from the sensor is apportioned approximately 50:50 between the gases. We conclude that the influence 

of co-pollutants on sensor response requires very careful evaluation since sensors within a 

heterogenous network are likely to suffer from substantially differing degrees of analyte interference 

depending on the ratio of co-pollutant to measurand.  

 

 
Figure 1. Fraction of electrochemical sensor response due to [NO2] for a given co-exposure to CO2 

over the CO2 range 400 to 750 ppm. 

 

Evaluating a multi-sensor package  

There are few published studies that compare emerging commercial air pollution sensor packages 

against existing reference methods in the field.  We aim here to establish the utility of data provided 

by on-the-market devices, the unit to unit precision of measurement, and the comparability of this 

against reference instruments to establish accuracy. We co-located 20 identical sensor units with stated 

capabilities to measure urban concentrations of O3, NO, NO2, total VOC, and PM. For this paper we 

anonymise the commercial supplier of the devices, since we do not wish the reader to infer any 

specific advantage or disadvantage of these particular devices relative to any other current commercial 

products. We note that some of the core internal component sensing technologies in the system we 

report on are also found in other commercially available packages. The sensor units were co-located 

on a flat roofed building ( 53°56'52.08"N,   1° 2'46.17"W) in York, UK approximately 12 m above 

ground level and with unobstructed airflow. The sensor inlets were around 30 m from a moderately 

trafficked single carriageway road.  Sensors were placed next to a trace gas sample inlet manifold used 

as a supply of air to the standard reference instruments measuring O3, NO and NO2 housed in 

laboratories below. 
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Ozone: The calibration slope factors for the O3 sensors were modified from initial factory settings 

following comparison against the reference photometric data and these values were applied on 11th 

Oct 2015. For the remaining three weeks of study the calibration constants for each sensor remained 

unchanged. Figure 2 shows the time-series obtained from the reference instrument and the median O3 

sensor observation at any given point in time (n = 20 sensors). The agreement between median sensor 

and reference is clearly very good. Beyond the median value, a R
2
 value in excess of 0.9 was found for 

virtually all sensors when examined one-by-one. There is a small negative intercept potentially due to 

an interference at higher NO. We note that the median O3 sensor value does not derive from a single 

sensor, but is contributed to from a number of different units over the period.  

 

 
Figure 2. Time series comparison in the field of photometric ozone (black line) and median O3 sensor 

(green line) (n = 20), R
2
 0.904, intercept - 4.6 ppb.  

 

We next examine the simultaneous performance of all sensors relative to the reference O3 value and 

show this in Figure 3. The highest and lowest sensor values (red and blue lines) deviate significantly 

from the sensor median value and reference values, although the agreement of trends remains good 

through the time period, where R
2
 is around 0.9 ± 0.06 (1 sigma) for all individual sensors. To avoid 

negatively skewing any comparison with a small number of poor performing outlying sensors, we 

show on the figure a grey shaded region which covers those sensors whose data falls within the 25 to 

75th percentile group of sensors. The agreement of this reduced dataset with the reference is also very 

good and the internal spread of sensor values would be compatible with meaningful measurement 

given expected atmospheric variability. Taking those sensors in the interquartile range, more than 70% 

of observations fall within 5 ppb and 95% of observations fall within 10 ppb of the reference values.  Fa
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Figure 3. A time-series comparison of reference photometric O3 instrument (black line), highest O3 

sensor (red line), lowest O3 sensor (blue line). Grey shaded area shows those sensor lying in the 25
th
 to 

75
th
 percentile range.  

 

Our conclusion is that given an in situ initial normalization of calibration slope factors against a 

reference instrument, then the resulting O3 sensor observations would be significant, e.g. in 

combination have precision that is better than typical daily atmospheric variability over our test period 

of three weeks, although numerical strategies to handle outlying sensors require development.  An 

evaluation of longer-term stability, and issues such as frequency of field calibration would require 

further experiments. The analysis raises a wider implementation issue, suggesting that ‘managed’ 

deployments of sensors, where local calibration is coordinated and referenced to a single source, may 

be considerably more precise than that achieved from unstructured deployments of sensors without 

reference normalisation.  

 

Nitrogen oxide: Our next analysis evaluates performance of the NO sensors against reference 

chemiluminescence observations and we apply a similar methodology that compares reference against 

minimum, maximum and those sensors in the 25th to 75th percentile range (Figure 4). In general terms 

the NO sensors show good temporal agreement against reference measurement, but with poorer linear 

regression statistics than the O3 sensors. We note that NO is often at low concentrations in the 

background York atmosphere and this challenges the detection limit of the sensors in many periods. 

NO sensor observations compared against chemiluminescence gave R
2 
values of 0.73 ± 0.21, although 

with an overall sensor bias underestimating NO by a factor 2.3 ± 1.1. It is possible that this 

underreporting bias for [NO]sensor  may be correctable, although the inter-sensor spread would remain 

high.  
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Figure 4. A time-series comparison of reference chemiluminescence instrument (black line), highest 

NO sensor (red line), lowest NO sensor (blue line). Grey shaded area shows those NO sensors lying in 

the 25th to 75th percentile range. 

 

Nitrogen dioxide: A comparison of reference NO2 against sensor observation showed poor statistical 

agreement, suggesting that the sensor was not measuring this chemical parameter exclusively. This 

contrasts with O3 and NO from sections 2.1 and 2.2  where there was good evidence for an analytically 

selective measurement, even if calibration and sensor reproducibility were less than ideal.  An analysis 

of correlation coefficients of each sensor against the reference gave a median R2 = 0.25 ± 0.13).   The 

sensors typically reported high concentrations, over-reporting against the reference by a factor of 3.2 ± 

1.7. Setting to one side the poor agreement in trends between reference and sensor, this substantial 

over-reporting implied considerable exceedence of air quality standards, where reference 

measurements showed values well inside regulatory limits. Whilst the direct comparison of NO2 

sensor against reference was poor, the 25th - 75th percentile range of sensors was relatively narrow. 

This implies that the sensors are broadly reproducible in their response, even if they are not solely 

measuring the reported parameter of NO2. Further work is required to determine the exact response 

characteristics of this particular NO2 sensor, potentially leading to an operationally defined air quality 

measure, similar perhaps to a ‘total’ VOC observation.  
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Figure 5. A time-series comparison of reference chemiluminescence NO2 instrument (black line), 

highest NO2 sensor (red line), lowest NO2 sensor (blue line). Grey shaded area shows those NO2 

sensors lying in the 25th to 75th percentile range. 

 

Particulate matter: The final two sensors evaluated (PM and VOC) do not have as precise a 

reference value to compare against. For NO, NO2 and O3 there is a single binary reference gas mixture 

that ties observations to amount of substance. For Particulate Matter a range of reporting metrics are 

available, eg PM2.5, PM10, and these in turn are somewhat operationally defined in terms of individual 

instrument responses. For PM, we compare the 20 sensors co-located against one another to determine 

inter-sensor variability, and then compare two sensors against an air quality reference station in York 

to establish accuracy against a current standard air quality method for PM reporting.   

 
Figure 6. A time-series comparison of highest PM sensor (red line), lowest PM sensor (blue line). 

Grey shaded area shows those PM sensors lying in the 25th to 75th percentile range. 
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There is a generally good statistical agreement between the individual sensor PM measurement (R
2
 = 

0.8 ± 0.11), but with a significant spread in reported concentrations, even taking the reduced range of 

central sensor values. For PM the 25th to 75th percentile sensors (grey range in Figure 6) span a 

concentration range ~ 20 ug m
-3

. This measurement uncertainty is significant in the context of current 

regulatory limits (eg European Union Directive values:  PM2.5 annual mean 25 ug m
-3

, PM10 40 ug m
-

3
). A comparison of sensor particulate matter measurements against a standard reference observations 

was made at a roadside location in York (Fishergate, TEOM-FDMS, following EN12341:1998). This 

co-located two sensor units alongside a City of York air quality monitoring site, affiliated to the Defra 

automatic urban networks for air quality. The data was taken from uk-air.defra.gov.uk.  Figure 7 

shows this comparison, with modest agreement between sensor and reference PM10 (R
2
 = 0.35, 

intercept ~10 ug m
-3

).   A positive bias was observed in the sensor data. 

 

 
Figure 7. Three week comparison of hourly sensor PM observations against a UK standard PM 

reference method at the Fishergate air quality station - data from uk-air.defra.gov.uk. EU Directive 

PM10 limit values marked on the plot for information.  

Volatile Organic Compounds (VOC): The final sensor we evaluated was a measurement of Volatile 

Organic Compounds (VOC) using a metal oxide sensing approach. This ‘total VOC’ definition is 

common in the sensor reporting of VOCs since metal oxide devices or photoionisation sensors do not 

speciate individual VOCs in the way that chromatographic or mass spectrometric methods do. The 

conceptual definition of ‘total’ is straightforward, but the conversion of a sensor signal to a 

quantitative value is difficult since sensors typically respond differently to individual organic 

compounds.  Since there is no reference measurement for total VOC, in this section we evaluate only 

the inter-sensor variability in response, and then in Section 3 discuss in further detail compound 

specific responses and the potential application of total VOC sensors in the field.  
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Figure 8. A time-series comparison of highest total VOC sensor (red line), lowest total VOC sensor 

(blue line). Grey shaded area shows those VOC sensors lying in the 25th to 75th percentile range. 

 

Whilst there is some considerable spread in the values reported between highest to lowest VOC co-

located sensor in the study, the sensors data within the 25th to 75th percentile are relatively tightly 

constrained, with the sensor to sensor variability being modest compared to the atmospheric 

variability. Since the sensor reproducibility is encouraging, it demands some further thinking on how a 

relatively non-specific but reproducible observation could be used to address particular scientific 

problems given VOCs provide one of the principal controls over the functioning of the Earth system 

and have a significant impact on air quality, climate change and the carbon budget.  

 

New strategies for VOC sensors 

 

Current methodologies for studying the impacts of VOCs on atmospheric chemistry and climate 

generally use process level or single point observations of concentrations or fluxes to provide 

constraints for regional and global chemistry models. The upscaling of emissions from process scale 

(typically that of cm to km scales) to that of the model grid scale (1,10,100 km
2
 depending on model 

and application) are based on the very limited literature datasets since instrumental methods are highly 

complex. Of all the air pollution parameters considered in this paper, VOCs typically have the most 

limited observational datasets and by extension would benefit most from usable low cost sensors. In 

the UK for example there are in excess of 300 official online O3 air quality measurements, 200 NOx 

measurements, but only four online VOC measurement stations. This limited information on spatial 

and temporal variability makes it difficult to quantify uncertainties in model constraints or link 

emissions to process level controls. 

The use of sensors for the detection of VOCs has the potential to deliver something different but 

complementary to the existing experimental approaches – that is a direct measurement with 

substantially degraded level of chemical detail compared to the single site observations, but with  well-

resolved time information and spatial resolution. Recent advances in sensors for the detection of 
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VOCs, adopted from the hazard detection industry
29

, provide a particular opportunity to answer 

questions inaccessible to conventional research methodologies. 

The non-selective nature of current VOC sensor technologies is not as limiting in terms of potential 

science applications as might first be presumed, as existing literature shows that in many environments 

VOC speciation is significantly less variable than the changes in total concentration. Our study from 

section 2.5 shows that metal oxide sensor to sensor variability can be reasonable, when compared with 

atmospheric variability. Thus the use of a selective and sensitive VOC observation technique (e.g. GC) 

alongside a distributed network of sensors may enable a mapping of detailed speciated information 

onto an improved measure of overall temporal/spatial variability. For a VOC sensor to provide useful 

data on ambient variability, it must be able to detect small changes in VOC concentrations and require 

limits of detection (LOD) in the 10-100s of pptv range. Sensor response must also be stable over 

timescales significantly longer than that of the variability being observed (hours to days), and any 

interferences must be quantifiable and correctable. 

Photo Ionisation Detectors (PIDs) are one available sensor technology for Σ[VOC] measurements. 

These small units (~ 2 cm diameter) use ~ 100 mW and work via the ionisation of molecules whose 

ionisation energy is less than that of the photons from the UV lamp in the sensor (including most 

unsaturated VOCs). Current manufacturer quoted LOD of ~5 ppb are however inadequate for ambient 

observations and improving this has not been a requirement for the majority of industrial PID 

applications. Reducing the LOD by approximately an order of magnitude through thorough lab 

characterisation and signal optimisation, increases substantial the utility of the sensors for atmospheric 

chemistry applications.  

 

Through detailed laboratory experiments we found the PID background signal to be highly sensitive to 

variables such as local electromagnetic interference, noise on the sensor supply voltage and ground, 

and noise introduced during the transmission of signal voltages to a suitable analogue to digital 

converter. Through a series of improvements to minimise the effects of these electronic interferences 

we were able to reduce the PID background signal standard deviation, for a measurement period of 60 

hours, from approximately 10 mV to 3 e
-2

 mV. These improvements in electronics and signal handling 

enabled small signals from low VOC concentrations to be discernable from the background. Figure 9a 

shows PID response to isoprene binary mixtures in N2 over the range 0 and 2.5 ppb. We show the 

corresponding 3 sigma estimated LOD in Figure 9b. 

  

                                                
29

 G. Manes, G. Collodi, R. Fusco, L. Gelpi and A. Manes, International Journal of Distributed Sensor 

Networks, 2012, Article ID 820716, 13 pages. 
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Figure 9: a) PID signal voltage against isoprene mixing ratio (in N2 balance gas),  mean PID signal 

response and calculated isoprene mixing ratio over a 1-minute sample time, with error bars 

representing ± 1 standard deviation. Red line shows linear fit to data. b) Estimated PID three-sigma 

LOD for a range of signal averaging times. 

  

The sensor response shown in Figure 9 suggests that order of magnitude improvements in sensor 

detection limits are possible with careful signal conditioning. However translating this quantitative 

performance to ambient operating conditions, compared with the highly optimised laboratory 

conditions used in Figure 9, requires all possible interferences to be characterised over relevant ranges. 

Figure 10 shows for example the non-linear PID background signal response to changing relative 

humidity (RH), which is of a comparable magnitude to that of isoprene (Fig. 9). As well as the 

obvious complications of correcting for signals from multiple interferences, PID sensor sensitivity to 

VOCs have also been found to change with RH and will likely also be impacted by other interfering 

signals. Laboratory experiments have also shown PID response to be sensitive to operational 

parameters such as sensor supply voltage and temperature. 
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Figure 10: Baseline PID response against relative humidity, with error bars showing ± 1 standard 

deviation, highlighting potential artefact signal generated solely by a changing humidity. Green line is 

an exponential fit to the data. 

  

The results shown in Section 2 show the potential performance of sensor devices to illustrate trends 

and temporal behaviours, successfully so for O3, NO, PM and VOC - but also the limitations in trying 

to obtain quantitative information - successful in our study only for O3.  The quantity, magnitude and 

complexity of analytical interferences that must be characterised in order to convert a VOC (or indeed 

any sensor) signal into a meaningful quantitative observation, with known uncertainties, makes 

standard individual parameter regression approaches extremely complicated and uncertain. One 

potential solution to this problem is the application of statistical methods combined with supervised 

machine learning approaches, such as boosted regression trees (BRT)
3031

 or Gaussian processes 

emulation (GPE) or Kriging-Based optimisation
32

. These algorithms have been shown to have 

significant predicting power once deterministic functions have been created using a training data-set, 

and have the advantage of being able to deal with complex nonlinearities and covariances. 

 

 
 

Figure 11. Raw PID and signals corrected for humidity, temperature and supply voltage using boosted 

regression tree (red) and Gaussian processes emulation (grey), for six different isoprene abundances in 

N2 mixtures. 

 

One approach to characterising the multiple dependencies of a PID sensor signal could be to use these 

statistical methods to develop models of sensor response. For PIDs the four key variables that describe 

the majority of sensor output are [VOC], RH, temperature and supply voltage.  Figure 11 shows the 

raw sensor signal output (solid black line) compared with that calculated using BRT (red) and GPE 

(grey, plus shaded uncertainties). Both models were constructed using approximately 3 hours of 

training data and then used to predict a single sensor response based on a new set of observations of 

step-changing isoprene mixing ratio, relative humidity, temperature and sensor supply voltage. The 

model skill in reproducing the average sensor signal implies the majority of the observed variability in 

                                                
30

 D.C. Carslaw and P.J. Taylor, Atmospheric Environment, 2009, 43, 3563-3570. 
31

 J. Elith,  J.R. Leathwick and T. Hastie, Journal of Animal Ecology, 2008, 77, 802-813. 
32

 O. Roustant, D. Ginsbourger and Y. Deville, Journal of Statistical Software, 2012, 51, 1-55. 
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this experiment can be explained by the variability in the 4 predictor variables. At ambient 

atmospheric concentrations [VOC] can in practice be only a minor contributor to the total signal 

response, and smaller than the variability introduced by the other three variables. Once confidant that 

the model describes all factors controlling sensor response, these approaches can then be used to 

predict desired response variables. Figure 12 shows the known isoprene mixing ratio (black line) 

compared with that calculated via BRT (red), GPE (grey). Also shown is the calculated mixing ratio 

using individual parameter regression (blue), clearly poorer than the other two approaches. The short 

duration of the dataset meant that RH, temperature and supply voltage variability was small compared 

to isoprene, and thus all 3 methods agree reasonably well and all have a mean deviation from the true 

isoprene of  < ±1.5 ppb. However, as the quantity and dynamic range of interference parameters 

increases, the potential of these approaches to diagnose desired variables becomes much more 

significant. 

 

 
Figure 12. Isoprene mixing ratio based on calculated calibration gas output (solid black line), PID 

signal corrected using individual regression parameters (blue dashed), Boosted regression tree (red) 

and Gaussian processes emulation (grey, with shaded uncertainties) 

 

Through the combination of these statistical models and the generation of comprehensive training data 

sets, using both laboratory and real-world experimental data, is possible that meaningful information 

can be retrieved from complex sensor signals, providing supporting observations of the major 

interferences are available. The success of these methods is, however, dependant on both the 

sensitivity and reproducibility of the sensor response as well as the quality and scope of the training 

data used. 

  

Conclusions 

 

We conclude that for all air pollution sensor systems a full analytical evaluation of sensor performance 

is required using both real-world pollutant abundances and in the presence of a full suite of realistic 

co-pollutants and interferences. Such evaluations are currently lacking in the literature. We highlight 

that in absolute terms the interference from stable trace gases (e.g. CO2, H2 etc), expressed as mV ppb
-

1
, are generally very small, but that a high ratio of such co-pollutants to the measurand can render the 

sensor observations prone to large artefact responses. A short-term evaluation of twenty commercial 
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air pollution sensor packages provided some mixed results. For ozone a good overall agreement was 

found between reference measurements and sensors, once sensor calibration values had been linked to 

the in situ reference observation. Some challenges remain however in designing deployment and data 

strategies that can identify data from outlier sensors that deviate from the reference by more than the 

scale of expected atmospheric variability in urban environments. For other air pollution parameters, 

varying degrees performance were found. For NO and PM, general trends in atmospheric pollution 

were recreated by the sensors, although with notable negative and positive biases compared to 

reference chemiluminescence or TEOM-FDMS. NO2 sensor measurements from the commercial 

package did not track trends in reference NO2, and this may be responding to some different air 

pollution metric that requires better definition.  VOC sensors showed good unit to unit variability, but 

present a further challenge in defining firstly, what exactly they are responding to, and secondly, how 

this non-specific data may be used scientifically.  We show that for PID-based VOC measurement, 

detection limits can be improved through electronic handling of signals, but that multiple interfering 

factors affect the overall VOC response. In some cases the sensor response to [VOC] is smaller than 

that rising from variability in humidity, temperature and supply voltage. We identify that when 

multiple signal corrections are required for a sensor then application of individual regression 

parameters is less successful than the statistical methods of boosted regression tree or Gaussian 

process emulation.  Overall we conclude that the state of the art can at best be considered a ‘work in 

progress’, with promising performance for some chemicals and rather poor performance for others. 

Very extensive trace-level laboratory testing of multiparameter sensor responses is still required along 

with alternative numerical strategies than can correct for sub-optimal measurement. Only then will the 

sensor concept yield data that is reliable, fit for purpose in the public domain and potential useful for 

research applications.  
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