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Abstract 

Population breast cancer screening provides sensitive tumor identification, but low 

specificity implies that a vast majority of biopsies are not ultimately diagnosed as cancer. 

Automated techniques to evaluate biopsies can prevent errors, reduce pathologist 

workload and provide objective analysis. Fourier transform infrared (FT-IR) 

spectroscopic imaging provides both molecular signatures and spatial information that 

may be applicable for pathology. Here, we utilize both the spectral and spatial 

information to develop a combined classifier that provides rapid tissue assessment. First, 

we evaluated the potential of IR imaging to provide diagnosis using spectral data alone. 

While highly accurate histologic [epithelium, stroma] recognition could be achieved, the 

same was not possible for disease [cancer, no-cancer] due to the diversity of spectral 

signals. Hence, we employed spatial data, developing and evaluating increasingly 

complex models, to detect cancers. Sub-mm tumors could be very confidently predicted 

as indicated by the quantitative measure of accuracy via receiver operating characteristic 

(ROC) curve analyses. The developed protocol was validated with a small set and 

statistical performance used to develop a model that predicts study design for a large 
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scale, definitive validation.  Evaluation on different instruments, at higher noise levels, 

under a coarser spectral resolution and two sampling modes [transmission and 

transflection], results indicate that the protocol is highly accurate under a variety of 

conditions. The study paves the way to validating IR imaging for rapid breast tumor 

detection, its statistical validation and potential directions for optimization of speed and 

sampling for clinical deployment. 

 

 

Introduction 

Breast cancer is the most prevalent non-skin malignancy in women in the United States, 

with more than 231,000 new diagnoses and over 40,000 deaths estimated in 2015.
1
 Since 

mortality is reduced by early detection, widespread population screening for breast cancer 

by mammography is recommended
2
 and leads to over 1.6 million breast biopsies each 

year.
3
 Although 80% of these biopsies are not diagnosed as cancer,

4
 each biopsy must be 

stained and manually evaluated by a trained pathologist.
5
 Pathology examinations require 

extensive analysis of tissue morphology and structure, and add cost to the evaluation.
6
 In 

addition, manual analysis is time consuming and patients often wait significant time 

periods to obtain a diagnosis.
7
 Patient stress levels, as measured by biochemical 

indicators (cortisol, for example), are significantly elevated while waiting to learn results 

of a biopsy, regardless of the eventual diagnosis.
8
 Therefore, efficient automated 

techniques for biopsy evaluation would provide a substantial benefit for preliminary 

biopsy analysis. However, at this time, no automated technology exists to provide initial 

biopsy screening or reduce pathologist workload. 

  

Infrared spectroscopic imaging today
9
 combines both excellent measurement of 

morphological properties and extensive information about sample biochemistry, which 

may be applicable for high-throughput pathology.
 10,11,12

 Fourier transform infrared (FT-

IR) imaging, in particular, has been widely used in a number of studies have evaluated 

spectral features of breast tissue, both related to clinical disease diagnosis
13,14,15

 as well as 

to various properties of breast cancer-mimicking cell cultures,
 16,17,18

 lymph node 

involvement,
19

 methods of measurement
20,21,22

 and properties of tissues,
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23,24,25,26,27,28,29,30,31
 including the tumor microenvironment. These studies have identified 

spectral features that may be useful for cell type, receptor status or disease recognition, 

but have not provided a validation analysis to demonstrate diagnostic performance that 

may be used to inspire clinical translation. Two of the major drawbacks of older 

technology - slower speed and poor spatial definition - are being actively addressed by 

advances such as discrete frequency IR imaging,
32

 especially using quantum cascade 

lasers,
 33,34,35,36,37

 and the development of high definition imaging.
38,39,40

 In parallel, there 

is a need to develop practical protocols for application to breast cancer. One of the goals 

of this study is to explore the development of practical protocols. We especially note that 

no study has examined the potential to combine the spectral and spatial information in IR 

tissue images to develop methods for automated breast biopsy screening or disease 

diagnosis. Hence, we focus on this aspect and seek to provide a combined spatial-spectral 

protocol that can later be validated extensively.  

 

Methods 

 

Tissue Sampling 

Seven paraffin-embedded breast tissue microarrays (TMAs) are obtained from U.S. 

Biomax and thin sections are mounted on barium fluoride (BaF2) for transmission mode 

FT-IR imaging. An adjacent section of each TMA is obtained and stained with 

hematoxylin and eosin (H&E) for pathologist evaluation. The TMA employed for 

supervised classification calibration and optimization contains 30 invasive ductal 

carcinomas, 1 invasive lobular carcinoma, and 34 adjacent normal tissue sections. An 

additional adjacent section of this TMA is mounted on a reflective slide (Kevley 

Technologies) for transflection mode IR imaging. Preliminary validation is performed on 

a separate section of this TMA containing 35 invasive ductal carcinomas, 2 invasive 

lobular carcinomas, and 40 adjacent normal tissue sections. Paraffin is removed from 

TMAs by immersion and stirring in hexane at 40 
0
C for 2-3 days. The disappearance of 

the paraffin peak at 1462 cm
-1

 is monitored to ensure paraffin is completely removed 

prior to image acquisition. 
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FT-IR spectroscopic Imaging Data Acquisition 

TMA images are collected using a Perkin Elmer Spotlight 400. Six TMA datasets are 

acquired with a 4 cm
-1

 spectral resolution, 2.2 cm/s moving mirror speed, 6.25 µm 

nominal pixel size, and 2 scans per pixel. A further validation TMA with 182 cores is 

collected at a 16 cm
-1

 spectral resolution with all other acquisition parameters held 

constant. An adjacent section of the calibration TMA on a reflective slide is collected by 

light transflection with all other acquisition parameters the same as the original 

calibration TMA. An NB medium apodization and undersampling radio (UDR) of 2 are 

used to convert inteferograms to single beam images. An IR background is collected each 

day on a clean area of each BaF2 slide with 120 scans. Any remaining air and water vapor 

contribution is removed using the atmospheric correction algorithm in the Spotlight 

software. Finally, all datasets are truncated to 750-4000 cm
-1

 for ease of handling and 

storage. 

 

IR images for the 199 core validation TMA are also collected with a Varian 7000 FT-

IR/600 UMA microspectrometer with a 128 x 128 focal plane array (FPA) detector. 

Images are acquired at 8 scans per pixel and a 16cm
-1

 spectral resolution with a UDR of 

2. Single beam spectra were computed using a triangular apodization and the spectral 

range was truncated to 900-4000cm
-1

 due to the lower detector cut-off. An intensity ratio 

is computed to an IR background collected at 128 scans per pixel on a blank area of the 

BaF2 substrate to remove spectral features not associated with tissue.  

 

Image Processing and Classification 

Individual TMA core images are compiled to build a single dataset for each TMA using 

Environment for Visualizing Images (ENVI) and software written in-house with 

Interactive Data Language (IDL). A supervised pattern recognition method based on a 

modified Bayes’ Rule, described in detail elsewhere,
41

 is used to segment image pixels as 

stroma or epithelium and segment epithelium pixels as cancer or normal. To increase 

computation speed, spectral datasets are reduced by manual tissue spectrum examination 

to a set of 89 potentially useful metrics to test in algorithm development. These spectral 

metrics include features of ratios of  absorption peak heights, peak areas normalized to 
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amide I (1652 cm
-1

) and centers of gravity. All bands were analyzed after a simple two-

point linear baseline across the absorption feature. These metrics are first tested for cell-

type classification. Spectral metric frequency distributions with 50 bins are computed for 

each metric from pixels manually selected as stroma (140,100) and epithelium (50,082) 

by comparison with H&E staining. These pdfs are used to estimate probability 

distribution functions for each metric.  

 

These distributions are applied with the metric profile to estimate posterior probabilities 

for each pixel for each class, which are used to build a discriminant function. The metrics 

are arranged by minimum pairwise error and classifiers are built from the first metric, the 

first two metrics, the first three metrics, and so on, continuing until a classifier is built 

with all 89 metrics. Receiver operating characteristic (ROC) analysis is used to assess 

each classifier and the change in the area under the ROC curve (∆AUC) is computed with 

the addition of each metric to test if the metric provides useful additional information for 

cell type classification. The metrics are reordered by ∆AUC until an optimal set of 

metrics is obtained to achieve a maximum AUC with a minimum number of features. 

Once the metrics for the classification model are finalized, optimal thresholds are 

selected to produce color-coded classified images. The model is then validated on 

independent datasets.  

 

Epithelium pixels are extracted using this spectral histology classification model and the 

set of 89 spectral metrics are again used to evaluate for discrimination of cancer and 

normal pixels with spectral information alone. In addition, two methods are evaluated for 

tumor identification by spatial polling. The first method involves segmenting each TMA 

core into boxes of a specified size ranging from 1 x 1 pixel (6.25µm
2
) to 12 x 12 pixels 

(75µm
2
). The epithelium fraction of each box is computed, and the percent of boxes 

above a specified epithelium threshold is calculated for each individual TMA core. The 

fractions for cancer and normal TMA cores are compared to select an epithelium fraction 

for cancer detection. Epithelium thresholds from 0.1 to 1.0 are considered, and a cutoff 

point for cancer detection is selected. The cutoff points for each threshold are used to 

build a least squares linear trendline, which becomes an operating line for tumor 
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detection. An operating line for each TMA core is computed, and the corresponding y-

intercept and slope values are plotted to evaluate separation of cancer and normal TMA 

cores. 

 

A second method is developed to perform pixel-level tumor segmentation. In this 

algorithm, a separate classification model is built by the procedure described for stroma 

and epithelium segmentation to distinguish cancer and normal epithelium pixels with 

spatial metrics. These metrics are developed for cancer classification by computing the 

mean and standard deviation of the epithelium fraction for all boxes that contain a given 

pixel. Boxes ranging in size from 4 x 4 pixels (25 µm
2
) to 160 x 160 pixels (1mm

2
) are 

considered in order to evaluate tissue features of various sizes. Probability distributions 

for each metric are estimated from cancer (1,030,376 pixels) and normal (181,350 pixels) 

epithelium labeled from the two class histology model. A separate classification model is 

built for each spatial metric and ROC analysis is performed to select an optimal box size 

for pixel-level cancer classification. Combinations of spatial metrics are evaluated by 

ROC analysis for pixel-level tumor detection potential. TMA core-level tumor 

identification for univariate and multivariate spatial classification models is evaluated by 

varying the fraction of pixels identified as cancer on a TMA core as a threshold for tumor 

discrimination. The AUC values for core level ROC curves are computed by the 

trapezoid rule,
42

 which is known to provide a conservative estimate of the true AUC 

value.
43

 

 

Statistical Analysis 

Confidence bands for core level ROC curves are calculated by evaluating the standard 

error E(p) for sensitivity and specificity values (p) for individual operating points with 

the binomial approximation 

     ���� = ����	��

                                               (Eq. 1) 

where n is the number of cancer samples when p is sensitivity and n is the number of 

normal samples when p is specificity.
44

 The standard error for a TMA core level AUC 

value is evaluated as 
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  ������ = ������	����	�	�
�	�����	������	�
�	�����	�����

�
�             (Eq. 2) 

with n0 as the number of normal samples and n1 as the number of cancer samples and 

    �� = ���
�	��� 					�� = �����

�����	. 43
 

 

These methods for calculation of the AUC and corresponding standard error do not 

require any assumptions about the distribution of the underlying populations. A 

confidence band or AUC confidence interval half-width is computed by multiplying the 

standard error by a selected z-score that corresponds to the acceptable probability of type 

I error α for tumor classification. A value for α is selected to reflect the level of 

confidence required for a given question. The estimated probability of a confidence 

interval including the true AUC is equal to 1-α. Therefore, a small α value is required for 

cancer classification. A α value of 0.05 and a corresponding z-score of 1.96 are used for 

95% confidence interval calculation. Since the AUC is an estimate of the true population 

mean AUC, the central limit theorem permits the assumption of normal distribution for 

large sampling.
45

 The precision of an AUC value estimated from a set of samples is 

reflected by the width of the associated confidence interval. These equations indicate that 

the width of a confidence interval for sensitivity, specificity and AUC are determined by 

the respective values for these statistics, sample size and acceptable α value.  

 

Results and Discussion 

 

Classification with Spectral Metrics 

As seen in Figure 1A, unstained fixed tissue does not have any inherent contrast and 

cannot be readily evaluated for disease diagnosis. Standard pathology practice involves 

the application of hematoxylin & eosin (H&E) dyes (Figure 1B).
5
 Hematoxylin dye is 

used visualize basic nucleic acid structures prevalent mainly, though not exclusively, in 

epithelial tissue lining breast ducts and lobules and eosin dye is used to visualize acidic 

protein structures mainly prevalent in connective stromal tissue. This lack of specificity 

and staining variability is often a barrier to application of computational approaches.
46,47

 

As noted in Figure 1C, FT-IR imaging can also provide some contrast between different 
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types of tissue due to differences in relative IR spectral absorbance between different 

types of breast tissue. These spectral differences can be used for quantitative tissue 

classification to obtain color coded images (Figure 1D) that provide high throughput 

histologic information using TMAs
48

 and can even be used to simulate H&E images.
49

 

Identification of epithelium is an important first step in tissue analysis as over 99% of 

breast tumors arise in the epithelium,
50

 and this tissue is the primary component of most 

breast malignancies.
51

 

 

Figure 1. Two-Class Breast Histology. (A) Minimal tissue and tumor characteristics are visible on 

unstained tissue. (B) Stroma and epithelium are visible on tissue stained with hematoxylin and eosin (H&E) 

dyes. (C) Image of tissue absorbance, as per color bar scale below the image, of unstained tissue at 3294 

cm
-1

 highlights differences in tissue, especially between stroma and epithelium. (D) Quantitative spectral 

data permits automated segmentation of stroma and epithelium, as noted by the color code below the 

image, without dyes or contrast agents. The scale bar represents the 1.5 mm diameter of a single core on 

this TMA. 

 

Initial classification models are developed with spectral metrics to, first, segment 

epithelium and stroma and, second, segment epithelium pixels as cancer or normal. As 

seen in Figure 2A, spectral features for stroma and epithelium demonstrate substantial 

biochemical differences for these cell types. Average spectra are computed from 

manually labeling of epithelium (50,082 pixels) and stroma (140,100 pixels) on TMA 

cores in a calibration dataset with tissue from 40 different patients. A piecewise linear 

baseline is applied and a ratio is computed to the Amide I absorbance at 1652 cm
-1

 to 

normalize for tissue sample thickness. While scattering from tissue is well-known to 

affect spectra,
52,535455

 an analysis of the variance in tissue
56

 shows that there is a 

significant fraction of the spectrum that can be useful for analysis using a simple baseline 

correction. More sophisticated models for spectral corrections
57,58,59

 and physics-based 

methods
60,61

 are being developed that can potentially provide more information and will 

likely improve our results here. In the baselined spectra we note especial differences 

within the fingerprint region, which contains many overlapping spectral features 

prevalent in tissue.
62

 The region includes symmetric PO2 stretching and CO stretching 

vibrational modes at 1080 cm
-1

, Amide III protein modes within 1200-1338 cm
-1

, CH2 
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wagging at 1236 cm
-1

, asymmetric PO2 stretching at 1240 cm
-1

, CH2/CH3 bending at 

1400 cm
-1

, asymmetric CH3 bending at 1456 cm
-1

,  as well as the Amide II vibrational 

modes within 1542-1556 cm
-1

.
 63

 A broad Amide A vibrational feature at 3294 cm
-1 25

 is 

also prominent, but we do not use the CH stretching region in our analysis due to 

additional strong variability arising from potentially residual paraffin. A comparison of 

the stroma and epithelium cell type spectra indicate that symmetric PO2 vibrations in 

DNA-rich tissue regions and CO stretching vibrations in secretory glycoproteins 

contribute a more significant relative absorbance in epithelium while asymmetric PO2 

stretching, amide III, and CH2 wagging in methyl side chains in collagen characterize the 

stroma IR spectrum. Clear spectral differences in these regions between epithelium and 

stroma indicate potential for highly accurate classification.  

 

As described in the methods section, a method for classification with spectral metrics 

provides accurate and reproducible differentiation of stroma and epithelium, as shown in 

Figure 2B and 2C. This is demonstrated by the reproducible mean AUC value above 0.98 

for both calibration and validation TMA datasets with matched cancer and adjacent 

normal tissue samples from a set of 40 patients. Accurate histologic classification is 

accomplished with only 6 spectral metrics, as shown in the inset plots in Figure 2B and 

C. Although each individual metric may not provide the same contribution to 

classification in calibration and validation datasets, the AUC still reaches a maximum 

value in both datasets with the same six metrics. Notably, the classification contribution 

for individual metrics appears to vary more for epithelium than for stroma. This is 

reasonable, as collagen is a predominant component of breast stroma and has a distinct IR 

spectrum. Conversely, the IR spectrum for epithelium may vary more due to underlying 

physiologic conditions, for example between normal and different tumor regions, which 

would impact the performance of individual specific metrics in classification. It must be 

borne in mind that our model assumes two classes, but tissue is varied and the chemical 

diversity may not always fit the desired information model. Therefore, more than a few 

metrics are required to account for this diversity, compared to two-component polymeric 

systems for example.
64

 A multi-feature classifier is advantageous to provide accurate and 

reproducible cell-type classification with spectral data.  
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Next, epithelium pixels are segmented into cancer and normal classes based on spectral 

metrics alone. The automated classification procedure is repeated with manually labeled 

epithelium from cancer (38,384) and normal (10,483) pixels as ground truth. From Figure 

2D, spectral differences are less obvious for cancer and normal epithelium. Although 

some small differences in absorbance are visible at 1400 cm
-1

 and 1456 cm
-1

, these 

distinctions are less clear than those between different cell types and may not facilitate 

efficient classification in the manner of epithelium-stroma with only spectral metrics. 

Indeed, the classification potential for spectral metrics is significantly lower for 

discriminating cancer and normal pixels, as evidenced by the cancer pixel-level AUC of 

0.81 with eight spectral metrics in calibration data (Figure 2E) and 0.55 with the same 

eight metric classification model on validation data from the same patients (Figure 2F). 

Notably, the metric contributions appear to vary even more between calibration and 

validation datasets for the cancer class than for the normal class. This may indicate that 

spectral variation is greater for cancer epithelium pixels than normal epithelium pixels. In 

addition, the AUC appears to fall below 0.5 in validation for the cancer class when more 

than 33 metrics are included in the model. This analysis indicates that metrics during 

calibration optimization may have completely different properties for cancerous 

epithelium between different datasets, even when both datasets contain tissue from the 

same set of patients. Therefore, techniques to improve data quality such as computational 

noise reduction
65

 or other image enhancement techniques
66

 would likely provide only 

limited benefit for this classification problem. Given the poor performance and 

reproducibility of pixel-level classification, sample level analysis will also provide a low 

level of accuracy. Inaccurate classification results will also have wide sensitivity and 

specificity confidence intervals and AUC error estimates,
43,44

 and will not be useful for 

tumor discrimination. These data may also indicate the need for more complex and better 

spectral features, a more sophisticated disease model going beyond the two-class model 

here or it may not be possible to perform this segmentation with IR imaging. Instead of 

pursuing complex models, corrections or computational-heavy methods to explore the 

potential of IR imaging, our goal was to develop a rapid protocol. Complex models and 

time-consuming calculations are not conducive to the same. Hence, instead of mining the 
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spectrum with more complex methods or applying spectral corrections, we chose to 

pursue an alternate method. 

 

Figure 2. Automated Histology and Pathology using Only Spectral Metrics. (A) Average spectra for 

stroma and epithelium demonstrate clear biochemical differences between these cell types. (B) Spectral 

metrics provide accurate histologic segmentation of stroma and epithelium with AUC values of ~1 for each 

tissue class with only 6 metrics. (C) This classification is reproducible in validation on separate tissue 

samples. (D) Average spectra for cancer and normal epithelium indicate biochemical changes are less 

obvious in disease development. (E) ROC analysis indicates that spectral metrics demonstrate reduced 

discrimination in cancer and normal epithelium pixels with a maximum cancer pixel-level AUC of only 

0.81. (F) Spectral metrics do not provide reproducible pathology discrimination, as demonstrated by a low 

cancer pixel-level AUC of 0.55 in validation samples. 

 

Classification with Spectral and Spatial Metrics 

The classification protocol with additional information that we propose and examine in 

this manuscript involves a two-step procedure outlined in Figure 3. In Figure 3A, the first 

step shows a spectral pixel-level segmentation of breast stroma and epithelium, which is 

highly accurate. In the second step, shown in Figure 3B, a spatial information strategy is 

incorporated based on the epithelium-stromal segmentation. Computerized algorithms 

quantify epithelium content and arrangement by a technique termed spatial polling. Two 

algorithms for spatial polling are considered here. The first method involves TMA core-

level spatial polling of a set of small tissue regions to obtain a diagnosis of cancer or 

normal for each individual core on a breast TMA. The second method involves pixel-

level spatial polling of somewhat larger regions to obtain a diagnosis of cancer or normal 

for each individual pixel on a breast TMA. The advantages and challenges for each 

method are considered next prior to validation analysis. While there are many other 

spatial analyses methods available, we sought to develop a fast and robust method. 

Doubtless, more complicated methods can be developed and the ideas proposed here can 

be extended to other methods. 

 

 

Figure 3. Development of Automated Breast Histopathology with Spectral and Spatial Data. (A) 

Spectral histologic classification is performed with supervised pattern recognition by acquiring a an IR 
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imaging dataset of multiple samples from a TMA and comparing images at frequencies of known 

biological significance with H&E staining, the current gold standard in pathology. A large set of pixels are 

manually selected to represent the two tissue classes [stroma, epithelium]. Frequency distributions for the 

two classes for each important spectral feature are computed and used to classify individual pixels. After 

calibration of the two-class histology model additional validation TMA dataset images are automatically 

classified without any operator intervention. (B) Spatial information from resulting histologic images is 

used for pathologic classification by extraction of epithelium pixels and computational pixel-level spatial 

polling. Resulting spatial metrics are used as input for the supervised classification procedure, used 

previously for histology analysis, to segment epithelium pixels into cancer and normal classes. 

 

 

 

First, TMA core-level spatial polling is conducted by dividing each TMA core into 

square boxes of specified dimensions (pixels). The percent of boxes in each core with an 

epithelium fraction above a select threshold is computed. To minimize errors associated 

with inappropriate selection of a tissue region for tumor diagnosis, boxes containing no 

epithelium pixels are excluded from calculations. Square boxes sizes with pixel lengths 

of 1 x 1 to 12 x 12 are considered, and an 8 pixel (50 µm) box length is selected as an 

optimal size for tumor segmentation. As seen in Figure 4A, cancer and normal cores are 

clearly separated at a wide range of epithelium fraction threshold values. A cutoff is 

selected for each epithelium threshold by the relationship 

    

d

d

C

N

N

C

=
σ

σ
     (Eq. 3) 

where dc is the distance of the cutoff from the mean of the cancer TMA cores, dn is the 

distance of the cutoff from the mean of the normal TMA cores, σc is the standard 

deviation for cancer TMA cores, and σn is the standard deviation for normal TMA cores. 

A least squares linear fit is computed from the individual cutoff points for each 

epithelium threshold to determine the operating line for tumor detection in Figure 4A.  

 

A least squares linear fit with offset and slope values is also computed from the plots for 

fraction of 50 µm
2
 boxes above a selected epithelium threshold for each individual TMA 

core. Cutoff values for cancer detection for y-intercept offset (Figure 4B) and slope 

(Figure 4C) are varied and the sensitivity and specificity of tumor detection is evaluated. 
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The plots in Figure 4B-C indicate that both of these metrics simultaneously provide high 

sensitivity and specificity for tumor identification. To assess the potential of both of these 

metrics in a single classifier, the slope and offset are then plotted together (Figure 4D) 

and an operating line is moved to perform ROC analysis and evaluate classification 

potential. From this plot, cancer cores appear to have a greater y-intercept offset and 

slope absolute value than normal cores. Although most cases can be distinguished by the 

offset variable alone, the slope variable appears to add some additional information that is 

useful to achieve the best possible classification. An AUC of 0.98 ± 0.04 (95% CI) is 

achieved on the calibration TMA with 65 cores (31 cancer and 34 normal) using this 

technique (Figure 4E). This method is highly sensitive to the overall morphology of the 

tumor and intervening stromal scales. Though the technique seems to work well, the 

method will underestimate regions where the tumor may be close to the edge. This will 

result in designation of pixels in sparse tumor regions or edges as non-cancerous and in a 

smaller spatial extent of tumor than present. Therefore, other techniques of spatial polling 

are evaluated for cancer classification. 

 

Figure 4. Tumor TMA Core Segmentation by Spatial Polling. (A) A TMA core is divided into 8 x 8 

pixel (50 µm
2
) boxes and the fraction of boxes with epithelium content above a set of thresholds for each 

TMA core is computed. The mean value for cancer and normal classes is computed, and error bars 

represent standard deviation. An operating line is obtained for tumor TMA core classification. (B) A linear 

fit is calculated for each TMA core and the y-intercept offset cutoff for cancer detection is varied to assess 

classification sensitivity and specificity with this variable. (C) The slope cutoff for cancer detection is also 

varied to assess classification sensitivity and specificity with this variable. (D) A scatter plot of offset vs. 

slope absolute value for each TMA core demonstrates the contribution of each metric to tumor core 

identification. (E) The ROC curve indicates near-perfect tumor classification. The area between the dotted 

lines represents a 95% confidence region for the mean value. 

 

A second spatial polling technique is considered to accomplish pixel-level cancer and 

normal epithelium segmentation. Again, the method is developed for histology 

classification with spectral metrics with a second-level set of spatial metrics to evaluate 

epithelium content and distribution. In this method, we propose a computational selection 

of boxes ranging in size from 16 x 16 pixels (100 µm
2
) to 160 x 160 pixels (1000 µm

2
). 

This range is selected to evaluate regions varying in size from the approximate mean 
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diameter of a normal breast duct
67

 to an area approaching the size of a typical TMA core. 

A somewhat larger area is required for the pixel-level spatial polling than the core-level 

spatial polling from Figure 4 because metrics are computed separately for each individual 

pixel and are not averaged over an entire TMA core. The fraction of pixels in each box 

classified as epithelium is determined, and an average and standard deviation for the 

epithelium fraction is computed for each pixel from all boxes of a given size containing 

that pixel. These pixel-level computations are stored in an image metric vector with a 

format similar to the spectral metric vector used for histology classification. To evaluate 

the relative classification potential for spatial metrics, all pixels labeled as epithelium by 

histology classification considered as ground truth information with 1,030,376 cancer 

pixels and 181,350 normal pixels. Epithelium pixels are divided into cancer and normal 

classes by applying the same automated classification algorithm used to segment stroma 

and epithelium pixels but now with spatial metrics. Pixel-level ROC analysis is then 

performed for each class. Cancer and normal classification images are obtained at the 

operating point for each class where the difference between the fraction of pixels 

correctly and incorrectly classified is maximized. TMA core-level tumor identification is 

then accomplished by selecting an appropriate fraction of epithelium pixels on a TMA 

core labeled as cancer in the classification image as a threshold to diagnose the entire 

TMA core as cancer. This threshold is varied to produce an ROC curve to evaluate 

overall TMA core-level cancer classification potential.  

 

To determine an appropriate region for pixel-level spatial polling, a single metric cancer 

and normal pixel-level classification model is developed for each box size metric and the 

area under the ROC curve (AUC) is plotted separately for each classifier. The plot for 

AUC vs. box size for 16 x 16 pixels (100µm
2
) to 160 x 160 pixels (1000µm

2
) is displayed 

in Figure 5A. The plot and images in this figure demonstrate that tumor identification is 

strongly influenced by the size of the spatial polling region. When a very small region of 

16 x 16 pixels (100 µm
2
) is considered, only a few cancer epithelium pixels are correctly 

classified and some normal pixels are misidentified as cancer (Figure 5B). Clearly, this 

low sensitivity and specificity is not suitable for tumor detection. Therefore, a larger 

region must be considered for reasonable tumor identification. When a region greater 
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than 48 x 48 pixels (300 µm
2
) is considered the core-level classification AUC appears to 

plateau at a high value around 0.95 ± 0.06 (95% CI). A classified image for a spatial 

metric in this range with a box size of 80 x 80 pixels (Figure 5C) indicates that a good 

separation of cancer and normal epithelium is achieved with some pixels labeled as 

cancer in 29 of 31 tumor TMA cores and normal pixels labeled as cancer in only 3 of 34 

adjacent normal TMA cores. The core-level AUC begins to decline at a box size of 128 x 

128 pixels (800 µm
2
), primarily due to a reduced sensitivity to small tumor regions in 

cancer TMA cores. A classified image for spatial polling with a box size of 160 x 160 

pixels (1000 µm
2
) indicates that no pixels are labeled as cancer in 6 of 31 tumor TMA 

cores (Figure 5D). These cores have small or more diffuse tumor regions that may not be 

detected when only a relatively large area is considered by spatial polling. This loss in 

classification accuracy with spatial polling at large regions indicates that both epithelium 

structure and content are important for TMA core-level tumor discrimination, as a 

classifier based only on epithelium content would likely produce asymptotic behavior 

after obtaining a maximum AUC value. Conversely, pixel-level classification accuracy 

increases at a relatively constant rate as the box size increases and levels off as the area 

considered begins to approach the size of a 1.5 mm diameter TMA core. The pixel-level 

classification AUC begins to reach a plateau at a box size of 120 x 120 pixels (750 µm
2
). 

For a pixel at the center of the TMA core with each 750 µm
2
 box containing this pixel 

included a total region of approximately 1.5 mm
2
 is actually considered by spatial 

polling, which encompasses the entire TMA core. Therefore, the pixel-level classification 

AUC approaches the core-level AUC when box sizes above 120 x 120 pixels are 

employed for spatial metric computation. Pixel-level and core-level classification do not 

follow the same trend for AUC vs. box size because different TMA cores have 

dramatically different numbers of epithelium pixels. Therefore, not all epithelium pixels 

are weighted equally in core-level ROC analysis. 

 

Figure 5. Automated Pathology with Spatial Metrics. (A) A plot of AUC vs. square box length in pixels 

indicates that accurate TMA core-level classification can be achieved at a range of box sizes and that pixel-

level classification becomes more accurate as the box size increases. Error bars for core-level AUC values 

represent standard error. (B) A classified image from a 16 x 16 pixel box size (100 µm
2
) indicates low 

sensitivity when only a small spatial neighborhood is considered. Red represents pixels classified as cancer 
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and blue represents pixels classified as normal. The notation [C, N] denotes [cancer, normal] samples as 

judged by pathologist review. (C) A classified image from an 80 x 80 pixel box size (500 µm
2
) indicates 

increased sensitivity with high specificity when a larger spatial neighborhood is considered. (D) A 

classified image from a 160 x 160 pixel box size (1000 µm
2
) indicates reduced sensitivity when a spatial 

area larger than the tumor area in some TMA cores is considered. The scale bar represents a 1.5 mm 

diameter of an individual core on this TMA. 

 

While this simple approach yields encouraging results, multiple scales of spatial 

classification and morphologic diversity are evaluated by adding additional types of 

metrics and combining metrics from different box sizes. Metrics of the mean and 

standard deviation of the fraction of pixels classified as epithelium in all boxes of a 

selected size containing a given pixel are computed for box sizes ranging from 4 x 4 

pixels (25 µm
2
) to 160 x 160 pixels (1000 µm

2
). This range is selected to evaluate areas 

that contain only a few cells to an entire TMA core. These metrics are combined to obtain 

an 80-metric image vector with fraction mean and standard deviation metrics for a square 

box length of pixels 4,8,16 and so on up to 160. Cancer TMA cores are expected to have 

higher values for fraction mean metrics since a large mass of epithelium often signifies a 

tumor. Conversely, normal TMA cores are expected to have higher values for fraction 

standard deviation metrics since normal breast tissue contains ducts and lobules lined 

with a thin layer of epithelium. The metrics sorted by the average estimated error from 

frequency distributions and used to build a classifier with 1 metric, 2 metrics, 3 metrics, 

and so on until all 80 metrics are included. A total of 80 classifiers are built, and ROC 

analysis is performed and an AUC value is computed for each classifier. The ∆AUC 

value is computed with the addition of each spatial metric and the metrics are re-sorted to 

select a set that provides optimal classification with a minimal number of spatial metrics. 

To evaluate the contribution of spatial metrics when only a smaller area of tissue is 

considered, this classification optimization is repeated with a smaller 40-metric vector 

containing fraction mean and standard deviation metrics for box sizes ranging from 4 x 4 

pixels (25 µm
2
) to 80 x 80 pixels (500 µm

2
). 

 

Pixel- and core-level ROC analysis for each classifier indicates that adding additional 

mean and standard deviation metrics has a varying impact on AUC. From the 40-metric 
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vector with a maximum 80 x 80 pixel region an optimal classifier is obtained with 2 

spatial metrics: an 80 x 80 pixel (500 µm
2
) mean and a 16 x 16 pixel (100 µm

2
) standard 

deviation. In Figure 6A, cancer and normal pixel-level ROC curves are compared before 

and after the addition of the standard deviation spatial metric. The pixel-level cancer 

AUC value is increased from 0.87 to 0.9 and the pixel-level normal AUC value is 

decreased from 0.91 to 0.88 to provide a minimal overall increase of 0.001 in mean AUC 

with the addition of the standard deviation metric. The core-level AUC value is reduced 

from 0.94 ± 0.06 (95% CI) with the single metric classifier with an 80 x 80 pixel mean 

(Figure 6B) to 0.92 ± 0.07 (95% CI) with the two metric classifier with an 80 x 80 pixel 

mean and a 16 x 16 pixel standard deviation (Figure 6C). While this change is not 

statistically significant, it does indicate that these additional standard deviation metrics 

may not be independently beneficial for core-level tumor identification. The discrepancy 

between pixel and core level classification is explained by examining TMA classified 

images and the shape of the ROC curve with and without the additional spatial metrics. 

When the mean fraction metric is considered alone, on most normal cores no pixels are 

classified as cancer. However, the addition of the standard deviation metric appears to 

increase the number of pixels classified as cancer on both tumor and normal TMA cores 

due to spatial heterogeneity. This small increase in non-specific pixels classified as 

cancer in normal TMA cores is responsible for the observed reduction in specificity on 

the core-level ROC curve and corresponding reduction in AUC with the addition of the 

standard deviation spatial metric. 

 

Figure 6. Classification with Multiple Types of Spatial Metrics. (A) ROC analysis for multiple 

classification models for pixel-level cancer and normal segmentation using metrics computed from a box 

size range of 4 x 4 pixels to 80 x 80 pixels demonstrates some improvement in pixel-level cancer sensitivity 

with multivariate classification. (B) ROC analysis for core-level classification with a single metric of mean 

fraction for an 80 x 80 box indicates accurate overall tumor identification. (C) Core-level specificity is 

somewhat reduced with the addition of a standard deviation spatial metric for this 80 x 80 box size 

classifier. (D) ROC analysis for univariate and multivariate classification models for pixel-level cancer and 

normal segmentation using metrics computed from a box size range of 4 x 4 pixels to 160 x 160 pixels 

demonstrates some improvement with multivariate classification. (E) ROC analysis for core-level 

classification with a single mean fraction metric for a 160 x 160 box indicates reduced sensitivity in tumor 

detection. (F) Core-level sensitivity is improved with the addition of a standard deviation metric to this 160 
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x 160 box size spatial polling classifier. The areas between the dotted lines on the core-level ROC curves 

represent 95% confidence regions. 

 

Multi-level classification may provide advantages for core-level tumor detection when a 

larger tissue area is considered. When the entire 80-metric vector is employed to build an 

optimal classification model, 3 metrics are selected. These metrics include fraction mean 

metrics for box sizes of 160 x 160 pixels (1000 µm
2
), 152 x 152 pixels (950 µm

2
), and 

148 x 148 pixels (925 µm
2
). These additional metrics provide a minimal increase from 

0.906 to 0.908 in pixel-level cancer AUC, from 0.952 to 0.953 in pixel-level normal 

AUC, and from 0.929 to 0.930 in pixel-level overall mean AUC. These increases in AUC 

are smaller than those observed when the smaller 80 x 80 pixel region is considered in 

spatial polling because the initial pixel-level AUC values with the single 160 x 160 mean 

metric classifier are greater, and may approach the maximum AUC value that can be 

attained with the information in these spatial metrics. The estimated core-level AUC is 

also increased by 0.01 from 0.88 ± 0.09 (95% CI) to 0.89 ± 0.08 (95% CI). The width of 

the confidence interval is reduced due to the increase in AUC,
43

 even though the same set 

of 31 cancer and 34 normal samples are used for both analyses. However, the forward 

metric selection procedure employed in this classification model is not exhaustive and 

does not consider all potential metric combinations, and this selected model may not be 

the only useful model for classification with this spatial polling region.  

 

To understand the influence of mean fraction metrics of different sizes, a classification 

model is built with the 160 x 160 pixel mean and 16 x 16 pixel standard deviation spatial 

metrics. With this classification model, the cancer pixel-level AUC is increased from 

0.906 to 0.915, the normal pixel-level AUC is reduced from 0.95 to 0.92, and the mean 

pixel-level AUC is reduced from 0.93 to 0.92. The pixel-level ROC curves in Figure 6D 

indicates that these changes in AUC with the multivariate classifier are not substantial for 

pixel-level cancer classification. Conversely, the core-level AUC is increased from 0.88 ± 

0.09 (95% CI) with a single metric classifier with a 160 x 160 mean fraction (Figure 6E) 

to 0.93 ± 0.07 (95% CI) with a 2 metric classifier with a 160 x 160 mean fraction and a 

16 x 16 standard deviation (Figure 6F). Although this increase is not statistically 
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significant due to the limited number of samples included in training analysis, the new 

classifier does appear to provide a substantial benefit for core-level tumor classification 

when large regions are considered. This change is AUC is reflected in the classified 

images and shape of the ROC curve. As noted earlier, classification with a single 160 x 

160 fraction mean metric results in 6 missed tumors out of 31 total cancer TMA cores in 

the calibration dataset. This limitation in sensitivity is reflected in the TMA core-level 

ROC curve with this single metric classifier in Figure 6E. When the optimal multivariate 

classifier with this metric is employed, pixels are labeled as cancer in 30 out of 31 cancer 

TMA cores. This increase in sensitivity is reflected in the multivariate core-level ROC 

curve in Figure 6F and results in the increased observed AUC value. A previous study of 

432 breast ducts with necrosis from 26 cancer patients and 520 ducts from 26 normal 

autopsy samples indicated that the ducts from advanced tumors with intraductal necrosis 

were rarely smaller than 240 µm in diameter while ducts from normal samples were 

rarely larger than 180 µm in diameter.
67

 Therefore, this spatial metric may provide 

important information for pixel-level tumor discrimination at a single duct scale. As 

indicated in Figure 5, a spatial metric computed from this spatial area alone does not 

provide accurate tumor discrimination. However, when it is combined with spatial 

polling over larger areas of tissue it may provide useful additional information for tumor 

classification. 

 

After consideration of a broad range of spatial regions and multiple combinations of 

spatial metrics, a single spatial polling classifier is selected for extensive validation 

analysis. Although a maximum pixel-level AUC is only achieved by spatial polling over 

areas approaching the size of a TMA core, optimal core-level classification can be 

achieved with consideration of a much smaller area. Since high density validation TMAs 

contain cores of diameter 1 mm or smaller, TMA core-level validation analysis is 

performed with the smallest region to produce an estimated core-level AUC of at least 

0.95 on the calibration dataset. Therefore, a spatial polling region of 52 x 52 pixels 

(325µm
2
) is selected for farther evaluation. This area is reasonable, as a study of 1285 

breast ducts from 26 breast ductal carcinoma patients found a mean diameter of 349 

µm.
67

 Therefore, a region of this size with a high fraction of epithelium should 
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encompass a tumor. Models with this metric are considered but rejected when the TMA 

core-level AUC is not increased. 

 

Tumor Classification Validation and Sample Size Analysis 

The expected AUC and desired confidence interval half-width are considered in selecting 

the appropriate sample size for validation. For a bionomial problem of unknown sample 

size with 2 classification options, e.g. cancer and normal, the AUC variance can be 

estimated as 

σ θ θ θ2 1( ) ( )= −     (Eq. 4) 

where θ is the predicted AUC value.
68

 This variance can be employed with an acceptable 

half-width for a confidence interval (L) and a given total sample size (n) to calculate a 

corresponding z-score by the equation 

( )θθ
α

−
=

12

n
Lz

.

68
    (Eq. 5) 

The p-value associated with the computed z-score is then obtained from tabulated z tables 

or software packages. In this manner, the z-score will increase linearly with L and the 

corresponding p-value will increase until it approaches a value of one. This p-value 

represents the probability that the true AUC is greater than or equal to the lower bound of 

the confidence interval. For example, for an AUC of 0.95 ± 0.02, a p-value of 0.95 would 

indicate that an AUC of at least 0.93 will be obtained in 95 out of 100 validation studies 

with the similar sampling. Therefore, a confidence of 0.95 can be assigned to the interval 

obtained in that study. The confidence assigned to an AUC value depends upon both the 

estimated AUC value θ and the sample size n. This is reflected in equation 5, in which 

the zα/2 score and corresponding p-value increase with n and decrease with θ. This is 

expected, since populations with less overlap in metric distribution will be more easily 

separated and studies with a larger sample size will produce a smaller standard error. This 

trend in reflected in Figure 7, where confidence increases with sample size for a given θ 

until it reaches a maximum value near 1. In this plot an interval half width L of 0.02 is 

assumed for all zα/2 and confidence calculations. If the expected AUC value is known 

from calibration studies, an appropriate sample size n can be selected where the p-value 

begins to approach 1. For an estimated θ of 0.95, the confidence levels off near a value of 
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1 with a sample size of n = 700. Therefore, our methods predict the number of samples 

required for definitive validation in addition to developing the protocol itself. The issue 

of sample size has received some attention as it is a critical aspect of the development of 

protocols. While at least one previous study examined the effect of sample size 

theoretically,
69

 the integration of classification and statistical validation can be jointly 

accomplished in the manner above. The combination of spectral histology and spatial 

polling for tumor identification translates effectively to independent validation samples, 

as demonstrated by the consistent high AUC values for validation. Although the 

algorithm is trained exclusively on TMA cores of 1.5 mm in diameter, it translates 

directly to smaller cores of 1 mm diameter. We have further tested the samples on TMAs 

that contained cores of sizes as small as 1 mm as well as surgical resections. A detailed 

study of validation and the limitations of this study is beyond the scope here and will be 

analyzed in a future report. 

 

Figure 7. Prediction of Sample Size for a Potential Validation Study. Confidence in the AUC value 

shows a variation with the value of the AUC and the sample size for an interval of half-width 0.2 at a range 

of AUC values. Confidence increases with both AUC and sample size and the precise sample size needed 

can be read from the chart. 

 

 

Applications for Clinical Translation 

To implement this technique efficiently in a clinical setting, rapid data acquisition and 

analysis is necessary as classification of IR datasets can be performed in a matter of 

minutes. The “standard” data collection parameters of 4 cm
-1

 spectral resolution, 2 scans 

per pixel, and a 6.25 µm pixel size dictate an acquisition time of at least 1.5 hours to 

collect data for a 1.5 mm TMA core. These parameters, in our experience, provide an 

excellent trade-off between data quality and time of acquisition while having provided 

accurate biomedical segmentation for other tissues. As breast tumors are normally 

evaluated in a clinical setting on much larger biopsy surgical resections, these data 

collection parameters are not reasonable for clinical implementation with conventional IR 

imaging instrumentation. One route to increasing the rate of data acquisition can be to 

reduce the required signal to noise ratio (SNR) or coarsen spectral resolution from these 
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levels.
70

 From the trading rules for IR spectroscopy, data collection time decreases 

linearly with spectral resolution and in quadrate with SNR,
71

 trends that also hold for IR 

imaging.
72,73

 In addition, a different hardware configuration using an FPA detector can be 

employed for rapid data acquisition.
74,75

 Potential for each of these options is evaluated 

next in this manuscript to assess the impacts on single pixel spectra, spectral histology 

classification and spatial pathology classification. Qualitative image evaluation and 

quantitative ROC analysis are employed to determine classification potential with 

reduced spectral quality and detail in IR image datasets. 

 

In practice, reduction in SNR can be accomplished by decreasing the number of scans per 

pixel required for data acquisition. To evaluate the potential of classification on high 

noise data, random Gaussian noise is added to one validation dataset and spectral and 

spatial classification for the original dataset and the dataset with noise added are 

compared to assess spectral histology and spatial pathology classification. The RMS 

noise for background pixels is estimated as 0.001 before adding noise and 0.016 after 

adding noise. When individual pixel spectra without and with added noise are compared, 

the added noise clearly obscures many important features within spectra, as shown in 

Figure 8A. This is particularly apparent in the fingerprint region, which contains many of 

the key metrics used in the histology model to segment stroma and epithelium. This loss 

in spectral quality is reflected in the histology classification ROC analysis. In Figure 8B, 

it can be seen that the AUC value for stroma is reduced from 0.99 to 0.95 and the AUC 

value for epithelium is reduced from 0.98 to 0.88 with added noise. Since a large number 

of pixels (30,140 stroma and 20,019 epithelium) are used in validation ROC analysis 

these changes are statistically significant. Notably, the epithelium AUC appears to be 

more adversely effected by noise than the stroma AUC. A comparison of classified 

histologic images before and after the addition of noise in Figure 8E and F, respectively, 

indicating that randomly distributed epithelium pixels are misclassified as stroma. This 

reduction in epithelium sensitivity is the primary cause for the drop in the epithelium 

AUC value. This may be due to epithelial spectra, consisting of a small set of broadly 

distributed peaks, leading to a higher apparent absorbance that starts to overlap with 

stromal values. Conversely, the stroma spectrum appears more similar to collagen, with a 
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larger set of more overlapping narrow peaks and increase in values does not affect 

classification and decrease in values folds into the tails of the lower noise distributions. 

By adding random noise, the epithelial spectra become more similar to stromal spectra, 

which would lead to random misclassifications of epithelium pixels as stroma. Since 

these misclassification events are random instead of systematic, both histology class 

images correspond reasonably well with H&E staining (Figure 8D). 

 

Conversely, the core-level tumor diagnosis AUC value only decreases from 0.97 ± 0.04 

(95% CI) for the original dataset to 0.93 ± 0.06 (95% CI) for the dataset with added 

noise. As this change is not statistically significant, spatial polling can be performed on 

low SNR data without a statistically significant loss in classification potential. The ROC 

curve in Figure 8C indicates that reasonable cancer detection sensitivity and specificity 

are achieved in the high noise dataset. A comparison of classified images before and after 

the addition of noise indicates that the loss in AUC is due to a reduction in sensitivity, 

which may be a concern for cancer classification. However, most of this loss in 

sensitivity occurs near epithelium boundary pixels, as evidenced by the classification 

images to distinguish cancer (red) before and after adding noise in Figure 8G and H, 

respectively. Therefore, large tumor regions can still be readily identified in high noise 

datasets. 

 

Figure 8. Classification with Reduced SNR. (A) A single pixel spectrum (epithelial) from the original 

dataset and the dataset with noise added demonstrates reduced visibility of spectral features, particularly in 

the fingerprint region. (B) Pixel-level segmentation accuracy of stroma and epithelium is decreased in high-

noise data, but reasonable cell-type classification is still possible. (C) ROC analysis indicates that 

reasonable core-level tumor classification is possible with the addition of noise to the dataset. The area 

between the dotted lines represents bounds for a 95% confidence region. (D) H&E staining, (E) histology 

classification and (F) pathology classification by spatial polling on the original dataset indicate that this 

sample contains a dense invasive epithelial tumor. (G) This core classification from the dataset with noise 

added indicates some reduction in epithelium detection. (H) Tumor detection is also somewhat less 

sensitive in the core with noise added. The scale bar represents 0.5 mm. 

 

Next, spectral resolution is evaluated for effect on spectral and spatial classification 

potential. Previous studies have demonstrated by simulation that a coarser spectral 
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resolution of 16 cm
-1

 can be sufficient for histology classification.
70,76,77

 This could 

potentially decrease data collection time by a factor of 64 due to the dual benefit of 

collecting fewer points and more light throughput per spectral element. Hence, we tested 

our approach for histology and pathology classification on two datasets acquired at a 16 

cm
-1

 spectral resolution. The first dataset is acquired at 4 cm
-1

 and 16 cm
-1

 spectral 

resolutions on a 16 x 2 linear array detector and then at 16 cm
-1

 on a separate IR imaging 

instrument with a 128 x 128 FPA detector. The second dataset is acquired at only a 16 

cm
-1

 spectral resolution on the linear array detector. This dataset is employed for 

validation of classification from rapid image acquisition. A spectrum from a pixel 

(stromal) is first examined from an image collected at 4 cm
-1

 with the linear array 

detector, at 16 cm
-1

 with the linear array detector, and at 16 cm
-1

 with the FPA detector in 

Figure 9A. Since biomedical spectra are typically complex mixtures, many of the broad 

spectral features remain apparent at the coarser spectral resolution. However, some finer 

spectral features apparent in the 4 cm
-1

 spectrum are less obvious in the 16 cm
-1 

resolution 

spectra. Notwithstanding, the 16 cm
-1

 spectra collected with the linear and focal plane 

array detectors appear to provide similar information. These observed spectral 

differences, however, are not important in themselves and need to be evaluated in the 

context of histologic classification. Classification of an IR image collected at a 4 cm
-1

 

spectral resolution in Figure 9D provides similar information to H&E staining in Figure 

9C. However, when classification is repeated on images collected at a 16 cm
-1

 spectral 

resolution with a linear array detector (Figure 9E) and an FPA (Figure 9F) there appears 

to be a bias towards epithelium classification. This may be attributed to a reduced 

definition of some stroma spectral features associated with collagen in the spectra 

collected at a 16 cm
-1

 resolution. Nevertheless, in many cores the observed classification 

of images collected at a 4 cm
-1

 and a 16 cm
-1

 spectral resolution is relatively similar. The 

robust nature of the cell type classification can be attributed to the types of metrics 

employed in classification. Peak heights and ratios are relatively consistent as long as the 

full width at half maximum (FWHM) value remains unchanged. Peak area and center of 

gravity metrics are also not highly impacted by small changes in peak shape or location.
70

 

Finally, many classified TMA cores appear similar when acquired at a 16 cm
-1

 spectral 

resolution with either the linear array or the FPA detector. Therefore, the spectral 
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classification technique is broadly applicable across different spectral resolutions and IR 

imaging instruments. 

 

Figure 9. Classification with a Linear Array and Focal Plane Array Detector with Low Resolution 

Data. (A) A single-pixel stroma spectrum from images acquired at a 4 cm
-1

 spectral resolution with a linear 

array detector, 16 cm
-1

 spectral resolution with a linear array detector, and a 16 cm
-1

 spectral resolution 

with an FPA detector indicate some spectral changes associated with spectral resolution but minimal 

spectral variation associated with detector. (B) ROC analysis indicates that accurate core-level 

classification is achieved at a 16 cm
-1

 spectral resolution with an FPA detector. (C) An epithelium tumor is 

detected by conventional H&E staining. (D) An IR image of a single TMA core collected a 4 cm
-1

 spectral 

resolution with a linear array detector demonstrates epithelium (green) and stroma (magenta) segmentation 

that is consistent with H&E staining. (E) An IR image of this TMA core collected at a 16 cm
-1

 spectral 

resolution with a linear array detector demonstrates some additional pixels classified as epithelium. (F) An 

IR image of this TMA core collected at a 16 cm
-1

 spectral resolution with an FPA detector demonstrates 

similar classification to the image collected at 16 cm
-1

 with the linear array detector. (G) Pixel-level 

classification segments the epithelium pixels as cancer (red) or normal (blue) from 4 cm
-1

 histology 

classified image. (H) Somewhat more epithelium pixels are identified as cancer from the 16 cm
-1

 image 

collected with the linear array. (I) The 16 cm
-1

 image collected with the FPA detector provides similar 

tumor identification as the image collected with the linear array detector. The scale bar represents 0.3 mm. 

 

Despite some differences in spectral histology, core-level pathology classification 

appears to be reproducible across different spectral resolutions and IR imaging 

instruments. Spectral histology images are classified by spatial polling to segment 

epithelium pixels as cancer or normal. Observed differences in pathology classification of 

the IR images collected at 4 cm
-1

 (Figure 9G), at 16 cm
-1 

(Figure 9H), and at 16 cm
-1

 with 

the FPA detector (Figure 9I) follow the pattern of observed differences in histology 

classification, with the epithelial pixels in the section with more stroma from the 4 cm
-1

 

IR image misclassified as normal due to the increased stromal content. In addition, 

minimal differences are observed in cancer identification between the 16 cm
-1

 images 

collected with different instruments. The square pixel size for the FPA is somewhat 

smaller, with a length 5.5 µm instead of 6.25 µm. Therefore the estimated box area on the 

FPA image is 286 µm
2
, which is somewhat smaller than the 325 µm

2
 area considered on 

all other images collected with the linear array detector. However, the core-level tumor 

detection ROC analysis in Figure 9B on the image acquired with the FPA still appears to 
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be highly accurate, with an AUC of 0.92 ± 0.04 (95% CI). Classification at a 16 cm
-1

 

spectral resolution is confirmed on an additional validation TMA with 180 samples. 

Pixel-level ROC analysis for stroma and epithelium histology segmentation in Figure 

10A provides quantitative evidence of reproducible histology, with an AUC of 0.93 for 

epithelium and 0.96 for stroma. The small reduction in AUC for epithelium is due to a 

loss in specificity, which confirms the previous observation that some stromal pixels are 

mislabeled as epithelium. However, the histology AUC values for both classes are still 

acceptable. Next, core-level cancer detection ROC analysis is performed to assess tumor 

identification. From the plot in Figure 10B, high sensitivity and specificity are achieved 

on this dataset with an AUC of 0.95 ± 0.03 (95% CI). These results indicate that data 

collection at a coarser 16 cm
-1

 spectral resolution is sufficient to achieve automated cell 

type classification and tumor detection in breast tissue. 

 

Figure 10. Validation at a Course Spectral Resolution. (A) Pixel-level segmentation of epithelium and 

stroma is demonstrated on a 180 patient TMA collected at a 16 cm
-1

 spectral resolution. (B) ROC analysis 

indicates that accurate core-level cancer detection is also achieved on this dataset. 

 

To achieve cost-effective imaging in a clinical setting, sample preparation expenses must 

also be minimized. All evaluations to this point in this study have been performed on 

images collected by light transmission, which generally provides the best quality datasets. 

Other studies have reported using glass slides,
78

 which involve a trade-off between 

practicality and reduction in spectral wavelength bandpass, or reflective glass slides, 

which require transflection model imaging. Another alternative is to use attenuated total 

reflection mode sampling,
79

 which can offer higher spatial resolution
80

 but requires good 

contact with the sample that can be cumbersome for translation. To be compatible with 

clinical workflow as well as obtain the full spectrum, we chose to evaluate the approach 

using thin sections deposited on reflective glass slides. An adjacent section of the 

calibration TMA was placed on a reflective slide and images were acquired by light 

transflection with all other data collection parameters the same as transmission imaging. 

Transflection induced changes in spectra are well known,
81,82

 but there is emerging 

evidence to demonstrate effective classifications despite these effects.
83

 Spectral 

histologic classification is again performed to segment stroma and epithelium from this 
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data set. Examination of classified images of a TMA core collected by transmission 

(Figure 11D) and transflection (Figure 11E) demonstrate similar classification in both 

datasets and reasonable correlation with H&E staining (Figure 11C). Pixels were then 

labeled on the same cores as the calibration TMA, with 140,899 stroma pixels and 50,393 

epithelium pixels manually annotated as a gold standard. Pixel-level histology ROC 

analysis is then performed to provide a quantitative assessment of classification accuracy. 

An AUC of 0.99 is obtained for epithelium and 0.98 is obtained for stroma in 

transflection datasets. From pixel-level AUC plots in Figure 11A a minimal reduction in 

AUC is observed between transmission and transflection images. These small differences 

can likely be attributed to optical effects and changes in SNR due to the double-pass 

nature of the measurement transflection imaging. Likewise, transmission and 

transflection images produce similar tumor identification. Pathology classified images for 

a single TMA core collected by transmission (Figure 11F) and transflection (Figure 11G) 

demonstrate that most epithelium pixels are correctly labeled as cancer in both images. 

This observation is confirmed by core-level ROC analysis on 75 samples in Figure 11B 

with an AUC of 0.93 ± 0.06 (95% CI). While slightly lower than the transmission AUC 

of 0.95 ± 0.06 (95% CI), these results are not statistically different. Therefore, accurate 

tumor identification is possible by transflection image, spectral histology classification, 

and spatial pathology classification. Since our analysis is not based on complicated 

spectral analysis, rather on a simple spectral and spatial analysis, we anticipate that small 

changes in known confounding variables such as sample thickness will not have a 

significant impact. However, a comprehensive test needs to be conducted to quantify the 

effect, if any, of such changes. 

 

 

Figure 11. Validation on Transflection-mode Imaging Data. (A) Pixel-level ROC analysis indicates 

similar histologic classification accuracy is achieved in transmission and transflection images. (B) Core-

level ROC analysis indicates that transflection images can be accurately classified to identify tumors. The 

area between the dotted lines represents a 95% confidence region. (C) H&E staining, (D) transmission 

histology, and (E) transflection histology images demonstrate similar cell-type segmentation. Green labels 

epithelium and magenta labels stroma as in previous images. (F) Transmission and (G) transflection images 
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demonstrate similar patterns of tumor detection. Red labels cancer and blue labels normal epithelium 

pixels, as noted previously, and the scale bar represents 0.5 mm. 

 

 

Conclusions 

Combining FT-IR imaging, spectral histology classification, and spatial pathology 

classification is demonstrated to provide automated, accurate, and reproducible tumor 

identification. Each pixel is first labeled as stroma or epithelium using spectral 

recognition at the single pixel level; subsequently, epithelium pixels are labeled as cancer 

or normal by spatial polling based upon epithelium content and distribution. Robust 

classification is demonstrated in a definitive validation study. Options are considered for 

efficient clinical translation, including classification of data with increased noise or 

reduced spectral resolution. Tumor classification is also demonstrated on images 

collected with an FPA detector and on inexpensive reflective glass slides. The data 

demonstrate a practical protocol for rapid breast cancer identification is possible and the 

various trade-offs in speeding up or reducing costs for clinical translation. Validation of 

this protocol and advances in instrumentation for rapid data acquisition can lead to a 

practical solution for breast cancer detection on biopsy samples. 
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Figure 5 
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Figure 7 
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Figure 10 
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Figure 11  
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