This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Characterization and sources of black carbon in PM$_{2.5}$ at a site close to a roadway in Gwangju, Korea, during winter

Seung Shik Park1* and Kwon-Ho Lee2

1Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-Ro, Buk-gu, Gwangju 500-757, Korea

2Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University, Korea

*Author to whom correspondences should be addressed: Fax: 82-62-530-1859 e-mail: park8162@chonnam.ac.kr

Potential source contribution function maps for black carbon (BC) observed at a roadway site indicate that the BC observed during episode “A” was most likely attributed to local emissions, while local sources and regional transport of air masses contributed to the enhanced BC concentrations during episode “B”.

![Episode “A”](image1)

![Episode “B”](image2)
Abstract

Continuous measurements of black carbon (BC) concentrations in PM$_{2.5}$ were conducted using a single-wavelength aethalometer (@880nm, Magee Sci., AE16) at a site close to roadway (~70 m from roadside) in Gwangju, Korea, during winter (December–February) to investigate the character and sources of BC particles. The BC concentrations ranked in the order of January > December > February, probably due to lower boundary layer height, ambient temperature, and wind speed during January. Diurnal patterns in BC and carbon monoxide (CO) levels exhibited peak concentrations during the morning and evening hours coinciding with rush-hour traffic, with strong correlation (R^2) ranging from 0.52 (December) to 0.87 (January). It was found that wind speed was an important factor controlling BC concentrations at the site. Very high BC concentrations, up to ~18.0 µg/m3, were observed at wind speeds <1.5 m/s. The BC concentrations acquired under weak wind conditions are highly correlated with CO with ΔBC/ΔCO (the slope of BC and CO correlation) of 0.0063 (R^2=0.55, p<0.01) and 0.0065 (R^2=0.59, p<0.01) µg/m3/ppbv during day and night, respectively, suggesting no significant difference in the fraction of diesel vehicles to total road traffic flows between the daytime and nighttime periods.

Two BC episodes, “A” and “B”, were classified based on BC, PM$_{2.5}$, and secondary SO$_4^{2-}$ concentrations, and discussed to investigate the difference in the evolution of the BC observed. Episode “A” was associated with high BC and low PM$_{2.5}$ and SO$_4^{2-}$ concentrations, while episode “B” was associated with high concentrations of BC, PM$_{2.5}$, and SO$_4^{2-}$. Based on the temporal profiles of BC, NO, and NO$_x$ concentrations, CO/NO$_x$ ratio, and potential source contribution function map for BC, the BC observed during episode “A” was mostly attributed to locally produced emissions (e.g., traffic). However, the BC during episode “B” was influenced by long-range transport of air masses from China, as well as the local emissions.

Keywords: Black carbon, roadway site, ΔBC/ΔCO ratio, potential source contribution function, long-range transport of air masses.
Environmental impact

Results from continuous measurements of BC concentrations at a roadway site during winter indicate that the diurnal cycles of BC were greatly influenced by boundary layer height, ambient temperature, and wind speed. Little difference in the slope of BC and CO correlation was found between day and night. BC episodes identified could be attributed to long-range transport of air masses, as well as the local emissions.
Introduction

Black carbon (BC) is an important species of particulate matter that results from the incomplete combustion of fossil fuels and biomass. BC plays an important role in Earth’s climate system. It has been estimated that global radiative forcing of BC aerosol is about +0.9 W/m² (+0.4 ~ +1.2 W/m²), which makes it the second contributor to global warming after carbon dioxide. Coated BC particles also act as cloud condensation nuclei (CCN), therefore contributing to the indirect forcing of the climate. In addition to its impact on the climate system, BC has been linked to adverse health effects, including respiratory and cardiovascular diseases. Once emitted, the BC aerosol can be transported over regional to synoptic scales, and removed from the atmosphere through wet and dry deposition. Because of the shorter lifetime of BC in the atmosphere compared to carbon dioxide, reducing the BC emissions is an attractive option to mitigate global warming. However, the reduction of BC emissions may cause a decrease in CCN concentrations and a decrease in the indirect effect of aerosols, compensating for the decrease in the direct effect of BC. Due to its potential impact on climate and human health, BC (or elemental carbon, EC) measurements have been conducted in urban and background sites in Korea to investigate the characteristics of the BC and to estimate its radiative forcing. For example, Kim et al. indicated that ambient BC over the Korean Peninsula was influenced by both long-range transport and local sources; urban areas (Seoul and Gwangju) have greater contributions to BC emissions from local sources while background areas (Gosan and Anmyeon Island) are dominated by long-range transport. Direct radiative forcing of BC over the Korean Peninsula was also estimated to be +0.1~+1.8 W/m² with the domain-average value of 0.39 W/m². However, few measurements of ambient BC in Korea have been conducted close to roadways where pedestrians and residents living near roads are often exposed to elevated particulate matter emissions from motor vehicles. Thus continuous measurements of BC near roadways are required for assessing the degree of human exposure and for developing traffic emission control strategies.

As discussed above, BC emission data are needed to assess their effects on health and climate. However, assessing BC emissions is difficult because of the high uncertainty in the fraction of total particulate matter that is BC (or EC) in particles ≤1.0 µm in diameter. The BC emissions vary significantly with vehicle fuel type (diesel vs. gasoline) and combustion conditions. Therefore, an alternative methodology for assessing BC emissions, based on the relationship between ambient BC and CO, has been suggested. According to the
previous studies, the slope of the BC-CO correlation (ΔBC/ΔCO) is a good parameter by which assess BC emissions and to distinguish different BC sources. It was suggested that ΔBC/ΔCO ratios are affected by the contribution of diesel vehicles to BC emissions to the total traffic flows.31-33 Also, a higher ratio was observed at roadway sites than at urban and rural sites31-34 and at night due to the higher proportion of heavy-duty diesel vehicles than during the day.27,29,31 A higher ratio was also observed in summer than in winter due to the enhanced CO emissions in winter.28,31

In this study the results of hourly BC measurements close to a roadway in Gwangju, Korea during winter are presented. The temporal variations of BC are examined in the light of CO and meteorological parameters (boundary layer height, wind speed, and ambient temperature). The ΔBC/ΔCO from our continuous observations is derived and compared with the results from previous studies on roadways and urban sites. In addition, the difference in characteristics and sources of BC between two BC episodes classified based on concentrations of PM$_{2.5}$ and secondary SO$_4^{2-}$ is discussed.

Experimental

Real-time measurements of BC

The site (35.11°N, 126.54°E) for real-time measurements of BC is about 70 m from a four-lane road in Gwangju, Korea, that carries heavy traffic, 0.5-0.6 km southwest of a major express highway, and surrounded by commercial and residential areas (Figure 1). Gwangju is situated in the southern part of Korea. It covers an area of 501.2 km2 and has a population of 1.5 million people. In 2013 there were about 550,800 vehicles in Gwangju, 48.6% gasoline powered and 39.1% diesel powered. The latter includes cars and light- and heavy-duty trucks. About 85% of the total air pollution emissions in the city are attributed to vehicle sources. Pollution has usually been influenced by long-range transport of anthropogenic and natural aerosol particles from China.35-37

Continuous 5-min measurements of BC in PM$_{2.5}$ were made using a single-wavelength Aethalometer (@880nm, Magee Sci., AE16) between December 1, 2012 and February 28, 2013. Hourly average concentrations of PM$_{2.5}$, CO, NO, and NO$_x$ were measured using an ambient air monitoring system from the Ministry of the Environment, at a location about 2.0 km from the roadside site. The recording of the CO data at the monitoring site was made with a resolution of 100 ppbv. Hourly concentration of SO$_4^{2-}$ in PM$_{2.5}$ observed using an ambient ion monitor (AIM, URG9000D, URG Corporation) at an air pollution monitoring supersite ~7
km northwest of our sampling site, was also used as auxiliary data in this study. Details of the AIM monitor have been described by Park et al.38

Empirical compensation of aethalometer BC data

The operating principle of the Aethalometer is based on the measurement of the optical attenuation of a beam of light transmitted through a sample collected on a filter. It is assumed that the optical attenuation (ATN) only increases due to light absorption by the accumulation of BC on the filter.39 Therefore, the BC concentration from the Aethalometer is determined by the rate of change of attenuation, as below:

$$BC_{uncorrected} = \frac{A \times \Delta ATN}{\sigma_{ATN} \times Q \times \Delta t}$$ \hspace{1cm} (1)

where A is the collecting spot area (cm2), σ_{ATN} the optical absorption cross section (“specific attenuation”) of BC (m2/g), ΔATN is the change in attenuation during the time interval Δt, Q is the volumetric flow rate (l/min), and Δt is the sampling time (min). The specific attenuation coefficient used in this study was 16.6 m2/g (@ λ=880nm), as recommended by the manufacturer.

However, results from previous studies indicated that as the ATN increases, the relationship between ATN change and BC concentration is not linear,40-42 resulting in the underestimated BC. In order to correct the underestimation of BC, the compensation algorithm presented by Virkkula et al.42 was used. The principle of the algorithm is briefly introduced below. The BC concentration is actually related to the absorption and attenuation coefficients by the following equation: $BC=b_{ATN}/\sigma_{ATN}$. The attenuation coefficient b_{ATN} (m$^{-1}$) may differ significantly from the true aerosol attenuation coefficient due to the particle loading effect on the filter matrix. The corrected BC concentration is calculated from the equation below:

$$BC_{corrected} = \frac{b_{ATN,corrected}}{\sigma_{ATN}} = (1 + k \cdot ATN) \cdot BC_{uncorrected}$$ \hspace{1cm} (2)

where k is an empirically derived constant. It was suggested that the particle loading effect varies with sampling locations, season, and aging degree of aerosols.33,44 This approach has
also been applied in previous studies.\(^{31,44,45}\) The magnitude of the particle loading effect could be larger in fresh darker aerosols than in aged aerosols mixed with optically scattering species,\(^{40}\) and also larger in winter than in summer.\(^{31}\) In this work, the \(k\) factor for December, January, and February was 0.0046, 0.0031, and 0.0032, respectively, suggesting a greater impact from fresh BC emissions in December than in other months.

Identification of source regions of BC using PSCF analysis

To identify the potential source locations of BC, the potential source contribution function (PSCF) was calculated using the concentrations of hourly BC data and backward trajectories data. The PSCF indicates the conditional probability that an air mass with a certain level of pollutant concentrations originated in a given grid cell.\(^{14,46-48}\) A detailed description of PSCF analysis can be found elsewhere.\(^{14}\) Briefly, the PSCF value for the grid cell is calculated by counting the trajectory segment endpoints that terminate within that grid cell. If the total number of end points that fall in the \(ij\)\(^{th}\) cell is \(n_{ij}\) and there are \(m_{ij}\) points for which the observed aerosol parameter exceeds a criterion value selected for this parameter, the PSCF value for the \(ij\)\(^{th}\) cell can then be defined as

\[
PSCF_{ij} = \frac{m_{ij}}{n_{ij}} \tag{3}
\]

Four-day backward trajectories at heights of 100-1500 m above ground level (at 100m intervals) were calculated every 1 h during the BC pollution episodes identified (below) using the HYSPLIT 4.8 (Hybrid Single-Particle Lagrangian Integrated Trajectory) model,\(^{49}\) so that the source regions of air masses reaching the sampling site (35°11′N, 126°54′E) for the pollution episodes could be identified. In order to down-weigh high PSCF values with high uncertainties in the cells with small values of \(n_{ij}\), an arbitrary weight function, \(W(n_{ij})\), was multiplied into the PSCF value to better reflect the uncertainty in the values for these cells.\(^{46}\) The PSCF values were down weighted when the total number of end points per a particular cell was less than about three times the average value of the end points per each cell:

\[
W(n_{ij}) = \begin{cases}
1.0 & 48 \leq n_{ij} \\
0.7 & 5 \leq n_{ij} < 48 \\
0.5 & 2 \leq n_{ij} < 5 \\
0.2 & n_{ij} \leq 2
\end{cases} \tag{4}
\]
Results and Discussion

PM$_{2.5}$ BC concentrations

Figure 2 shows the time series of 1-hr averaged BC concentrations over the measurement period. The temporal profiles of hourly PM$_{2.5}$ and SO$_4^{2-}$ concentrations are also shown in Figure 2. The hourly average BC concentration was 2.4±2.2 (0.2-17.9) µg/m3. The monthly average BC concentration was 1.9±1.9 µg/m3 in December, 3.0±2.8 µg/m3 in January, and 2.1±1.5 µg/m3 in February. Comparison of temporal profiles of BC and PM$_{2.5}$ concentrations indicates that typically an increase in BC leads to an increase in PM$_{2.5}$ concentration. However, although PM$_{2.5}$ concentration was observed to be low, extremely high BC concentration (up to ~17.9 µg/m3) occurred between December 13 and 16, 2012. During this period, hourly PM$_{2.5}$ ranged from 17 to 51 µg/m3. In this study, two BC episodes were classified based on BC, PM$_{2.5}$, and SO$_4^{2-}$ concentration levels to investigate the difference in evolution of BC between the two episodes. The first episode (episode “A”) observed between December 13 and 16, 2012, is associated with a high BC and low PM$_{2.5}$ and SO$_4^{2-}$ (1.4-9.3 µg/m3). The second episode (episode “B”) observed between January 10 and 16, 2013, is strongly related to high concentrations of BC, PM$_{2.5}$ (up to 127 µg/m3), and SO$_4^{2-}$ (1.1-25.3 µg/m3), and also with severe regional haze lingering over northeastern China.50,51 Detailed discussion on the two BC episodes is below given.

Figure 3 shows the average diurnal BC concentration measured in December, January, and February. Diurnal variations of CO, boundary layer height (BLH), ambient temperature, and wind speed are also included in Figure 3. In this work, the hourly BLH in Gwangju are determined by 1) morning and afternoon estimates of BLHs; 2) the local standard time (LST) of sunrise and sunset; and 3) hourly estimates of stability. Morning and afternoon BLH estimates were based on the algorithm described by Holzworth.52 Briefly, in order to compute the morning BLH, the minimum temperature is determined from 00:00 through 08:00 LST. The morning BLH was estimated as the height above ground at which the dry adiabatic extension of the morning minimum surface temperature plus 5 intersects the vertical temperature profile observed at 12:00 GMT. A similar computation for the afternoon BLH was made using the maximum surface temperature observed from 12:00 through 17:00 LST. Hourly BLHs are interpolated from these twice per day estimates. As shown in Figure 3, strong diurnal patterns were observed with peak concentrations of 2.6, 5.4, and 3.2 µg/m3 at 08:00-09:00 in December, January, and February, respectively. The BC concentrations were
observed to be the lowest at midday. The evening peaks occurred between 19:00 and 22:00
depending on the month. Diurnal BC was highly correlated with CO with R^2 of 0.52, 0.87,
and 0.82 in December, January, and February, respectively, suggesting their impact from
common sources, e.g., traffic emissions. The abundance of BC with time in the urban
atmosphere is influenced not only by combustion activities, but also by dispersion condition.
Typically, BC has a tendency to decrease when traffic emissions are reduced. As shown in
Figure 3(c), boundary layer height in February was higher than in December and January,
indicating a larger dilution effect of air pollutants in February. The higher boundary layer
height in February than in other months is attributed to higher ambient temperature, which
enhances convective activity. The development of a well-mixed layer height started at 08:00,
reached maximum values around 13:00, and decreased after 17:00. Traffic congestion, along
with stable atmospheric conditions with low mixing layer heights during the morning and
evening hours, may result in significantly enhanced BC concentrations. The dilution effect
resulting from the development of the planetary boundary layer during the day prevented the
BC concentrations from becoming very large. Also, for the measurement period, higher wind
speeds have a strong dilution effect on BC concentrations during the daytime (Figure 3(e)).
However, this is no longer the case just before sunrise and after sunset, when the combination
of dense traffic and a low boundary layer is responsible for the observed sharp increase in BC
concentration, as shown in Figure 3(a). The morning peak of BC was attributed to the
combined effect of traffic emissions and lower mixing layer height and wind speed. The
surface inversion after sunset resulted in the accumulation of BC, causing increased BC
concentrations in the evening. Similar BC diurnal trends have been found at other urban
sites. On a monthly basis, diurnal ambient temperatures and wind speeds in January
were lower than those in December and February, suggesting that ambient temperature and
wind speed could be possible factors to the increased diurnal BC concentrations in January.
Also long-range transport of BC aerosol from northeastern China was likely another cause
of the enhanced BC concentrations in January at the site. This is clearly supported by PSCF
result for BC (see Figure 9).

Impact of wind speed and wind direction on BC concentrations

Meteorological parameters play important roles in determining the concentration levels of air
pollutants in urban areas. Among the meteorological parameters, wind speed is an important
factor controlling the BC concentrations. The dependence of BC concentration on local
wind speed is shown in Figure 4. In order to investigate the impact of wind speed on BC,
winds were divided into eight categories based on speed: 0-1.0, 1.0-1.5, 1.5-2.0, 2.0-2.5, 2.5-
3.0, 3.0-3.5, 3.5-4.0, and >4.0 m/s. Very high BC concentrations were observed at wind
speeds <1.5 m/s, suggesting accumulation of BC under poor dispersion conditions. As the
wind speed increases, BC concentrations exhibited a gradually decreasing trend due to
stronger BC dispersion ($R^2=0.92$, $p<0.0001$). Therefore, accumulation under weak wind
conditions and a strong dilution effect in the daytime suggests the predominance of local
sources in increased BC concentrations. Similar results were obtained at other urban
sites.55,58,59 Figure 5(a) shows the directionality of hourly BC concentrations at wind speeds
>1.0 m/s. Since the identification of a source location is not well determined at low wind
speeds, the BC data obtained at wind speeds <1.0 m/s were excluded from the analysis. As
shown in Figure 5(a), hourly BC concentrations from wind directions of 20-50° and 220-250°,
i.e. directions in which the Honam express highway and local traffic roads, respectively, are
located (see Figure 1), were higher than those from other wind directions, indicating that
higher BC concentrations from the wind sectors were likely due to the influence of road
traffic emissions.

A conditional probability function (CPF) was utilized to identify likely locations of local
emission sources affecting concentrations of BC at our measurement site. BC data obtained at
wind speeds < 1.0 m/s were excluded in the CPF calculation. Figure 5(b) shows the CPF
concentration plots of BC when the 75th percentile of their concentrations was set as the
threshold criterion. The emission sources are likely located in the directions that have high
conditional probability values. The CPF plot for the BC data indicates the major BC
contributions to the site coming from wind directions between 60 and 90° and between 210
and 240°. However, due to a very low frequency (<1%) observed when winds blew from the
direction of 60-90°, it is suggested that sources could likely be from the southwesterly (210-
240°) emissions, i.e., road traffic emissions, which is similar to the directionality of BC
shown in Figure 5(a).

Correlation between BC and CO concentrations

It has been found that BC and CO in urban sites are strongly correlated since road traffic
activity is a major source of both BC and CO.12,13,27,29,30,31 The emission ratios of BC/CO can
vary significantly with the type of combustion source and the age and condition of the vehicle
fleet.21,22 For example, the BC/CO ratios are known to be much higher in emissions from
diesel engines than those from gasoline engines. Therefore the BC/CO ratios can be used to
distinguish the various sources. Previous studies in urban sites also suggest that atmospheric BC concentrations are predominantly controlled by emissions from heavy-duty diesel vehicles.28,29,31 In addition, BC emissions have been found to be significant from gasoline-powered vehicles under certain conditions, such as cold-start ignition, hard acceleration, and fuel-rich combustion.23,60 Figures 6(a)-6(b) show the correlations between BC and CO for daytime and nighttime periods. In this study, daytime was defined as the hours between sunrise (07:00) and sunset (17:00) and nighttime as from just after sunset to just before sunrise. Only the BC data acquired at wind speeds ≤ 2.0 m/s were selected because air pollutants are more homogeneously distributed across the road and likely to be associated with local emissions rather than long-range transport.61 Also for further perspective, the ΔBC/ΔCO (the slope of BC and CO correlation) ratio derived from this study is compared with the results reported for other urban areas (Table 1). As shown in Figure 6, the BC concentrations were well correlated with CO during daytime and nighttime with R^2 of 0.55 and 0.59, respectively, suggesting the influence of two species from common sources, i.e., motor vehicles. EC is known to be correlated with CO in other urban areas as well,12,13,26,29 because both species are emitted from the incomplete combustion of fossil fuels. The correlation slope of ΔBC/ΔCO using all data at wind speeds ≤ 2.0 m/s was 0.0064 μg/m3/ppbv ($R^2=0.57$). The ΔBC/ΔCO ratio in this study is comparable to, or greater than those at the roadside and urban sites (Table 1). The ΔBC/ΔCO ratio (unit in μg/m3/ppbv) was 0.0056 in three sites in Tijuana, Mexico,30 0.0047-0.0090 at a roadside site in Beijing, China,31 0.0054-0.0079 in Guangzhou, China,29,53 0.0035-0.0058 in Beijing, China,28 0.0058 in regional and urban industrial emissions from Dallas and Houston, USA,62 0.001 in Mexico city, Mexico,63 and 0.0057 in Tokyo and 0.0063 in Nagoya, Japan.27 It was demonstrated that the ΔBC/ΔCO ratios at roadway sites were typically higher due to considerable emissions from road traffic, than those at the urban and rural sites.31-34 Also, as the fraction of heavy-duty diesel vehicles (HDDVs) near the roadside site increases, the ratio had a tendency to increase. Results from previous urban measurements indicated higher ratios in summer than in winter,28,31 and higher during the night than during the day at the roadside site due to a much higher proportion of HDDVs during the night.27,31 These results are expected because traffic emissions are an important source of BC and CO in these urban regions. However the ΔBC/ΔCO ratio in this study was 0.0063 μg/m3/ppbv ($R^2=0.55$) during the day and 0.0065 μg/m3/ppbv ($R^2=0.59$) during the night, suggesting no significant difference in the contribution of diesel vehicles to BC emissions from total road traffic flows between the day and the night. As shown in Figure
(f), the diurnal variation of the \(\Delta BC/\Delta CO \) ratios was similar to those of BC and CO, with morning and evening peaks. The decrease in BC to a large extent in the afternoon is related to the decrease in CO (see Figure 3(a) and (b)), leading to the decreased \(\Delta BC/\Delta CO \) ratio in the afternoon. Considering that BC/CO emission ratios for vehicles are lower under the cold conditions,\(^{27,28}\) the higher \(\Delta BC/\Delta CO \) ratio in February than in other months (Figure 3(f)) is due to the decreased CO emissions with increasing ambient temperature (see Figure 3(b) and (d)). Generally, the \(\Delta BC/\Delta CO \) ratios are considered as a gauge of the fraction of diesel vehicles to all the types of vehicles because CO emissions are dominated by gasoline vehicles while BC is mostly emitted from diesel vehicles. Thus, emission factors and traffic densities of gasoline and diesel vehicles are necessary to better understand the diurnal cycles of the \(\Delta BC/\Delta CO \) ratios at the study site. Average BC and CO concentrations were 3.1 \(\mu g/m^3 \) and 869 ppbv for the weekdays and 2.6 \(\mu g/m^3 \) and 797 ppbv for the weekends, respectively. The BC correlates well with CO during the weekdays with a slope of 0.0065 \(\mu g/m^3/ppbv \) and an \(R^2 \) of 0.54, and during the weekends with a slope of 0.0071 \(\mu g/m^3/ppbv \) and an \(R^2 \) of 0.68. T-test for the BC/CO ratio indicates also that the BC/CO ratios were not statistically different between the weekdays and weekends (\(p > 0.05 \)).

Investigation on the origin of BC during two episodes

Two BC pollution episodes were discussed to investigate the difference in the evolution of observed BC. Figure 7 shows temporal variations of hourly BC, wind speed, NO, and NO\(_x \) for two episodes. The relationship between NO/NO\(_x \) and CO/NO\(_x \) is also shown. In addition, temporal profiles of hourly SO\(_4^{2-} \) and NO\(_3^- \) concentrations, SOR, and NOR are shown in Figure 8. SOR and NOR indicate the sulfur oxidation ratio (=SO\(_4^{2-} / (SO_4^{2-}+SO_2 \)) and nitrogen oxidation ratio (=NO\(_3^- / (NO_3^-+NO_2) \)), respectively, and may be used to estimate the contribution of SO\(_4^{2-} \) and NO\(_3^- \) formation from SO\(_2 \) and NO\(_2 \).\(^{38,66}\) The PSCF maps for BC for two episodes are shown in Figure 9.

The hourly ambient temperature ranged from -4.5 to 11.5°C during episode “A” and from -7.3 to 7.3°C during episode “B”. The respective average relative humidity (RH) was 77.5% (36.0-98.0%) and 66.3% (28.0-94.0%). High RH for episode “A” was attributed to rain on December 14. It started raining at 07:00 and stopped at 21:00 (RH=95-98%) on December 14 with a precipitation of 23 mm. Wind speeds, for the periods when BC concentrations were relatively enhanced, were mostly <1.0 m/s and <1.3 m/s for episodes “A” and “B”, respectively. The relatively low wind speed and temperature during the two BC episodes may
account for the higher accumulation of locally emitted air pollutants and the enhanced formation of secondary aerosols. In addition, the high RH in episode “B” under no rain conditions would accelerate the aqueous phase oxidation of secondary aerosols, which resulted in increased SO$_4^{2-}$ and NO$_3^-$ concentrations. As shown in Figure 6(c) and 6(d), the ΔBC/ΔCO slope was 0.0076 ($R^2=0.74$) and 0.0061 µg/m3/ppbv ($R^2=0.71$) during episodes “A” and “B”, suggesting no significant difference in the ΔBC/ΔCO slope between the two episodes, but a lower slope in episode “B” was likely attributed to both low contribution of diesel vehicles to BC emissions and long-range transport of combustion emissions from northeastern China (see Figure 9). The BC/CO ratio during the transport decreases due to the shorter lifetime of BC compared to CO, resulting in the decrease in ΔBC/ΔCO ratio during episode “B”.

Diurnal BC peak concentrations over the two episodes occurred during morning and evening rush-hour periods. As the boundary layer rose throughout the morning and early afternoon, the BC concentrations tended to decrease. Close inspection of Figure 7 revealed low BC background levels during episode “A” with values of 0.5-1.5 µg/m3. During episode “B”, BC concentration exceeding 4.0 µg/m3 lasted about 4 days and relatively high BC background levels were maintained. The temporal profile of BC concentration for episode “B” exhibited a continuous increase in the BC background level from 0.5-1.0 µg/m3 on January 11 to 2.5-4.0 µg/m3 from January 12 through 15, probably due to long-range transport of polluted air masses (see PSCF map in Figure 9) and air stagnation conditions. The highest BC concentrations during episodes “A” and “B” were 17.9 and 15.7 µg/m3, respectively, which were observed on the evening of December 14 and in the morning of January 12. As shown in Figure 7, temporal variations of BC throughout the episodes were quite similar to those of NO, which is a primary species from combustion sources, with R^2 of 0.79 and 0.62, respectively. For the time period when BC concentration peaked, NO and NO$_x$ for episodes “A” and “B” were 390 and 481 ppbv, and 193 and 270 ppbv, respectively, indicating NO/NO$_x$ of 0.73 and 0.71. Respective NO/NO$_x$ was in the range of 0.63-0.81 and 0.48-0.73. Both high NO/NO$_x$ and a strong correlation of BC with NO suggest that the BC observed during the two BC episodes was significantly associated with locally produced emissions. In order to further examine the influence of local emissions on the two BC episodes, the NO/NO$_x$ against the CO/NO$_x$ was shown in Figure 7. Previous studies have indicated that CO/NO$_x$ could be used to examine the evolution of the aerosol chemical composition with respect to the age of the air masses as a proxy for proximity to major pollution sources and atmospheric processing.
For example, CO/NO\textsubscript{x} ratios of 5–15, 10–50, and >50 were classified as urban, near-source and aged regional conditions, respectively. As shown in Figure 7, the NO/NO\textsubscript{x} for episodes “A” and “B” decreased exponentially with increasing the CO/NO\textsubscript{x} with R2 of 0.67 and 0.52, respectively. The respective CO/NO\textsubscript{x} was in the range of 8-40 and of 8-80. The R2 value and CO/NO\textsubscript{x} suggest that the BC aerosols observed during episode “A” were more influenced by local emissions (urban + near sources) than those during episode “B”.

As shown in Figure 8, higher concentrations of SO\textsubscript{4}2- and NO\textsubscript{3}- were observed during episode “B” than episode “A”. SO\textsubscript{4}2- and NO\textsubscript{3}- concentrations were 3.3 (1.4-9.3) and 6.3 (2.5-11.6) µg/m3 during episode “A” and 9.9 (1.1-25.3) and 12.1 (1.0-31.1) µg/m3 during episode “B”, respectively. Also higher SOR and NOR ratios were observed in episode “B”. SOR and NOR were 0.21 (0.09-0.37) and 0.11 (0.04-0.26) during episode “A” and 0.29 (0.10-0.53) and 0.14 (0.03-0.36) during episode “B”, respectively, indicating further oxidation of the aerosols collected for episode “B”. Results of t-test for SOR and NOR indicate that the SOR (p < 0.001) and NOR (p < 0.01) were statistically different between the episodes. The PSCF map for BC for episode “A” shows clearly the influence of local emissions, while the PSCF map for BC during episode ”B” indicates that the long-range transport of air pollutants over northeastern China could be one possible source of BC and secondary inorganic species observed for episode “B”, as well as the local emissions.

In summary, the majority of the BC observed during episode “A” originated locally, while the BC observed during episode “B” could reflect long-range transported aerosols, as well as local emissions.

Summary and Conclusions

To investigate the characteristics and sources of BC particles, 5-min integrated BC concentration was observed with a single-wavelength Aethalometer at a site close to a roadway in Gwangju, Korea, during winter (December 2012 through February 2013). BC and CO concentrations peaked during the morning and evening coinciding with rush-hour traffic and their magnitude was influenced by meteorological parameters, such as boundary layer height, wind speed, and ambient temperature. The BC concentrations observed under weak wind conditions (wind speed ≤2 m/s) were highly correlated with CO mixing ratios with a ∆BC/∆CO ratio of 0.0063 (R2=0.55, p<0.01) and 0.0065 µg/m3/ppbv (R2=0.59, p<0.01) for daytime and nighttime periods, respectively, suggesting no big difference in the fraction of
diesel vehicles to total road traffic flows between day and night. The slopes of $\Delta BC/\Delta CO$ in winter at the study site were comparable to or greater than those in previous studies.

Two BC episodes, “A” and “B” over the entire study period, were classified based on BC, PM$_{2.5}$, and secondary SO$_{4}^{2-}$ concentrations. BC background levels were observed to be low (0.5-1.5 μg/m3) during episode “A” and high (2.5-4.0 μg/m3) during episode “B”, suggesting the influence of long-range transport of polluted air masses and/or air stagnation conditions during the episode “B” period. Close examination of temporal profiles of BC, NO, NO$_x$, and wind speed, relationship between NO/NO$_x$ and CO/NO$_x$, sulfur oxidation ratio, nitrogen oxidation ratio, and PSCF maps for BC indicate that the BC observed during episode “A” was most likely attributed to local emissions rather than regional contributions, while local sources and regional transport of air masses contributed to the enhanced BC concentrations during episode “B”.

Acknowledgement

This study was financially supported by Chonnam National University, 2014, and also supported by Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A4A01003896).
References

19 S. Lee et al., Atmos. Environ., 2012, 50, 246-254.
30 C.A. Shores et al., Atmos. Environ., 2013, 70, 490-499.
31 S. Song et al., Atmos. Environ., 2013, 77, 213-221.
537 65 G. McMeeking et al., Atmos. Chem. Phys., 2010, 10, 9393-9414.
Table 1. Comparison of ∆BC/∆CO ratios with other urban regions

<table>
<thead>
<tr>
<th>Location</th>
<th>Sampling period</th>
<th>EC or BC (µg/m³)</th>
<th>∆BC/∆CO (µg/m³/ppbv)</th>
<th>Analytical method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo, Japan</td>
<td>May 2003 - Feb. 2005</td>
<td>1.9</td>
<td>0.0057</td>
<td>TOT</td>
<td>Kondo et al.²⁷</td>
</tr>
<tr>
<td>Nagoya, Japan</td>
<td>March 2003</td>
<td>-</td>
<td>0.0063</td>
<td>Light absorption</td>
<td>Kondo et al.²⁷</td>
</tr>
<tr>
<td>Gwangju, Korea</td>
<td>November 1999 - May 2001</td>
<td>7.2</td>
<td>0.0050</td>
<td>Light absorption</td>
<td>Park and Kim²³</td>
</tr>
<tr>
<td>Guangzhou, China</td>
<td>July 2006 - Oct. 2006</td>
<td>4.7</td>
<td>0.0054</td>
<td>TOT</td>
<td>Park et al.¹³</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>Nov. 2005 - Oct. 2006</td>
<td>6.9</td>
<td>0.0035 (winter)/0.0058 (summer)</td>
<td>TOT</td>
<td>Han et al.²⁸</td>
</tr>
<tr>
<td>Beijing, China</td>
<td>Aug. and Dec. 2009</td>
<td>12.3-17.9</td>
<td>0.0052 (day, summer)/0.0090 (night, summer)/0.0047 (day, winter)/0.0066 (night, winter)</td>
<td>Light absorption</td>
<td>Song et al.³¹</td>
</tr>
<tr>
<td>Hyderabad, India</td>
<td>January 2004</td>
<td>1.5-11.2</td>
<td>0.0073</td>
<td>Light absorption</td>
<td>Latha et al.⁴⁴</td>
</tr>
<tr>
<td>Fort Meade, Maryland, USA</td>
<td>July 1999 – July 2000</td>
<td>0.7-1.2</td>
<td>0.0034</td>
<td>TOT</td>
<td>Chen et al.²⁵</td>
</tr>
<tr>
<td>Baltimore, Maryland, USA</td>
<td>March – Nov. 2002</td>
<td>1.1</td>
<td>0.0023</td>
<td>TOT</td>
<td>Park et al.²⁶</td>
</tr>
<tr>
<td>Mexico City, Mexico</td>
<td>April 2003/2005</td>
<td>-</td>
<td>0.0010</td>
<td>SP2</td>
<td>Baumgardner et al.⁶³</td>
</tr>
<tr>
<td>Parque Morelos, Mexico</td>
<td>May – June 2010</td>
<td>2.2</td>
<td>0.0065</td>
<td>Light absorption</td>
<td>Shores et al.³⁰</td>
</tr>
<tr>
<td>El Trompo, Mexico</td>
<td>June 2010</td>
<td>1.7</td>
<td>0.0050</td>
<td>Light absorption</td>
<td>Shores et al.³⁰</td>
</tr>
<tr>
<td>Multiple sites, Europe</td>
<td>April/May/Sept 2008</td>
<td>-</td>
<td>0.0008-0.0062</td>
<td>SP2</td>
<td>McMeeking et al.⁵⁵</td>
</tr>
<tr>
<td>Gwangju, Korea</td>
<td>Dec. 2012 - Feb. 2013</td>
<td>2.4</td>
<td>0.0063 (day, winter)/0.0065 (night, winter)</td>
<td>Light absorption</td>
<td>This study</td>
</tr>
</tbody>
</table>

This study
Lists of Figure Captions

Figure 1. Location of BC measurement site in Gwangju

Figure 2. Temporal variations of (a) BC, and (b) PM$_{2.5}$ and SO$_4^{2-}$ concentrations during study period

Figure 3. Diurnal cycles of (a) BC concentration, (b) CO concentration, (c) boundary layer height, (d) ambient temperature, (e) wind speed, and (f) ΔBC/ΔCO ratio for December, January, and February

Figure 4. Influence of wind speed on BC concentration

Figure 5. Influence of wind direction on BC concentrations. (a) All BC data at wind speeds >1.0 m/s, (b) CPF plots for BC at 75% percentile

Figure 6. Relationships between BC and CO for daytime, nighttime, and two episodes. Slopes are in μg/m3/ppb

Figure 7. Temporal variations of BC, wind speed, NO, and NOx, and relationship between NO/NOx and CO/NOx for two BC episodes

Figure 8. Temporal variations of SO$_4^{2-}$, NO$_3^-$, SOR and NOR for two BC episodes

Figure 9. PSCF results of BC for two BC episodes, A (left graph) and B (right graph)
Figure 1. Location of BC measurement site in Gwangju
Figure 2. Temporal variations of (a) BC, and (b) PM$_{2.5}$ and SO$_4^{2-}$ concentrations during study period.
Figure 3. Diurnal cycles of (a) BC concentration, (b) CO concentration, (c) boundary layer height, (d) ambient temperature, (e) wind speed, and (f) ΔBC/ΔCO ratio for December, January, and February.
Figure 4. Influence of wind speed on BC concentration.

- Boxes and whiskers plot
- Horizontal lines and two circles: 5th ~ 95th percentiles
- Dashed lines: average values

Figure 5. Influence of wind direction on BC concentrations.

(a) All BC data at wind speed >1.0 m/s
(b) CPF plot for BC at 75% percentile
Figure 6. Relationships between BC and CO for daytime, nighttime, and two episodes. Slopes are in \(\mu g/m^3/ppb \)
Figure 7. Temporal variations of BC, wind speed, NO, and NOx, and relationship between NO/NOx and CO/NOx for BC episode “A” (left graphs) and “B” (right graphs).
Figure 8. Temporal variations of SO$_2^{2-}$, NO$_3^-$, SOR and NOR for BC episode “A” (left) and “B” (right).
Figure 9. PSCF results of BC for two BC episodes, “A” (left graph) and “B” (right graph)