Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

ARTICLE

Pyridinium-Phosphonium Dications: Highly Electrophilic Phosphorus-based Lewis Acid Catalysts

Julia M. Bayne,^a Michael H. Holthausen^a and Douglas W. Stephan^{a*}

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Using commerically available 2-pyridyldiphenylphosphine (o-NC₅H₄)PPh₂, a family of electrophilic phosphonium cations [(o-NC₅H₄)PFPh₂]⁺ (**2**) and dications [(o-MeNC₅H₄)PRPh₂]²⁺ (R = F (**4**); Me (**5**)) were prepared. The Lewis acidity of these pyridinium-phosphonium dications was probed in Friedel-crafts dimerization, hydrodefluorination, hydrosilylation, dehydrocoupling and hydrodeoxygenation reactions. The influence of the counterion on the catalytic activity of the electrophilic phosphonium cations is also discussed.

Introduction

Metal-free catalysis is an emerging alternative to conventional transition metal catalyst technologies. Among the various metal-free strategies, catalysts based on main group species have garnered significant attention in the past decade. Many of these efforts have been prompted by the development of frustrated Lewis pairs (FLPs) by our group in 2006,¹ which led to the first metal-free hydrogenation technologies. Many different combinations of Lewis acids and bases have been exploited as FLPs, but typically the Lewis acids have been limited to boron-based species although other Lewis acids such as Al, C, Ti and Zr among others have also been explored.²⁻³ In an attempt to broaden the scope of main group Lewis acids our group has explored the use of phosphorus-based Lewis acids in FLP chemistry and catalysis.⁴

Many research groups have studied electrophilic phosphorus compounds and their applications stoichiometric and catalytic reactions.⁴ For instance, P(III) dicoordinate phosphenium cations have been shown to activate C-C/H and P-P bonds,¹⁰⁻¹² and form Lewis acid-base adducts with nucleophilic amidines¹³ and 4-N-Ndimethylaminopyridine.¹⁴ Interestingly, a triphosphabenzene derivative was also shown to activate H₂ via an intramolecular FLP-type mechanism in which a carbanion acts as the base and a P(III) centre acted as the Lewis acid.¹⁵ Similarly, PF₅ phosphoranes have formed Lewis acid-base adducts with Ntrimethylsilyl imidazole and pyrazole derivatives.¹⁶ The synergistic use of tetracoordinate P(V) phosphonium cations in

combination with a B-Lewis acid have been used to capture fluoride ions in sensor applications¹⁷ and to facilitate addition to polar unsaturates.¹⁸ In this context, the addition of P-based ylides to ketones in Wittig reactions is also driven by the electrophilic nature of the P centre¹⁹⁻²⁰ A significant advance in this field was the development of the electrophilic phosphonium cation (EPC), $[(C_6F_5)_3PF][B(C_6F_5)_4]$,²¹⁻²² which has been exploited as a catalyst for hydrodefluorination,²² hydrosilylation, 23-24 transfer hydrogenation of olefins, 25 hydroarylation and hydrothiolation²⁶ and hydrodeoxygenation reactions.²⁷ The reactivity of this EPC is attributed to the energetically accessible σ^* orbital oriented opposite the polar P-F bond.^{21-22, 28-29} In an attempt to synthesize a broader range of fluorophosphonium cations, the fluorophosphonium dication, $[(SIMes)PFPh_2][B(C_6F_5)_4]_2$, was prepared. This dication proved to be more Lewis acidic than $[(C_6F_5)_3PF][B(C_6F_5)_4]^{30}$ and consequently was an effective catalyst for the above reactions. Shortly after, a family of bis-fluorophosphonium dications in which two phosphonium cations are placed in close proximity was synthesized. These species also proved to be active catalysts in the aforementioned organic transformations.³¹ A more recent advance includes the use of the EPC $[(C_6F_5)_3PF][B(C_6F_5)_4]$ in conjunction with sterically encumbered aryl-substituted amines to effect reversible H₂ activation and hydrogenation catalysis of olefins.³² In addition, we have also synthesized a 1,2-diphosphonium dication, which effects E-H (E = C, Si, B, H) bond activations with phosphine Lewis bases.³³

Despite these recent advances of EPCs, this area remains underexplored as the use of P-based metal-free Lewis acids in catalysis and FLP chemistry is still in its infancy. In an effort to further broaden the range of P-based dications available for catalysis, in this report we describe a facile synthetic route to a family of pyridinium-phosphonium cations. These species exhibit enhanced solubility and are shown to be effective catalysts in a variety of organic transformations. The effect of

^{a.} Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

Electronic Supplementary Information (ESI) available: Preparative details and X-ray data are deposited and CCDC 1427394-1427395 See DOI: 10.1039/x0xx00000x

ARTICLE

the counterion on both solubility and catalytic activity is also discussed.

Experimental Section

General Procedures: All manipulations were performed in a Glove box MB Unilab produced by MBraun or using standard Schlenk techniques under an inert atmosphere of anhydrous N₂. All glassware was oven-dried and cooled under vacuum before use. Dry, oxygen-free solvents (CH_2CI_2 , and *n*-pentane) were prepared using an Innovative Technologies solvent purification system. CD₂Cl₂ and CD₃CN (Aldrich) were deoxygenated, distilled over CaH₂, then stored over 4 Å molecular sieves before use. C₆D₆ and C₆D₅Br (Aldrich) were deoxygenated and stored over 4 Å molecular sieves before use. Commercial reagents were purchased from Sigma-Aldrich, Strem Chemicals, TCI Chemicals or Alfa Aesar, and were used without further purification unless indicated otherwise. $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ was prepared by the reported procedure.³⁴ NMR spectra were obtained on a Bruker AvanceIII-400 MHz spectrometer. ¹H NMR data, referenced to external Me₄Si, are reported as follows: chemical shift (δ /ppm), coupling constant (Hz), normalized integrals. ${}^{13}C{}^{1}H$ NMR chemical shifts (δ /ppm) are referenced to external Me₄Si. Assignments of individual resonances were done using 2D NMR techniques (HMBC, HSQC, HH-COSY) when necessary. High-resolution mass spectra (HRMS) were obtained on an Agilent 6538 Q-TOF (ESI) or a JEOL AccuTOF (DART) mass spectrometer. Elemental analyses were performed at the University of Toronto employing a Perkin Elmer 2400 Series II CHNS Analyser.

Synthesis of (o-NC₅H₄)PF₂Ph₂ (1). A solution of 2pyridyldiphenylphosphine (1.19 g, 4.53 mmol, 1.0 eq.) in CH₂Cl₂ (8 mL) was added to a suspension of XeF₂ (0.768 g, 4.54 mmol, 1.0 eq.) in CH₂Cl₂ (5 mL). The reaction mixture, transparent and colourless, was stirred for 2 h at ambient temperature. All volatiles were removed in vacuo and the residue was washed with *n*-pentane (3 x 5 mL). The supernatant was removed and all volatiles were removed in vacuo to afford a white microcrystalline powder (1.28 g, 94%, Anal. Calcd for C₁₇H₁₄F₂NP: C, 67.77; H, 4.68; N, 4.65%. Found: C, 67.14; H, 4.69; N, 4.80%). ¹H NMR (CD₂Cl₂, 400 MHz, Me₄Si): δ 7.4 (m, 5H; Ph), 7.4 (m, 1H; *p*-py), 7.7 (m, 1H; *m*-py), 7.8 (m, 1H; *o*-py), 8.1 (m, 5H; Ph), 8.7 ppm (dm, ⁴J_{PH} = 5 Hz, 1H; *m*-py). ¹⁹**F NMR** (CD₂Cl₂, 377 MHz, CFCl₃): δ -36.4 ppm (d, ${}^{1}J_{PF}$ = 670 Hz, 2F; PF₂). ³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ -52.7 ppm (t, ${}^{1}J_{PF}$ = 670 Hz, 1P). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 100 MHz, Me₄Si): δ 125.2 (d, ⁴J_{PC} = 4 Hz, 1C; *p*-py), 126.5 (dt, ²J_{PC} = 32 Hz, ³J_{FC} = 5 Hz, 1C; *o*-py), 129.0 (dt, ²J_{PC} = 16.5 Hz, ³J_{FC} = 2 Hz, 4C; *o*-Ph), 132.5 (dt, ${}^{4}J_{PC}$ = 4 Hz, ${}^{5}J_{FC}$ = 2 Hz, 2C, *p*-Ph), 134.7 (dt, ${}^{1}J_{PC}$ = 177 Hz, ${}^{2}J_{FC}$ = 27 Hz, 2C, *i*-Ph), 135.3 (dt, ${}^{3}J_{PC}$ = 13 Hz, ${}^{4}J_{FC}$ = 10 Hz, 4C; *m*-Ph), 136.7 (d, ${}^{3}J_{PC}$ = 14 Hz, 1C; *m*-py), 150.0 (d, ${}^{3}J_{PC}$ = 27 Hz, 1C; *m*-py), 159.4 ppm (dt, ${}^{1}J_{PC}$ = 269 Hz, ${}^{2}J_{FC}$ = 36 Hz, 1C, i-py),. HRMS (DART-TOF+) : m/z 280.0899 (Calcd. for [(o-NC₅H₅)PPh₂O]+ : 280.0891),

Synthesis of [(*o*-NC₅H₄)PFPh₂[O₃SCF₃] (2a). Trimethylsilyl trifluoromethanesulfonate (Me₃SiO₃SCF₃) (0.2 mL, 1.11 mmol, 1.1 eq.) was added dropwise to a solution of **1** (0.295 g, 1.05

mmol, 1.0 eq.) in CH_2Cl_2 (5 mL). The reaction mixture was stirred for 15 min at ambient temperature. All volatiles were removed in vacuo and the residue was washed with n-pentane (3 x 5 mL). The supernatant was removed and all volatiles were removed in vacuo to afford a white microcrystalline powder. (0.390 g, 92%, Anal. Calcd for C₁₈H₁₄F₄NO₃PS: C, 50.12; H, 3.27; N, 3.25%. Found: C, 50.32; H, 3.65; N, 3.24%). ¹H NMR (CD₂Cl₂, 400 MHz, Me₄Si): δ 7.8 (m, 4H; o-Ph), 7.82 (m, 1H; p-py), 7.9 $(dd, {}^{3}J_{HH} = 15 Hz, {}^{3}J_{HH} = 15 Hz, 4H; m-Ph), 7.97 (m, 2H; p-Ph),$ 8.2 (m, 2H; m- and o-py) 9.0 ppm (dm, ${}^{4}J_{PH} = 5$ Hz, 1H; m-py). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -79.0 (s, 3F; O₃SCF₃), -136.8 ppm (d, ¹J_{PF} = 1004 Hz, 1F; PF). ³¹P{¹H} NMR (CD₂Cl₂, 162 MHz, H₃PO₄): δ 80.1 ppm (d, ¹J_{PF} = 1004 Hz, 1P). ¹³C{¹H} NMR $(CD_2CI_2, 100 \text{ MHz}, Me_4Si): \delta 115.6 (dd, {}^{1}J_{PC} = 94 \text{ Hz}, {}^{2}J_{FC} = 12 \text{ Hz},$ 2C; *i*-Ph), 130.4 (dd, ${}^{4}J_{PC}$ = 4 Hz, ${}^{5}J_{FC}$ = 1 Hz, 1C; *p*-py), 130.7 (d ³J_{PC} = 14 Hz, 4C; *m*-Ph), 131.8 (d, ²J_{PC} = 26 Hz, 1C; *o*-py), 134.2 (dd, ${}^{2}J_{PC}$ = 13 Hz, ${}^{3}J_{FC}$ = 2 Hz, 4C; o-Ph), 138.4 (dd, ${}^{4}J_{PC}$ = 3 Hz, ${}^{5}J_{FC}$ = 2 Hz, 2C; *p*-Ph), 138.7 (d, ${}^{3}J_{PC}$ = 11 Hz, 1C; *m*-py), 141.7 (dd, ${}^{1}J_{PC}$ = 148 Hz, ${}^{2}J_{FC}$ = 18 Hz, 1C; *i*-py), 152.7 ppm (dd, ${}^{3}J_{PC}$ = 24 Hz, ${}^{4}J_{FC}$ = 2 Hz, 1C; *m*-py), not observed O₃SCF₃. HRMS (ESI-QTOF+): m/z 280.0894 (Calcd. for [(o-NC₅H₅)PPh₂O]+ : 280.0891).

Synthesis of [(o-NC₅H₄)PFPh₂[B(C₆F₅)₄] (2b). A solution of freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (0.087 g, 0.089 mmol, 0.95 eq.) in C_6D_5Br (0.6 mL) was added to 1 (0.028 g, 0.093 mmol, 1.0 eq.) The solution was agitated for 2 minutes at ambient temperature. 3 mL of *n*-pentane was added resulting in the formation of an orange oil. The supernatant was decanted and the resulting oil was washed with *n*-pentane (3 x 3 mL). The supernatant was decanted and the residue was dried in vacuo affording a white microcrystalline solid (0.088 g, 97%, Anal. Calcd for C₄₁H₁₄BF₂₁NP: C, 51.23; H, 1.47; N, 1.46%. Found: C, 50.89; H, 1.54; N, 1.68%). ¹H NMR (C₆D₅Br, 400 MHz, Me₄Si): δ 7.0 (m, 1H; *o/m*-py), 7.1 (m, 5H; *m*-Ph & *o/m*-py), 7.3 (m, 6H; o-Ph & p-Ph), 7.4 (m, 1H; p-py), 8.3 ppm (d, ${}^{4}J_{PH} = 5$ Hz, 1H; *m*-py). ¹¹**B NMR** (C₆D₅Br, 128 MHz, BF₃•OEt₂): δ -16.2 ppm (s, 1B). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -131.7 (m(br), 8F; $B(o-C_6F_5)_4)$, -137.3 (d, ${}^{1}J_{PF}$ = 1004 Hz, 1F; PF), -161.9 (t, ${}^{3}J_{FF}$ = 21 Hz, 4F; $B(p-C_6F_5)_4$), -165.8 ppm (m(br), 8F; $B(m-C_6F_5)_4$). ³¹ $P{^1H}$ **NMR** (CD₂Cl₂, 162 MHz, H₃PO₄): δ 78.2 ppm (d, ¹J_{PF} = 1004 Hz, 1P). ¹³C{¹H} NMR (CD₂Cl₂, 100 MHz, Me₄Si): δ 115.9 (dd, ¹J_{PC} = 105 Hz, ${}^{2}J_{FC}$ = 13 Hz, 2C; *i*-Ph), 130.0 (d, ${}^{4}J_{PC}$ = 25 Hz, 1C; *p*-py), 130.3 (d, ${}^{3}J_{PC}$ = 14 Hz, 4C; *m*-Ph), 133.4 (dd, ${}^{2}J_{PC}$ = 13 Hz, ${}^{3}J_{FC}$ = 2 Hz, 4C; o-Ph), 134.3 (d, ²J_{PC} = 20 Hz, 1C; o-py), 136.5 (d(br), ¹J_{FC} = 240 Hz, 8C; C₆F₅), 137.6 (d, ${}^{3}J_{PC}$ = 11 Hz, 1C; *m*-py), 138.1 (d, ${}^{4}J_{PC}$ = 3 Hz, 2C; *p*-Ph), 138.4 (d(br), ${}^{1}J_{FC}$ = 245 Hz, 4C; C₆F₅), 141.3 (dd, ${}^{1}J_{PC}$ = 149 Hz, ${}^{2}J_{FC}$ = 19 Hz, 1C; *i*-py), 148.6 (d(br), ${}^{1}J_{FC}$ = 243 Hz, 8C; C_6F_5), 152.3 ppm (d, ${}^{3}J_{PC}$ = 22 Hz, 1C; *m*-py), not observed i-B(C₆F₅)₄. HRMS (ESI-QTOF+): m/z 280.0895 (Calcd. for [(*o*-NC₅H₄)PPh₂O]+ : 280.0891).

Synthesis of $[(o-HNC_5H_4)PPh_2][O_3SCF_3]$. Trifluoromethanesulfonic acid (20.4 µL, 0.23 mmol, 1.0 eq.) was added to a solution of 2-pyridyldiphenylphosphine (0.061 g, 0.23 mmol, 1.0 eq.) in CD₂Cl₂ (0.6 mL). The reaction mixture was left at ambient temperature for 10 min resulting in a pale yellow solution. All volatiles were removed *in vacuo* and the residue was washed with *n*-pentane (3 x 5 mL), affording a pale yellow

oil. (0.090 g, 95% Yield). ¹H NMR (CD₂Cl₂, 400 MHz, Me₄Si): δ 7.5 (m, 10H; Ph), 7.9 (t, ³J_{HH} = 7 Hz, 1H; *p*-py), 8.3 (t, ³J_{HH} = 8 Hz, 1H; *m*-py), 8.9 (m, 1H; *m*-py), 14.7 ppm (s(br), 1H; NH), resonance for the H-substituent in *ortho*-position of the pyridyl-group was not observed. ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -78.8 ppm (s, 3F; O₃SCF₃). ³¹P{¹H} NMR (CD₂Cl₂, 162 Hz, H₃PO₄): δ -5.2 ppm (s, 1P). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz, Me₄Si): δ 120.7 (q, ¹J_{FC} = 320 Hz, 1C; O₃SCF₃), 126.7 (d, ⁴J_{PC} = 1 Hz, 1C; *p*-py), 130.2 (d, ³J_{PC} = 8 Hz, 4C; *m*-Ph), 130.6 (d, ¹J_{PC} = 8 Hz, 2C; *i*-Ph), 131.8 (d, ⁴J_{PC} = 1 Hz, 2C; *p*-Ph), 131.9 (d, ²J_{PC} = 6 Hz, 1C; *o*-py), 135.1 (d, ²J_{PC} = 22 Hz, 4C; *o*-Ph), 144.3 (d, ³J_{PC} = 2 Hz, 1C; *m*-py), 146.0 (d, ³J_{PC} = 1 Hz, 1C; *m*-py), 161.0 ppm (d, ¹J_{PC} = 36 Hz, 1C; *i*-py), HRMS (DART-TOF+) : m/z 264.0938 (Calcd. for [(*o*-HNC₅H₄)PPh₂]⁺ : 264.0942).

Synthesis of [(o-MeNC₅H₄)PF₂Ph₂][O₃SCF₃] (3). Methyl trifluoromethanesulfonate (MeO₃SCF₃, 1 mL, 8.83 mmol, 2.5 eq.) was added, dropwise, to a solution of 1 (1.05 g, 3.49 mmol, 1.0 eq.) in CH_2Cl_2 (5 mL). The reaction mixture was stirred for 1.5 h at ambient temperature. The solution volume was reduced to ca. 1 mL and then 3 mL of n-pentane was added. After agitation for 2 min, a white solid settled out of solution. The supernatant was decanted and the solid was washed with *n*-pentane (3 x 5 mL). All volatiles/solvents were removed in vacuo to afford a white microcrystalline solid. (1.58 g, 98%, Anal. Calcd for $C_{19}H_{17}F_5NO_3PS$: C, 49.04; H, 3.68; N, 3.01%. Found: C, 48.88; H, 3.74; N, 3.04%). Single crystals of 3 suitable for X-ray diffraction were obtained from slow diffusion of pentane into a concentrated CH₂Cl₂ solution at -35 °C. ¹H NMR (CD₂Cl₂, 400 MHz 25 °C, Me₄Si): δ 4.4 (s(br), 3H; N-CH₃), 7.6 (m, 4H; o-Ph), 7.7 (m, 2H; p-Ph), 7.97 (m, 1H; m-py), 8.0 (m, 1H; *o*-py), 8.2 (dd, ${}^{3}J_{HH} = 15$ Hz, ${}^{3}J_{HH} = 15$ Hz, 4H; *m*-Ph), 8.5 (m, 1H; *p*-py), 9.1 ppm (m, 1H; *m*-py). 19 **F NMR** (CD₂Cl₂, 377 MHz, CFCl₃): δ - 40.9 (d, ¹J_{PF} = 705 Hz, 2F; PF₂), -79.0 ppm (s, 3F; O₃SCF₃). ³¹P{¹H} NMR (CD₂Cl₂, 162 Hz, H₃PO₄): δ -55.6 ppm (t, ¹J_{PF} = 705 Hz, 1P). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz, Me₄Si): δ 50.3 (m, 1C; N-CH₃), 121.4 (q, ${}^{1}J_{FC}$ = 321 Hz, 1C; O₃SCF₃), 129.5, (d, ${}^{4}J_{PC}$ = 2 Hz, 2C; p-Ph), 130.4 (dt, ${}^{2}J_{PC}$ = 17 Hz, ${}^{3}J_{FC}$ = 2 Hz, 4C; *o*-Ph), 130.9 (dt, ¹*J*_{PC} = 177 Hz, ²*J*_{FC} = 24 Hz, 2C; *i*-Ph), 134.9 (dt, ${}^{4}J_{PC} = 4 \text{ Hz}, {}^{5}J_{FC} = 1 \text{ Hz}, 1\text{C}; p-\text{py}), 136.6 (dt, {}^{3}J_{PC} = 14 \text{ Hz}, {}^{4}J_{FC} = 11$ Hz, 4C; *m*-Ph), 145.9 (d, ${}^{3}J_{PC}$ = 12 Hz, 1C; *m*-py), 149.0 (d, ${}^{3}J_{PC}$ = 7 Hz, 1C; *m*-py), 156.9 ppm (dt, ${}^{1}J_{PC}$ = 210 Hz, ${}^{2}J_{FC}$ = 50 Hz, 1C; *i*py), resonance for the ortho-position of the pyridyl-group was not observed. HRMS (ESI-QTOF+): m/z 316.1065 (Calcd. for [M]⁺: 316.1067).

Synthesis of [(o-MeNC₅H₄)PFPh₂][O₃SCF₃]₂ (4a). Me₃SiO₃SCF₃ (0.12 mL, 0.646 mmol, 1.0 eq.) was added, dropwise, to a solution of **3** (0.301 g, 0.646 mmol, 1.0 eq.) in CH₂Cl₂ (5 mL). After stirring for 24 h at ambient temperature, a white solid settled out of the solution. The solvent volume was reduced to 1 mL *in vacuo*, 5 mL *n*-pentane was added, and the solution was cooled to -50 °C. The supernatant was decanted, and the solid was washed with *n*-pentane (3 x 5 mL). After drying *in vacuo*, a white powder was isolated (0.310 g, 81%, Anal. Calcd for C₂₀H₁₇F₇NO₆PS₂: C, 40.34; H, 2.88; N, 2.35%. Found: C, 40.32; H, 2.72; N, 2.87%). Single crystals of **4a** suitable for X-ray diffraction were obtained from slow diffusion of pentane into a concentrated CH₂Cl₂ solution at -35 °C. ¹H NMR (CD₃CN,

400 MHz, Me₄Si): δ 4.4, (d, ⁴J_{PH} = 3 Hz, 3H; N-CH₃), 8.0 (m, 4H; *o*-Ph), 8.1 (dd, ³J_{HH} = 15 Hz, ³J_{HH} = 15 Hz, 4H; *m*-Ph), 8.3 (m, 2H; p-Ph), 8.4 (m, 1H; m-py), 8.6 (m, 1H; o-py), 8.8 (m, 1H; p-py), 9.3 ppm (m, 1H; *m*-py). ¹⁹**F NMR** (CD₃CN, 377 MHz, CFCl₃): δ -79.3 (s, 6F; O_3SCF_3), -123.9 ppm (d, ${}^{1}J_{PF}$ = 1035 Hz, 1F; PF). ³¹P{¹H} NMR (CD₃CN, 162 MHz, H₃PO₄): δ 88.8 ppm (d, ¹J_{PF} = 1035 Hz, 1P). ¹³C{¹H} NMR (CD₃CN, 125 MHz, Me₄Si): δ 51.2 (dd, ${}^{3}J_{PC} = 5 \text{ Hz}$, ${}^{4}J_{FC} = 4 \text{ Hz}$, 1C; N-CH₃), 113.2 (dd, ${}^{1}J_{PC} = 112 \text{ Hz}$, ${}^{2}J_{FC}$ = 13 Hz, 2C; *i*-Ph), 122.0 (d, ${}^{1}J_{PC}$ = 320 Hz, 1C; *i*-py), 132.3 (d, ${}^{2}J_{PC}$ = 16 Hz, 4C; o-Ph), 136.3 (d, ${}^{4}J_{PC}$ = 2 Hz, 2C; p-Ph), 136.6 $(dd, {}^{3}J_{PC} = 14 Hz, {}^{4}J_{FC} = 1 Hz, 4C; m-Ph), 141.4 (dd, {}^{4}J_{PC} = 3 Hz,$ ${}^{5}J_{FC} = 2 \text{ Hz}, 1\text{C}; p\text{-py}), 141.5 (dd, {}^{2}J_{PC} = 18 \text{ Hz}, {}^{3}J_{FC} = 2 \text{ Hz}, 1\text{C}; o$ py), 147.8 (d, ${}^{3}J_{PC}$ = 11 Hz, 1C; *m*-py), 155.5 ppm (d, ${}^{3}J_{PC}$ = 5 Hz, 1C; m-py), resonance of the O₃SCF₃-group was not observed. HRMS (ESI-QTOF+): m/z 294.1042 (Calcd. for [(o- $MeNC_5H_4)PPh_2O]^+$: 294.1048).

Synthesis of [(o-MeNC₅H₄)PFPh₂][B(C₆F₅)₄]₂ (4b). A solution of freshly prepared [Et₃Si][B(C₆F₅)₄]*2(C₇H₈) (1.019 g, 1.04 mmol, 1.9 eq.) in C_6D_5Br (3 mL) was added to a suspension of **3** (0.255 g, 0.55 mmol, 1.0 eq.) in toluene (5 mL). The reaction mixture was stirred at ambient temperature for 20 min, resulting in a bright yellow solution. The solution was left for 12 h at ambient temperature, after which time yellow crystals settled out of solution. The supernatant was decanted and the resulting solid was washed with n-pentane (3 x 3 mL) and dried in vacuo to afford a pale yellow powder. (0.650 g, 72%. Anal. Calcd for C₆₆H₁₇B₂F₄₁NP: C, 47.89; H, 1.04; N, 0.85%. Found: C, 47.45; H, 1.30; N, 0.85%). ¹H NMR (CD₂Cl₂, 400 MHz, Me₄Si): δ 4.5, (d, ${}^{4}J_{PH}$ = 3 Hz, 3H; N-CH₃), 7.8 (dd, ${}^{3}J_{HH}$ = 15 Hz, ${}^{3}J_{HH}$ = 15 Hz, 4H; *m*-Ph), 8.0 (dd, ³J_{HH} = 15 Hz, ⁴J_{HH} = 5 Hz, 4H; *o*-Ph), 8.27 (m, 1H; m-py), 8.33 (m, 2H; p-Ph), 8.7 (m, 1H; o-py), 8.9 (m, 1H; *p*-py), 9.1 ppm (m, 1H; *m*-py). ¹¹B{¹H} NMR (CD₂Cl₂, 128 MHz BF₃•OEt₂): δ -16.7 ppm (s). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -124.2 (d, ¹J_{PF} = 1035 Hz, 1F; PF), -133.0 (m(br), 16F; B(o- $C_6F_5)_4$, -162.0 (t, ${}^{3}J_{FF}$ = 20 Hz, 8F; B(p- $C_6F_5)_4$), -167.2 ppm (m(br), 16F, B(*m*-C₆F₅)₄). ³¹P{¹H} NMR (CD₂Cl₂, 162 Hz, H₃PO₄): δ 88.9 ppm (d, ${}^{1}J_{PF}$ = 1035 Hz, 1P). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 125 MHz, Me₄Si): δ 51.2 (m, 1C; N-CH₃), 109.9 (dd, ¹J_{PC} = 111 Hz, ²J_{FC} = 13 Hz, 2C; *i*-Ph), 133.3 (d, ²J_{PC} = 16 Hz, 4C; *o*-Ph), 134.6 $(dd, {}^{3}J_{PC} = 14 Hz, {}^{4}J_{FC} = 1 Hz, 4C; m-Ph), 136.4 (d(br), {}^{1}J_{FC} = 245$ Hz, 16C, $B(o/m-C_6F_5)_4$), 136.7 (d, ${}^{4}J_{PC} = 2$ Hz, 1C; p-py), 138.7 $(d(br), {}^{1}J_{FC} = 249 \text{ Hz}, 8C; B(p-C_{6}F_{5})_{4}), 140.4 (dd, {}^{2}J_{PC} = 18 \text{ Hz}, {}^{3}J_{FC}$ = 2 Hz, 1C; o-py), 143.0 (d, ⁴J_{PC} = 2 Hz, 2C; p-Ph), 148.5 (d(br), ¹J_{FC} = 240 Hz, 16C; B(*o/m*-C₆F₅)₄), 148.8 (d, ³J_{PC} = 10 Hz, 1C; *m*py), 154.0 ppm (d, ${}^{3}J_{PC}$ = 5 Hz, 1C; *m*-py), resonances of the ipso-positions of the $B(C_6F_5)_4$ and pyridyl-group were not observed. HRMS (ESI-QTOF): m/z 294.1062 (Calcd. for [(o-MeNC₅H₄)PPh₂O]+ : 294.1048).

Synthesis of [(o-MeNC₅H₄)P(CH₃)Ph₂][O₃SCF₃]₂ (5a). MeO₃SCF₃ (1.6 mL, 14.2 mmol, 3.9 eq.) was added, dropwise, to a solution of 2-pyridyldiphenylphosphine (0.968 g, 3.68 mmol, 1.0 eq.) in CH₂Cl₂ (5 mL). The reaction mixture was stirred at ambient temperature for 3 days, after which time a white solid had settled out of solution. The supernatant was decanted, and a mixture of CH₂Cl₂ and *n*-pentane (1 : 4 ratio) was added. After agitation for one minute, the supernatant was decanted, and the solid was washed with *n*-pentane (3 x 5 mL). The solid

was dried in vacuo and a white powder was isolated. (1.76 g, 81%. Anal. Calcd for C₂₁H₂₀F₆NO₆PS₂: C, 42.64; H, 3.41; N, 2.37. Found: C, 42.37; H, 3.16; N, 2.25%). ¹H NMR (CD₃CN, 400 MHz, Me₄Si): δ 3.4, (d, ²J_{PH} = 13 Hz, 3H; P-CH₃), 4.4 (s, 3H; N-CH₃), 7.9 (m, 8H; Ph), 8.00 (m, 1H; m-py), 8.05 (m, 2H; p-Ph), 8.4 (m, 1H; o-py), 8.6 (m, 1H; p-py), 9.1 ppm (m, 1H; m-py). ¹⁹F NMR (CD₃CN, 377 MHz, CFCl₃): δ -78.9 (s, 6F; O₃SCF₃). ³¹P{¹H} NMR (CD₃CN, 162 MHz, H₃PO₄): δ 26.0 (s). ¹³C{¹H} NMR (CD₃CN, 125 MHz, Me₄Si): δ 9.6 (d, ¹J_{PC} = 55 Hz, 1C; P-CH₃), 51.0 (d, ³J_{PC} = 4 Hz, 1C; N-CH₃), 115.7 (d, ${}^{1}J_{PC}$ = 90 Hz, 2C; *i*-Ph), 122.0 (d, ${}^{1}J_{PC}$ = 321 Hz, 1C; *i*-py), 132.2 (d, ²J_{PC} = 14 Hz, 4C; *o*-Ph), 134.2 (d, ⁴J_{PC} = 2 Hz, 1C; p-py), 135.0 (d, ${}^{3}J_{PC}$ = 12 Hz, 4C; m-Ph), 138.0 (d, ${}^{3}J_{PC}$ = 3 Hz, 2C; p-Ph), 139.7 (d, ²J_{PC} = 14 Hz, 1C; o-py), 147.8 (d, ³J_{PC} = 9 Hz, 1C; *m*-py), 154.6 ppm (d, ${}^{3}J_{PC}$ = 4 Hz, 1C; *m*-py), resonace of the O₃SCF₃-group was not observed. HRMS (ESI-**QTOF+)**: m/z 146.9 (Calcd. for [M]²⁺ : 146.6).

Synthesis of $[(o-MeNC_5H_4)P(CH_3)Ph_2][B(C_6F_5)_4]_2$ (5b). A solution of freshly prepared $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (2.20 g, 2.25 mmol, 1.9 eq.) in C_6D_5Br (0.5 mL) was added to a suspension of 5a (698 mg, 1.18 mmol, 1.0 eq.) in toluene (2 mL). The reaction mixture was stirred at ambient temperature for 10 min, affording a bright yellow solution. 5 mL of npentane was added to induce precipitation. The supernatant was decanted, and the solid was washed with *n*-pentane (3 x 3 mL) and dried in vacuo to afford a pale yellow powder (1.12 g, 57%. Anal. Calcd for $C_{67}H_{20}B_2F_{40}NP$: C, 48.73; H, 1.22; N, 0.85. Found: C, 49.26; H, 1.39; N, 0.79). ¹H NMR (CD₂Cl₂, 400 MHz, Me₄Si): δ 3.1 (d, ²J_{PH} = 13 Hz, 3H; P-CH₃), 4.3 (s, 3H; N-CH₃), 7.7 (dd, ${}^{3}J_{HH}$ = 15 Hz, ${}^{3}J_{HH}$ = 15 Hz, 4H; *m*-Ph), 7.9 (dd, ${}^{3}J_{HH}$ = 15 Hz, ⁴J_{HH} = 5 Hz, 4H; *o*-Ph), 8.1(m, 1H; *m*-py), 8.2 (m, 2H; *p*-Ph), 8.6 (m, 1H; o-py), 8.8 (m, 1H; p-py), 9.0 ppm (m, 1H; m-py). ¹¹B {¹H} NMR (CD₂Cl₂, 128 MHz BF₃•OEt₂): δ -16.7 ppm (s). ¹⁹F NMR (CD₂Cl₂, 377 MHz, CFCl₃): δ -133.0 (m(br), 16F; B(o-C₆F₅)₄) -163.0 (t, ${}^{3}J_{FF}$ = 20 Hz, 8F; B(p-C₆F₅)₄), -167.2 ppm (m(br), 16F; B(*m*-C₆F₅)₄). ³¹P{¹H} NMR (CD₂Cl₂, 162 Hz, H₃PO₄): δ 25.3 ppm (s). ¹³C{¹H} NMR (CD₂Cl₂, 125 MHz, Me₄Si): δ 9.8 (d, ¹J_{PC} = 56 Hz, 1C; P-CH₃), 50.6 (d, ${}^{3}J_{PC}$ = 4 Hz, 1C; N-CH₃), 111.2 (d, ${}^{1}J_{PC}$ = 90 Hz, 2C; *i*-Ph), 133.0 (d, ${}^{3}J_{PC}$ = 11 Hz, 4C; *m*-Ph), 133.2 (d, ${}^{2}J_{PC}$ = 14 Hz, 4C; o-Ph), 134.9 (d, ⁴J_{PC} = 2 Hz, 1C; p-py), 136.6 (d(br), ${}^{1}J_{FC} = 246 \text{ Hz}, 16C, B(o/m-C_{6}F_{5})_{4}), 138.8 (d(br), {}^{1}J_{FC} = 246 \text{ Hz}, 8C;$ $B(p-C_6F_5)_4)$, 138.9 (d, ${}^2J_{PC}$ = 13 Hz, 1C; *o*-py), 139.8 (d, ${}^3J_{PC}$ = 3 Hz, 2C; p-Ph), 148.4 (d(br), ${}^{1}J_{FC} = 244$ Hz, 16C; B(o/m-C₆F₅)₄), 148.8 (d, ${}^{3}J_{PC}$ = 8 Hz, 1C; *m*-py), 153.2 ppm (d, ${}^{3}J_{PC}$ = 3 Hz, 1C; *m*-py), resonances for the *ipso*-position of the $B(C_6F_5)_4$ and pyridyl-groups were not observed.

X-ray data collection, reduction, solution and refinement: Single crystals were coated with Paratone-N oil, mounted using a glass fibre pin and frozen in the cold nitrogen stream of the goniometer. Data sets were collected on a Bruker Apex II diffractometer. The data were collected at 150 (\pm 2) K for all crystals. Data reduction was performed using the SAINT software package, and absorption corrections were applied using SADABS. The structures were solved using XS and refined by full-matrix leas squares on F^2 using XL as implemented in the SHELXTL suite of programs. Carbon-bound hydrogen atoms were placed in calculated positions using an

Page 4 of 9

appropriate riding model and coupled isotropic temperature factors.

Results and Discussion

A CH₂Cl₂ solution of commercially available 2pyridyldiphenylphosphine was oxidized using XeF₂ as the oxidant to the corresponding difluorophosphorane (o- $NC_5H_4)PF_2Ph_2$ (1) following a modified literature protocol (Scheme 1).^{22, 30} Almost complete conversion was observed after stirring the reaction mixture for two hours at ambient temperature. Difluorophosphorane 1 was isolated in high yield (94%) and fully characterized by multinuclear NMR spectroscopy and elemental analysis. The ³¹P{¹H} NMR spectrum (CD₂Cl₂) shows a diagnostic triplet resonance at δ = -52.7 ppm (${}^{1}J_{PF}$ = 670 Hz), indicative of a pentacoordinate difluorophosphorane.²⁸ The ¹⁹F NMR spectrum (CD₂Cl₂) reveals the corresponding doublet resonance at δ = -36.4 ppm ($^{1}J_{\text{PF}}$ = 670 Hz). When mixed with difluorophosphorane 1, $Me_{3}SiO_{3}SCF_{3}$ or $[Et_{3}Si][B(C_{6}F_{5})_{4}]^{\ast}2(C_{7}H_{8})$ facilitated fluoride abstraction, generating fluorophosphonium cations [(o- $NC_5H_4)PFPh_2][X]$ (X = O_3SCF_3 2a, $B(C_6F_5)_4$ 2b). These reactions are accompanied by the formation of Me₃SiF and Et₃SiF, respectively. The formed phosphonium ion salts 2a, b precipitate from the reaction mixture after addition of npentane and were isolated by filtration in 92% (2a) and 97%

(2b) yield, respectively (Scheme 1).

Scheme 1. Synthetic route to pyridinium-phosphonium cations 2a,b and cationic difluorophosphorane 3.

Compounds **2a** and **2b** were fully characterized by multinuclear NMR spectroscopy and elemental analysis. For **2a**, the ³¹P{¹H} NMR spectrum (CD₂Cl₂) exhibits a doublet resonance at δ = 80.1 ppm (¹J_{PF} = 1004 Hz) with the corresponding doublet in the ¹⁹F NMR spectrum (CD₂Cl₂) at δ = -136.8 ppm. The ¹⁹F resonance for the O₃SCF₃ ion appears at δ = -79.0 ppm (s), which seems to support the presence of free O₃SCF₃.³⁵ Similarly, for **2b**, the ³¹P{¹H</sup> NMR spectrum (C₆D₅Br) displays a doublet at δ = 78.2 ppm (¹J_{PF} = 1004 Hz). In the ¹⁹F NMR spectrum, the resonance attributed to the phosphorus-

bound fluoride appears at δ = -137.3 ppm (d, $^{1}J_{\text{PF}}$ = 1004 Hz), and the resonances corresponding to the B(C₆F₅)₄ anion appear at δ = -133.1, -163.5 and -167.4 ppm. Compared to the triphenylfluorophosphonium analogue, [Ph₃PF][B(C₆F₅)₄],²⁸ the $^{31}\text{P}\{^{1}\text{H}\}$ NMR resonance of **2b** is shifted upfield ($\Delta\delta$ = 16.6 ppm), and the ^{19}F NMR P-F resonance is shifted downfield ($\Delta\delta$ = 9.1 ppm).

The difluorophosphorane 1 was methylated with MeO₃SCF₃ affording the corresponding pyridinium-phosphorane salt [(o-MeNC₅H₄)PF₂Ph₂][O₃SCF₃] **3** (Scheme 1). After stirring for 1.5 h at ambient temperature and extracting the product with npentane to remove the excess MeO₃SCF₃, the cationic difluorophosphorane 3 was isolated in high yield (98%) and fully characterized by multinuclear NMR spectroscopy, elemental analysis and X-ray crystallography. In the ¹H NMR spectrum (CD₂Cl₂), a diagnostic singlet resonance appears at δ = 4.4 ppm, which corresponds to the N-bound CH_3 protons. The ³¹P{¹H} NMR spectrum contains a triplet resonance at δ = -55.64 ppm (${}^{1}J_{PF}$ = 706 Hz). Compared to difluorophosphorane **1**, the coupling constant $({}^{1}J_{PF})$ for species **3** has increased, consistent with a strong P-F interaction presumably arising from the presence of the electron withdrawing pyridinium substituent. In the ${}^{19}F$ NMR spectrum (CD₂Cl₂), the doublet resonance corresponding to the P-bound fluoride atoms is shifted upfield relative to difluorophosphorane 1 and appears at δ = -40.9 ppm (¹J_{PF} = 706 Hz), and the resonance corresponding to O_3SCF_3 is observed at δ = -79.0 ppm (s). The molecular structure of cationic difluorophosphorane 3 was obtained by X-ray diffraction and shows a distorted trigonal bipyramidal geometry around phosphorus (Fig. 1). The fluoride substituents occupy the apical positions with a F-P-F angle of 171.8(4)°, which is comparable to the value reported for the related cationic difluorophosphorane [(SIMes)PF₂Ph₂][B(C₆F₅)₄] (168.8(2)°).³⁰ While cationic pyridinium-phosphines have been employed as ligands in transition metal chemistry by Alcarazo and coworkers,³⁶ compound **3** is, to the best of our knowledge, the first example of a cationic, pyridinium-phophorane.

Scheme 2. Syntheses of pyridinium-fluorophosphonium dications **4a** and **4b**.

ARTICLE

Fluoride abstraction to give the corresponding pyridiniumfluorophosphonium dications $[(o-MeNC_5H_4)PFPh_2][X]_2$ (X = O_3SCF_3 4a, $B(C_6F_5)_4$ 4b) was achieved with either $Me_3SiO_3SCF_3$ or $[Et_3Si][B(C_6F_5)_4]*2(C_7H_8)$ (Scheme 2). In the case of 4a, equimolar amounts of cationic difluorophosphorane ${\bf 3}$ and Me₃SiO₃SCF₃ were stirred at ambient temperature for 24 h. After removing the volatile Me₃SiF side product in vacuo, dication 4a was isolated in 81% yield and fully characterized by multinuclear NMR spectroscopy, elemental analysis and X-ray crystallography. The ${}^{31}P{}^{1}H$ NMR spectrum (CD₃CN) of dication **4a** contains a doublet resonance at $\delta = 88.8$ ppm (¹J_{PF} = 1035 Hz), which is shifted downfield relative to fluorophosphonium monocations, **2a** and **2b** ($\Delta\delta$ = 8.7 ppm (**2a**); 10.6 ppm (**2b**)). This downfield shift highlights the influence of the additional positive charge on the phosphorus atom. The $^{31}\mathrm{P}\{^{1}\mathrm{H}\}$ resonance of 4a is also downfield compared to the related fluorophosphonium dication [(SIMes)PFPh₂][B(C₆F₅)₄]₂ ($\Delta\delta$ = 10.7 ppm).³⁰ Moreover, the P-F fluoride resonance appears in the ¹⁹F NMR spectrum (CD₃CN) at δ = -123.9 ppm as a doublet $({}^{1}J_{PF} = 1035 \text{ Hz})$, and the O₃SCF₃ signal is observed at $\delta = -79.3$ ppm (s), seemingly indicative of free O_3SCF_3 .³⁵ Interestingly, the signal corresponding to the N-bound CH₃ protons appears as a doublet at δ = 4.4 ppm (⁴J_{PH} = 3 Hz), whereas no P-H coupling was observed in the ¹H NMR spectrum for cationic difluorophosphorane 3. The molecular structure of dication 4a was obtained by X-ray diffraction and shows a distorted tetrahedral geometry at the P centre (Fig. 2). Comparison of the metric parameters of dication 4a to cationic difluorophosphorane 3 supports the notion of enhanced Lewis acidity resulting from the presence of the second positive charge, as the P-F bond distance has decreased from 1.676(8) Å (3) to 1.539(1) Å (4a) and is comparable to the distance for fluorophosphonium the related dication $[(SIMes)PFPh_2][B(C_6F_5)_4]_2$ (1.532(2) Å).³⁰ Relative to species **3**, the P-C bond distances for dication 4a have slightly decreased, whereas the N-C bond lengths for the (N-CH₃) moiety are comparable (3: 1.485(2) Å; 4a: 1.479(2) Å). It is noteworthy that none of the oxygen atoms in the O₃SCF₃ anion are within the sum of the Van der Waal radii of the P centre in the solid state. In addition, even upon cooling to -40 °C NMR experiments showed no evidence of an interaction of the O₃SCF₃ anion with the P-center in solution.

Figure 1. POV-ray depiction of the molecular structure of the cation of **3.** P: orange, F: pink, C: black, N: blue. Hydrogen atoms, O_3SCF_3 anion and CH_2CI_2 in the asymmetric unit have

ARTICLE

been omitted for clarity. Selected bond distances (Å) and angles (°): P-F1 1.676(8), P-F2 1.67(1), P-C1 1.854(1), P-C7 1.811(1), P-C13 1.812(1), N-C6 1.485(2); F1-P-F2 171.8(4), C7-P-C1 127(1), C13-P-C1 115(1), C7-P-C13 117(1).

Figure 2. POV-ray depiction of molecular structure of fluorophosphonium dication **4a**. P: orange, F: pink, C: black, N: blue. Hydrogen atoms and O_3SCF_3 anion have been omitted for clarity. Selected bond distances (Å) and angles (°): P-F 1.539(1), P-C1 1.814(1), P-C7 1.759(1), P-C13 1.760(1), N-C6 1.479(2); F-P-C1 107(1), C7-P-C1 108.7(1), C13-P-C1 110 (1).

Scheme 3. Syntheses of pyridinium-methylphosphonium dications 5a and 5b.

The reaction of 2-pyridyldiphenylphosphine with an excess amount of MeO₃SCF₃ in CH₂Cl₂ afforded the pyridiniummethylphosphonium dication salt [(*o*-MeNC₅H₄)P(CH₃)Ph₂] [O₃SCF₃]₂ **5a** after stirring at ambient temperature for 72 h. Removal of the excess MeO₃SCF₃ with *n*-pentane washings led to the isolation of dication **5a** in 81% yield (Scheme 3). The ¹H NMR spectrum (CD₃CN) contains a doublet resonance at δ = 3.4 ppm (¹J_{PH} = 13 Hz) and a singlet at δ = 4.4 ppm, corresponding to the P- and N-bound CH₃ protons, respectively. The ³¹P{¹H} NMR spectrum (CD₃CN) contains a singlet resonance at δ = 26.1 ppm, which is shifted upfield relative to the fluorophosphonium dications **4a** and **4b**, presumably due to the decreased electronegativity of the Pbound substituent and thus a less pronounced deshielding Page 6 of 9

effect around phosphorus. A similar trend was observed for the dication $[(SIMes)PCIPh_2][B(C_6F_5)_4]_2$, relative to its P-F counterpart.²⁷ In the 19 F NMR spectrum, the O_3SCF_3 signal appears at δ = -78.9 ppm (s), which is similar to the values observed for phosphonium cation 2a and fluorophosphonium dication 4a. Furthermore, when dication 5a was mixed with two equivalents of [Et₃Si][B(C₆F₅)₄]*2(C₇H₈), stirred at ambient temperature for 10 minutes and washed with n-pentane to remove the Et₃SiO₃SCF₃ side product, the corresponding dicationic salt $[(o-MeNC_5H_4)P(CH_3)Ph_2][B(C_6F_5)_4]_2$ 5b was isolated in 57% yield (Scheme 3). For dication **5b**, the ${}^{31}P{}^{1}H$ NMR spectrum (CD₂Cl₂) contains a singlet at δ = 25.3 ppm, which is comparable to the reported value for 5a. In the ¹⁹F NMR spectrum (CD_2Cl_2) , the O_3SCF_3 resonance disappears and new signals corresponding to the $B(C_6F_5)_4$ anion appear at $\delta = -$ 133.0, -163.0 and -167.2 ppm. Similar to fluorophosphonium dications 4a and 4b, 5a was insoluble in most organic solvents, while 5b was soluble in most polar organic solvents, like CH_2Cl_2 . It is noteworthy that $[(C_6F_5)_3PF][B(C_6F_5)_4]^{22}$ also exhibits limited solubility in CH₂Cl₂.

With these EPCs in hand, assement of Lewis acidity was undertaken using the Gutmann-Beckett test.³⁷⁻³⁸ For each of **2a, 2b, 4a, 4b, 5a** and **5b** multiple products were observed by ${}^{31}P{}^{1}H{}$ NMR spectroscopy upon addition of Et₃PO. Previous cases of fluoride-oxide exchange has been reported for the related phosphonium dication [(SIMes)PFPh₂][B(C₆F₅)₄]₂.³⁰ Thus, this prompted evaluation of effective Lewis acidity of these pyridinium-phosphonium cations on the basis of their viability as catalysts for several transformations (*vide infra*).

Prior to catalytic tests, the stability of the new EPCs in the presence of Et₃SiH were probed. While the phosphonium dications 4a, 4b, 5a and 5b were stable in the presence of Et₃SiH, addition of equimolar amounts of cation 2a or 2b to solutions of Et₃SiH at room temperature resulted in the formation of a new product, as evidenced by the ³¹P{¹H} NMR spectroscopy. After 24 h at ambient temperature, disappearance of the starting material and the formation of a new singlet at δ = -5.3 ppm was seen. For the cation **2a**, the ¹⁹F NMR spectrum (CD₂Cl₂) of the crude mixture, shows a singlet resonance at δ = -79.0 ppm and a multiplet at δ = -175.9 ppm corresponding to the O₃SCF₃ anion and Et₃SiF,⁴⁰ respectively. Independent synthesis confirmed the cation to be [(o- $HNC_5H_4)PPh_2]^+$. One possible route involves the activation of the Si-H bond in Et₃SiH. This prompts fluoride abstraction by the Si-moiety affording Et_3SiF and protonation of the N atom of the pyridyl substituent giving cation $[(o-HNC_5H_4)PPh_2]^+$. Whether this proceeds via transient а hydridofluorophosphorane or a hypervalent silane species,^{23,} ^{24, 30, 31} has not been unambiguously determined (Scheme 4).

Scheme 4. Possible reaction pathway of fluorophosphonium cation 2a with Et₃SiH.

The catalytic activity of these pyridinium-phosphonium cations was probed in a Friedel-Crafts type reaction, and in hydrodefluorination, hydrosilylation, dehydrocoupling, and hydrodeoxygenation reactions, excluding 2a and 2b from the reactions which use Et₃SiH (Scheme 5). For the Friedel-Crafts dimerization of 1,1-diphenylethylene (Scheme 5a), 2 mol% EPC was used. No dimerized product was observed for the monocations 2a and 2b, or the O₃SCF₃ dications (4a, 5a), even after 10 h. On the other hand, the $B(C_6F_5)_4$ salts **4b** and **5b** rapidly catalysed the reaction, giving 1-methyl-1,3,3-triphenyl-2,3-dihydro-1H-indene in >99% (<30 min.) and 35% (2.5 h) conversion, respectively (determined from the ¹H NMR spectra; Table 1). Compared to the fluorophosphonium dication $[(SIMes)PFPh_2][B(C_6F_5)_4]_2$,³⁰ **4b** demonstrated similar reactivity. The inactivity of the fluorophosphonium monocations highlights the influence of the second positive charge on the Lewis acidity. Although the dication 5b was notably less active, it is promising nonetheless that substitution of the P-F fluoride for the less electron withdrawing methyl substituent did not inhibit catalysis. Moreover, the inability of the monocations 2a and 2b to effect the formation of any dimerized product supports the need for electron withdrawing groups to enhance Lewis acidity of monocationic phosphonium species.

Table 1. Friedel-Crafts Dimerization of 1,1-diphenylethylene

Catalyst	Reaction Time Conversion (%	
2a	10 h	0
2b	10 h	0
4a	10 h	0
4b	<30 min	>99
5a	10 h 0	
5b	2.5 h	35

In subsequent catalysis tests, hydrodefluorination of 1fluoropentane,^{22, 30, 31} hydrosilylation of α -methylstyrene, dehydrocoupling of phenol with Et₃SiH and hydrodeoxygenation of benzophenone were probed (Scheme 5b-d). In all cases, 4a and 5a were inactive. In the case of the hydrodefluorination of 1fluoropentane 5 mol% of 4b or 5b in the present of Et_3SiH led to 92% and 13% conversion to pentane, respectively after 1 h (Table 2). Given the inherent challenge of this C-F bond-cleaving reaction,²² it is not surprising that the less Lewis acidic dication 5b is less active than the fluorophosphonium dication 4b, which demonstrates comparable catalytic activity to $[(SIMes)PFPh_2][B(C_6F_5)_4]_2^{30-31}$ In the case of the hydrosilylation reaction, in the presence of 2 mol% 4b or 5b and Et₃SiH, heating the reaction mixture to 45 °C for 4 h gave >99 and 78% conversions to the corresponding hydrosilylated product, respectively (Table 2). Moreover, when 2 mol% of the catalysts 4b or 5b was added to Et₃SiH and phenol, >99 and 95% conversions to triethyl(phenoxy)silane and H_2 were obtained after heating to 50 °C for 48 h (Scheme 5d).^{25, 31} Finally, in the case of the hydrodeoxygenation of benzophenone with Et₃SiH,²⁷ 1 mol% of the catalyst 4b or 5b effected >99% conversion to diphenylmethane after 2 h at ambient temperature. This is indeed significantly faster than previously reported for carbene-based phosphonium dications.²⁷ While no definitive evidence indicates an interaction between the P centre and the O₃SCF₃ ion, these catalytic data suggest that the more sterically encumbered, non-coordinating $B(C_6F_5)_4$ anion is required for catalysis.

Table 2. Conversions (%) for EPC-catalysed Transformations

Catalytic Reaction	4a	4b	5a	5b
Hydrodefluorination ^a	0	92	0	13
Hydrosilylation ^b	0	>99	0	78
Dehydrocoupling ^c	0	>99	0	95
Hydrodeoxygenation ^d	0	>99	0	>99

 a 5 mol% catalyst, 1 h, 25 °C. b 2 mol% catalyst, 4 h, 45 °C. c 2 mol% catalyst, 48 h, 50 °C. d 1 mol% catalyst, 2 h, 25 °C.

Conclusions

Reaction of 2-pyridyldiphenylphosphine with XeF₂ and either Me₃SiO₃SCF₃ or $[Et_3Si][B(C_6F_5)_4]$ cleanly affords the corresponding fluorophosphonium salts. Methylation of the difluorophosphorane and subsequent fluoride abstraction gives pyridinium-fluorophosphonium dications. while methylation of the parent phosphine affords methylsubstituted phosphonium dications. These highly electrophilic phosphonium cations were used as catalysts in the Friedel-Crafts type dimerization of 1,1-diphenylethylene, hydrodefluorination of 1-fluoropentane, hydrosilylation of α methylstyrene, dehydrocoupling of phenol with Et₃SiH and the hydrodeoxygenation of benzophenone. The fluorophosphonium monocations were unstable in the presence of Et₃SiH and were found to be weaker Lewis acids relative to their dicationic counterparts. Interestingly, no conversion in the aforementioned catalytic transformations was observed with the O₃SCF₃ salts of the dications, whereas the $B(C_6F_5)_4$ salts were active catalysts. The

ARTICLE

fluorophosphonium dication **4b** proved to be significantly more Lewis acidic relative to the methylphosphonium dication **5b** and demonstrated comparable catalytic activity to previously reported phosphonium dications. Moreover, the facile syntheses and utility of the present pyridinium-phosphonium cations contributes to the ongoing development of more tunable and stable P-based Lewis acids. The study of phosphonium cations in metal-free catalysis and FLP chemistry is the subject of ongoing studies in our laboratory.

Acknowledgements

D.W.S gratefully acknowledges the financial support of the NSERC of Canada and the award of a Canada Research Chair. J.M.B is grateful for the award of NSERC-CGS-M and Vanier scholarships. M.H.H thanks the Alexander von Humboldt Foundation for a Fedor Lynen Research Fellowship.

References

- G. C. Welch, J. R. R. San, J. D. Masuda and D. W. Stephan, Science, 2006, 314, 1124-1126.
- 2. D. W. Stephan and G. Erker, Angew, Chem. Int. Ed., 2010, 49, 46-76.
- 3. D. W. Stephan and G. Erker, *Top. Curr. Chem.*, 2013, **332**, 85-110.
- 4. J. M. Bayne and D. W. Stephan, Chem. Soc. Rev., 2015.
- 5. J. R. Dilworth and N. Wheatley, *Coord. Chem. Rev.*, 2000, **199**, 89-158.
- P. S. Hallman, B. R. McGarvey and G. Wilkinson, J. Chem. Soc. A, 1968, 3143-3150.
- R. Noyori and T. Okhuma, Angew. Chem., Int. Ed., 2001, 40, 40-73.
- J. A. Osborn, F. H. Jardine, J. F. Young and G. Wilkinson, J. Chem. Soc., A, 1966, 1711-1732.
- 9. C. A. Tolman, Chem. Rev., 1977, 77, 313-348.
- 10. C. A. Dyker and N. Burford, Chem. Asian J., 2008, 3, 28-36.
- 11. M. H. Holthausen, K.-O. Feldmann, S. Schulz, A. Hepp and J. J. Weigand, *Inorg. Chem.*, 2012, **51**, 3374-3387.
- 12. M. H. Holthausen, A. Hepp and J. J. Weigand, *Chem. Eur. J.*, 2013, **19**, 9895-9907.
- 13. D. Gudat, A. Haghverdi, H. Hupfer and M. Nieger, *Chem. Eur. J.*, 2000, **6**, 3414-3425.
- 14. A. L. Brazeau, C. A. Caputo, C. D. Martin, N. D. Jones and P. J. Ragogna, *Dalton Trans.*, 2010, **39**, 11069-11073.
- L. E. Longobardi, C. A. Russell, M. Green, N. S. Townsend, K. Wang, A. J. Holmes, S. B. Duckett, J. E. McGrady and D. W. Stephan, *J. Am. Chem. Soc.*, 2014, **136**, 13453-13457.
- M. Well, P. G. Jones and R. Schmutzler, J. Fluorine Chem., 1991, 53, 261-275.
- 17. T. W. Hudnall, Y.-M. Kim, M. W. P. Bebbington, D. Bourissou and F. P. Gabbai, *J. Am. Chem. Soc.*, 2008, **130**, 10890-10891.
- 18. O. Sereda, S. Tabassum and R. Wilhelm, *Top. Curr. Chem.*, 2010, **291**, 349-393.
- 19. G. Wittig and U. Schoellkopf, Org. Synth., 1960, 40, 66-68.
- 20. G. Wittig and U. Schollkopf, Chem. Ber., 1954, 97, 1318-1330.
- 21. L. J. Hounjet, C. B. Caputo and D. W. Stephan, *Dalton Trans.*, 2013, **42**, 2629-2635.

- 22. C. B. Caputo, L. J. Hounjet, R. Dobrovetsky and D. W. Stephan, *Science*, 2013, **341**, 1374-1377.
- 23. M. Perez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky and D. W. Stephan, *J. Am. Chem. Soc.*, 2013, **135**, 18308-18310.
- M. Perez, Z.-W. Qu, C. B. Caputo, V. Podgorny, L. J. Hounjet, A. Hansen, R. Dobrovetsky, S. Grimme and D. W. Stephan, *Chem. Eur. J.*, 2015, **21**, 6491-6500.
- 25. M. Perez, C. B. Caputo, R. Dobrovetsky and D. W. Stephan, *Proc. Nat. Acad. Sci. USA*, 2014, **111**, 10917-10921.
- 26. M. Perez, T. Mahdi, L. J. Hounjet and D. W. Stephan, *Chem. Commun.*, 2015, Ahead of Print.
- M. Mehta, M. H. Holthausen, I. Mallov, M. Perez, Z.-W. Qu, S. Grimme and D. W. Stephan, *Angew. Chem., Int. Ed.*, 2015, 54, 8250-8254.
- 28. C. B. Caputo, D. Winkelhaus, R. Dobrovetsky, L. J. Hounjet and D. W. Stephan, *Dalton Trans.*, 2015, Ahead of Print.
- 29. E. L. Muetterties, W. Mahler and R. Schmutzler, *Inorg. Chem.*, 1963, **2**, 613-618.
- M. H. Holthausen, M. Mehta and D. W. Stephan, Angew, Chem. Int. Ed., 2014, 53, 6538-6541.
- 31. M. H. Holthausen, R. R. Hiranandani and D. W. Stephan, *Chem. Sci.*, 2015, **6**, 2016-2021.
- T. vom Stein, M. Perez, R. Dobrovetsky, D. Winkelhaus, C. B. Caputo and D. W. Stephan, *Angew. Chem., Int. Ed.*, 2015, Ahead of Print.
- M. H. Holthausen, J. M. Bayne, I. Mallov, R. Dobrovetsky and D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 7298-7301.
- 34. J. B. Lambert, S. Zhang and S. M. Ciro, Organometallics, 1994, 13, 2430-2443.
- 35. S. A. Weicker and D. W. Stephan, *Chem. Eur. J.*, 2015, **21**, 13027-13034.
- H. Tinnermann, C. Wille and M. Alcarazo, Angew. Chem., Int. Ed., 2014, 53, 8732-8736.
- 37. V. Gutmann, Coord. Chem. Rev., 1976, 18, 225-255.
- 38. M. A. Beckett, D. S. Brassington, S. J. Coles and M. B. Hursthouse, *Inorg. Chem. Commun.*, 2000, **3**, 530-533.
- R. M. Denton, J. An, B. Adeniran, A. J. Blake, W. Lewis and A. M. Poulton, *J. Org. Chem.*, 2011, **76**, 6749-6767.
- 40. G. Engelhardt and K. Licht, Z. Chem., 1970, 10, 266-267.

8 | J. Name., 2012, 00, 1-3

Dalton Transactions

Journal Name

TOC Graphic

Dalton Transactions Accepted Manuscript

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 9

ARTICLE