## Dalton Transactions

## Polynuclear Platinum Phosphanido/Phosphinito Complexes: Formation of P-O and P-O-P Bonds through Reductive Coupling Processes

| Journal: | Dalton Transactions |
| ---: | :--- |
| Manuscript ID | DT-ART-07-2015-002593.R1 |
| Article Type: | Paper |
| Date Submitted by the Author: | 11-Sep-2015 |
| Complete List of Authors: | Ara, Irene; Universidad de Zaragoza,, Departamento de Química <br> Inorgánica, Instituto de Síntesis Química y Catálisis <br> Forniés, juan; Universidad de Zaragoza, Departamento de Química <br> Inorgánica, Instituto de Síntesis Química y Catálisis <br> Ibañez, Susana; Universidad de Zaragoza, Departamento de Química <br> Inorgánica, Instituto de Síntesis Química y Catálisis <br> Mastrorilli, Piero; Politecnico di Bari, DICATECh <br> Todisco, Stefano; Politecnico di Bari, DICATECh <br> Gallo, Vito; Politecnico di Bari, DICATECh |

Received 00th January 20xx, Accepted 00th January 20xx DOI: 10.1039/x0xx00000x
www.rsc.org/

# Polynuclear Platinum Phosphanido/Phosphinito Complexes: Formation of P-O and P-O-P Bonds through Reductive Coupling Processes $\dagger$ 


#### Abstract

Irene Ara, ${ }^{a}$ Juan Forniés, ${ }^{a, *}$ Susana Ibáñez, ${ }^{a}$ Piero Mastrorilli, ${ }^{\text {b, }{ }^{2} *}$ Stefano Todisco, ${ }^{b}$ and Vito Gallo ${ }^{\text {b }}$ The mixture of the asymmetric complexes of formula $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{Ph}_{2} \mathrm{PO}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\right.$ solv $)\left(\right.$ solv $\left.\left.{ }^{\prime}\right)\right]$ (1-(solv)(solv') (solv, solv'= acetone, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$ ) has been prepared by reaction of $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mathrm{NCCH}_{3}\right)_{2}\right]$ with $\mathrm{AgClO}_{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$ /acetone. The lability of the Pt -solvent bonds allows the displacement of the coordinated solvent molecules by dppm or $\mathrm{Cl}^{-}$and the isolation of the tri- or hexanuclear phosphanido/phosphinito $\mathrm{Pt}(\mathrm{II})$ complexes $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}(\mathrm{dppm})\right] \quad$ (2) or $\quad\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}(\mu-\mathrm{Cl})_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\mathrm{PPh}_{2} \mathrm{O}$ ) $\left.\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (as a mixture of the two possible isomers $\mathbf{4 a}+\mathbf{4 b}$ ). Complex 2 reacts with $\mathrm{AgClO}_{4}$ to form the tetranuclear derivative $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}{ }_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\mathrm{PPh})_{2} \mathrm{Pt}(\mathrm{dppm}) \mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right]$ (3), which displays two $\mathrm{Pt}-\mathrm{Ag}$ donor-acceptor bonds. The mixture of the hexanuclear isomers $\mathbf{4 a + 4 b}$ reacts with $\mathrm{Tl}(\mathrm{acac})$ producing the acetylacetonato complex $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{acac})\right]$ (5) which, upon reaction with HCl , yields back the mixture of $\mathbf{4 a}+\mathbf{4 b}$. The reaction of $\mathbf{4 a} \mathbf{a} \mathbf{4} \mathbf{b}$ with $\mathrm{PPh}_{3}$ produces $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right](6)$ as a mixture of isomers with the chloro ligand located syn (6a) or anti (6b) to the $\mathrm{PPh}_{2} \mathrm{O}^{-}$group. Either the reaction of $\mathbf{6} \mathbf{a}+\mathbf{6 b}$ with $\mathrm{AgClO}_{4}$ or the treatment of $\mathbf{5}$ with $\mathrm{HPPh}_{3} \mathrm{ClO}_{4}$ results in the formation of the species $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime}\left(\mu-\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}^{\prime}\left(\mathrm{PPh}_{3}\right)\right]$ (7) (44 VEC), which can be explained as the consequence of a $\mathrm{PPh}_{2} \mathrm{O} / \mathrm{PPh}_{2}$ reductive coupling and a rearrangement of ligands in the molecule generating a $\mathrm{Pt}(\mathrm{II}), \mathrm{Pt}(\mathrm{I}), \mathrm{Pt}(\mathrm{I})$ compound. All complexes were characterised in the solid state by XRD (only one of the isomers, in the cases of 4 and 6 ) and in solution by NMR spectroscopy.


## Introduction

Diorganophosphanido ligands have been used as building blocks for the synthesis of a huge amount of polynuclear complexes since: a) the flexibility of these bridging ligands makes them highly adequate groups to support metal centres located at short or long distances, as required by the number of skeletal electrons; b) the stability of the $\mathrm{M}\left(\mu-\mathrm{PR}_{2}\right)_{x} \mathrm{M}^{\prime}$ bridging systems in complexes with this type of bridges allows, in many cases, the polynuclear framework to be retained throughout chemical reactions. ${ }^{2-9}$
In the course of our current research on palladium or platinum phosphanido complexes ${ }^{10-20}$ we observed, as expected, the stability of the $\mathrm{M}\left(\mu-\mathrm{PPh}_{2}\right)_{\mathrm{x}} \mathrm{M}^{\prime}$ metal skeleton ( $\mathrm{M}, \mathrm{M}^{\prime}=\mathrm{Pd}, \mathrm{Pt}$ ), and the influence of the number of skeletal electrons on the structure of the polynuclear complex. ${ }^{10-26}$ In this regard, one of the facts that militate against the preservation of the ( $\mu-\mathrm{PPh}_{2}$ ) bridging system is the oxidation of the metal centres, since the oxidized Pd or Pt complexes usually evolve, depending on the

[^0]reaction conditions, through reductive $\mathrm{PPh}_{2} / \mathrm{X}$ coupling processes to produce new complexes containing bridging or terminal X-PPh ${ }_{2}$ ligands. Some of these reactions are outlined in Scheme $1 .^{10-12, ~ 14, ~ 27-29 ~}$
Recently we have prepared, through a reductive coupling process, the dianionic trinuclear derivative $\left(\mathrm{NBu}_{4}\right)_{2}\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}\right.$ " $(\mu$ -$\left.\left.\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mathrm{R}_{\mathrm{F}}\right)_{2}\right]^{12}$ (see Scheme 1c) which contains two types of bridging ligands, $\mathrm{PPh}_{2}^{-}$and $\mathrm{OPPh}_{2}^{-}$, of different nucleophilicity and in this work we describe the chemistry of neutral or monoanionic trinuclear complexes of the type $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPP}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime} \mathrm{L}_{2}\right.$.

## Results and discussion

The starting material for the synthesis of trinuclear asymmetric complexes containing a $\mathrm{P}-\mathrm{O}^{-}$bridging ligand is the mixture of solvento species $\quad\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPP}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\right.$ solv )(solv')] (solv, solv' $=\mathrm{H}_{2} \mathrm{O}$, acetone, acetonitrile) 1-(solv)(solv') (Scheme 2) obtained by treatment of the trinuclear $\mathrm{Pt}(I I)$ derivative $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{11}\left(\mathrm{NCCH}_{3}\right)_{2}\right]^{11}$ (A) with $\mathrm{AgClO}_{4}$, as an oxidant, in acetonitrile and wet acetone (used for reasons of solubility, see Scheme 2).
According to previous observations, ${ }^{12}$ complex 1-(solv)(solv') is in all likelihood formed via two processes. The first one is the oxidation of $\mathbf{A}$, a $\mathrm{Pt}(\mathrm{II}), \mathrm{Pt}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$ complex, to the corresponding $\operatorname{Pt}($ III), Pt (III), $\mathrm{Pt}($ II) derivative, and the second


Scheme 1 Reductive coupling of bridging phosphanides ( $X=$ benzoquinolinate, 8hydroxyquinolinate, picolinate, acetylacetonato).


Scheme $\mathbf{2}$ Synthesis of Phosphanido/Phosphinito Complexes.
process is the formation of the $\mathrm{PPh}_{2} \mathrm{O}^{-}$ligand which, as has been demonstrated previously, ${ }^{12}$ takes place by coordination of the $\mathrm{OH}^{-}$group to the $\mathrm{Pt}(\mathrm{III})$ centre, followed by reductive P O coupling and formation of the mixture of solvento species 1(solv)(solv'), which, in all cases, contain one diphenylphosphinito ligand and all Pt centres in formal oxidation state (II).
The product of reaction between $\mathbf{A}$ and $\mathrm{AgClO}_{4}$ was characterised as the mixture of solvento species 1-(solv)(solv') by ESI-MS, NMR, and XRD analyses. The ESI-MS spectrogram of 1-(solv)(solv') in acetonitrile showed an intense peak ascribable to $\left[1-\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}+\mathrm{H}\right]^{+}(\mathrm{m} / \mathrm{z}=1758.1289$; calculated mass $=1758.1414 \mathrm{Da})^{\S}$ plus several other overlapped peaks ascribable to proton or sodium adducts of solvento species
containing one or two molecules of water and/or acetonitrile. The ${ }^{31} \mathrm{P}$ NMR spectrum in acetone $-d_{6}$ showed signals in the region from 125 to 130 ppm ascribable to the bridging diphenylphosphinito $P^{1}$, around 14 ppm for the bridging diphenylphosphanide $\mathrm{P}^{2}$ and at $\delta-142$ and $\delta-152$ for the bridging diphenylphosphanides $\mathrm{P}^{4}$ and $\mathrm{P}^{3}$ respectively. Although it was impossible to assign each resonance to the specific corresponding solvento species, it was ascertained by ${ }^{1} \mathrm{H}$ EXSY and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ EXSY that the complexes contained $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{CH}_{3} \mathrm{CN}$ and acetone as labile ligands bonded to $\mathrm{Pt}^{3}$, and that all these solvento species were in equilibrium. In fact, exchange cross peaks between signals at $\delta 2.84$ (free $\mathrm{H}_{2} \mathrm{O}$ in acetone) and $\delta 3.37$ (coordinated $\mathrm{H}_{2} \mathrm{O}$ ), as well as between overlapped signals at $\delta 2.1$ (free acetone but also acetonitrile in acetone) and $\delta$ from 2.3 to 2.4 (coordinated acetone and coordinated acetonitrile) were present in the ${ }^{1} \mathrm{H}$ EXSY spectrum of an acetone- $d_{6}$ solution of 1 -(solv)(solv') at 298 K . Moreover, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ EXSY spectrum of the same solution showed at 298 K , in the phosphinite region, cross peaks between an intense peak at $\delta 126.9$ and weak peaks at: $\delta 124.8, \delta 128.8$ and $\delta$ 129.5. These results can be explained by considering that the peak at $\delta 126.9$ belongs to the mixed acetone $/ \mathrm{H}_{2} \mathrm{O}$ species 1 (acetone)( $\mathbf{H}_{2} \mathbf{O}$ ) (the major species in acetone solution), which is in equilibrium with 1-( $\left.\mathrm{H}_{2} \mathrm{O}\right)_{2}$, 1-(acetone) $)_{2}$ and 1(acetone)( $\mathrm{CH}_{3} \mathrm{CN}$ ), the latter ones displaying signals at $\delta 124.8$, $\delta 128.8$ and $\delta 129.5$.
By adding a drop of acetonitrile to a solution of the mixture 1(solv)(solv') in acetone- $d_{6}$, a single species was obtained, presumably the bis-acetonitrile complex $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{Ph}_{2} \mathrm{PO}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}(\mu-\mathrm{PPh})_{2} \mathrm{Pt}\left(\mathrm{NCCH}_{3}\right)_{2}\right] \quad\left[1-\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ showing ${ }^{31} \mathrm{P} \mathrm{NMR}$ signals, at 263 K , at $\delta 127.1\left(\mathrm{P}^{1}\right), \delta 12.8\left(\mathrm{P}^{2}\right), \delta-144.3\left(\mathrm{P}^{4}\right), \delta-$ $153.7\left(\mathrm{P}^{3}\right)$. A complete multinuclear NMR (and ESI-MS) characterisation in solution is reported in the Experimental Part for the analogous bis-benzonitrile complex obtained by dissolving the mixture 1-(solv)(solv') in benzonitrile.


Fig. $1{ }^{19}{ }^{-195}{ }^{195}$ Pt HMQC spectrum of $\left[1-(\mathrm{PhCN})_{2}\right]$ (PhCN, 298 K$)$.

For $\quad\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{Ph}_{2} \mathrm{PO}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{PhCN})_{2}\right] \quad[1-$ $(\mathrm{PhCN})_{2}$ ], the ${ }^{195} \mathrm{Pt}$ signals were found at $\delta-4500\left(\mathrm{Pt}^{1}\right), \delta-3900$ $\left(\mathrm{Pt}^{3}\right)$ and $\delta-3784\left(\mathrm{Pt}^{2}\right)$, also by means of ${ }^{19} \mathrm{~F}^{195} \mathrm{Pt}$ HMQC experiments (Figure 1).
X-ray structure of 1-(acetone)( $\left.\mathrm{H}_{2} \mathrm{O}\right) \cdot 2.5$ acetone. Slow diffusion of hexane into a concentrated solution of the crude solid in acetone, allowed the crystallization of one of the complexes constituting the $\mathbf{1}$-(solv)(solv') mixture, and namely the species having solv $=$ acetone and solv' $=\mathrm{H}_{2} \mathrm{O}:\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}($ acetone $\left.)\left(\mathrm{OH}_{2}\right)\right] \cdot 2.5$ acetone. The structure of $\left[1-(\right.$ acetone $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2.5$ acetone was studied by X-ray diffraction and is shown in Figure 2. The solid state structure confirms that it is a trinuclear unsymmetrical complex which contains the " $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(1)\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}(2)\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(3)$ " fragment (present in most of the complexes described in this paper) and $\mathrm{H}_{2} \mathrm{O}$ and acetone coordinated to $\mathrm{Pt}(3)$. Since most of the complexes described in this paper contain the same trinuclear fragment as a part of the molecule, relevant data related with the skeleton of this fragment have been collected in Table 1 to facilitate comparison between different complexes. The three metal atoms are disposed in an almost linear arrangement $\left[\mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(3)=169.29(1)^{\circ}\right] . \mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$ are supported by a phosphanido, $\mathrm{P}(2) \mathrm{Ph}_{2}$, and a phosphinito, $\mathrm{Ph}_{2} \mathrm{P}(1)-\mathrm{O}$, bridging ligand whereas $\mathrm{Pt}(2)$ and $\mathrm{Pt}(3)$ are supported by two $\mathrm{PPh}_{2}$ groups, $\mathrm{P}(3)$ and $\mathrm{P}(4) . \mathrm{Pt}(1)$ is coordinated to two pentafluorophenyl groups and $\mathrm{Pt}(3)$ is coordinated to one water molecule and one acetone molecule. The three platinum atoms display square planar environments, the coordination planes not being coplanar; the dihedral angle between the best $\mathrm{C}(1), \mathrm{C}(7), \mathrm{Pt}(1), \mathrm{P}(1), \mathrm{P}(2)$ plane and the best $O(1), P(2), P t(2), P(3)$, and $P(4)$ plane is $148,01(2)^{\circ}$, and that between the best $\mathrm{O}(1), \mathrm{P}(2), \mathrm{Pt}(2), \mathrm{P}(3)$, and $\mathrm{P}(4)$ plane and the best $O(2), O(3), \mathrm{Pt}(3), P(3)$, and $P(4)$ plane is $173,8(26)^{\circ}$. The five- membered ring formed by $P(1)-O(1)$ phosphinite, $P(2)$ phosphanide, $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$ atoms is not planar. The long intermetallic distances $[\operatorname{Pt}(1) \cdots \operatorname{Pt}(2)=3.854(6) \AA, \operatorname{Pt}(2) \cdots \operatorname{Pt}(3)=$ $3.518(6) \AA ̊]$ rule out any kind of bonding interaction between the metal centres, as expected for a trinuclear platinum complex with 48 valence electron count (VEC). Other relevant interatomic distances are collected in Table 2.
In 1-(solv)(solv'), solv and solv' are, in all cases, very labile ligands and 1-(solv)(solv') can be used as starting material for the preparation of other pure trinuclear asymmetric
complexes by displacement reactions. Thus, the treatment of 1-(solv)(solv') with bis-(diphenylphosphino)methane (dppm) ( $\mathrm{Pt} / \mathrm{dppm}$ ratio approx. 2/1) gave the neutral asymmetric complex $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm})\right]$ (2) in good yield (81\%), with the dppm coordinated as a chelating ligand to one of the ends of the molecule.
The ${ }^{19} \mathrm{~F}$ NMR spectrum of 2 showed six signals due to the $o-F$, $m-\mathrm{F}$, and $p-\mathrm{F}$ of the inequivalent, freely rotating $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 in 1,2-dichloroethane consisted of six signals, the most deshielded of these being a singlet (broadened by multiple ${ }^{31} \mathrm{P}-{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ small couplings) centred at $\delta 127.9$ and ascribed to the bridging phosphinito $\mathrm{P}^{1} .{ }^{12,30}$ The three bridging phosphanides gave signals at $\delta 13.8$ (d), $\delta-134.2$ (dd), and $\delta-142.4(\mathrm{~m})$. Of these, the doublet at $\delta$ 13.8 is ascribed to the $P^{2}$ atom involved in a five-membered ring, while the doublets of doublets at $\delta-134.2$ and $\delta-142.4$ are due to the mutually coupled $P$ atoms, involved in the fourmembered $\mathrm{Pt}_{2} \mathrm{P}_{2}$ ring, $\mathrm{P}^{4}$ and $\mathrm{P}^{3}$, respectively. The ${ }^{31} \mathrm{P}$ signals of the coordinated dppm were almost isochronous in the region of around $-30 \mathrm{ppm}\left(\delta_{\mathrm{P} 5}-28.3, \delta_{\mathrm{P} 6}-30.5\right.$ ). The ${ }^{195} \mathrm{Pt}^{2}$ and ${ }^{195} \mathrm{Pt}^{3}$ nuclei gave sharp signals at $\delta-3584$ and $\delta-4027$, while the ${ }^{195} \mathrm{Pt}^{1}$ signal was very broad and difficult to detect in the monodimensional ${ }^{195} \mathrm{Pt}$ NMR spectrum, due to multiple ${ }^{195} \mathrm{Pt}$ ${ }^{19} \mathrm{~F}$ and ${ }^{195} \mathrm{Pt}^{-31} \mathrm{P}$ couplings. However, the resonance of $\mathrm{Pt}^{1}$ was found at $\delta-4461$ by a ${ }^{19} \mathrm{~F}^{195} \mathrm{Pt}$ HMQC experiment.


Fig. 2 Molecular structure of the complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}($ acetone $\left.)\left(\mathrm{OH}_{2}\right)\right] \cdot 2.5$.acetone $\left[1\right.$-(acetone) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2.5$ acetone.

Table 1 Selected structural data for the $\mathrm{Pt}_{3}$ framework of complexes 1-7.

|  | $\begin{gathered} \mathrm{Pt}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(3) \\ \text { angle }\left({ }^{\circ}\right) \end{gathered}$ | $\mathrm{Pt}(1)-\mathrm{Pt}(2)$ <br> distance (Å) | $\begin{aligned} & \mathrm{Pt}(2)-\mathrm{Pt}(3) \\ & \text { distance }(\AA) \end{aligned}$ | D*Pt(1)/Pt(2) | D*Pt(2)/Pt(3) | $\begin{aligned} & \mathrm{Pt}(3)-\mathrm{Pt}\left(3^{\prime}\right) \\ & \text { distance (Å) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1-(acetone)( $\mathrm{H}_{2} \mathrm{O}$ ) | 169.29(1) | 3.8543(6) | 3.5184(6) | 148.01(20) | 173.38(26) |  |
| 2 | 155.76(2) | 3.6617(7) | 3.5987(7) | 123.36(19) | 170.76(14) |  |
| 3 | 154.55(2) | 3.7316(6) | 3.5827(6) | 134.13(16) | 167.49(14) |  |
| 4a | 171.75(1) | 3.9068(5) | 3.5247(5) | 159.32(9) | 168.04(8) | 3.5831 |
| 5 | 171.74(1) | 3.9335(3) | 3.5540(2) | 152.54(4) | 170.47(7) |  |
| 6a | 158.81(2) | 3.7696(7) | 3.5810(7) | 135.34(17) | 177.04(16) |  |
| 7 | 101.98(2) | 2.7509(6) | 2.2604(6) |  |  |  |

D* is the dihedral angle between coordination planes

Table 2-Selected Bond Distances ( $\AA$ ( ) for complexes 1-6.

|  | 1-2.5acetone | 2-0.5acetone | 3-0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 4$ hexane | 4a-2acetone-1.5hexane | 5-acetone | 6a. $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{O} .5 \mathrm{H}_{2} \mathrm{O}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pt}(1)-\mathrm{C}(1)$ | 2.073(10) | 2.093(12) | 2.082(12) | 2.051(8) | 2.073(4) | 2.065(13) |
| $\mathrm{Pt}(1)-\mathrm{C}(7)$ | 2.084(10) | 2.050(14) | 2.069(11) | 2.083(8) | 2.096(4) | 2.081(15) |
| $\mathrm{Pt}(1)-\mathrm{P}(1)$ | 2.273(3) | 2.275(3) | 2.295(3) | 2.257(2) | 2.2619(10) | 2.264(3) |
| $\mathrm{Pt}(1)-\mathrm{P}(2)$ | 2.315(3) | 2.315(3) | 2.321(3) | 2.304(2) | 2.3220(10) | 2.316(4) |
| $\mathrm{Pt}(2)-\mathrm{O}(1)$ | 2.080(6) | 2.112(8) | 2.075(8) | 2.098(5) | 2.109(3) | 2.119(8) |
| $\mathrm{Pt}(2)-\mathrm{P}(2)$ | 2.347 (3) | 2.350(3) | 2.352(3) | 2.342(2) | 2.3579(9) | 2.357(3) |
| $\mathrm{Pt}(2)-\mathrm{P}(3)$ | 2.308(3) | 2.307(3) | 2.328(3) | 2.310(2) | $2.3197(10)$ | 2.305(3) |
| $\mathrm{Pt}(2)-\mathrm{P}(4)$ | 2.234(3) | 2.226(3) | 2.257(3) | $2.2352(19)$ | 2.2400 (10) | 2.239(3) |
| $\mathrm{P}(1)-\mathrm{O}(1)$ | 1.549(7) | 1.549(9) | 1.581(8) | 1.555(6) | 1.560(3) | 1.527(10) |
| $\mathrm{Pt}(3)-\mathrm{P}(3)$ | 2.234(3) | 2.340(3) | 2.325(3) | 2.2400 (19) | $2.2308(10)$ | 2.303(3) |
| $\mathrm{Pt}(3)-\mathrm{P}(4)$ | 2.223(3) | 2.338(3) | 2.341(3) | 2.231(2) | 2.2363(10) | 2.270(3) |
| $\mathrm{Pt}(3)-\mathrm{P}(5)$ |  | 2.332(4) | $2.338(3)$ |  |  | 2.343 (3) |
| $\mathrm{Pt}(3)-\mathrm{P}(6)$ |  | 2.324(3) | 2.331(4) |  |  |  |
| Pt(1)-Ag |  |  | $2.7596(10)$ |  |  |  |
| Pt(2)-Ag |  |  | 2.8741 (11) |  |  |  |
| $\mathrm{Ag}-\mathrm{O}(2)$ |  |  | 2.350(19) |  |  |  |
| $\mathrm{Pt}(3)-\mathrm{O}(2)$ | 2.169(8) |  |  |  | 2.096(3) |  |
| $\mathrm{Pt}(3)-\mathrm{O}(3)$ | 2.165(8) |  |  |  | 2.075(3) |  |
| $\mathrm{Pt}(3)-\mathrm{Cl}(1)$ |  |  |  | 2.415(2) |  | 2.382(3) |
| $\mathrm{Pt}(3)-\mathrm{Cl}(1 \mathrm{~A})$ |  |  |  | $2.4195(18)$ |  |  |



Fig. 3 Molecular structure of the complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{dppm})\right] \cdot 0.5$ acetone ( $\mathbf{2} \cdot 0.5$ acetone).

X-ray structure of 2. The X-ray structure of $\mathbf{2}$ is shown in Figure 3 while selected bond distances and angles are collected in Tables 1 and 2. In this molecule the three metal atoms are disposed in an almost linear arrangement $[\operatorname{Pt}(1)-\operatorname{Pt}(2)-\operatorname{Pt}(3)=$ $\left.155.76(2)^{\circ}\right] . \mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$ are supported by a phosphanido, $\mathrm{P}(2) \mathrm{Ph}_{2}$, and a phosphinito, $\mathrm{Ph}_{2} \mathrm{P}(1)-\mathrm{O}$, bridging ligand whereas $\mathrm{Pt}(2)$ and $\mathrm{Pt}(3)$ are supported by two $\mathrm{PPh}_{2}$ groups, $\mathrm{P}(3)$ and $P(4)$ with the Pt atoms in square-planar environments and without Pt . . . Pt interactions, as expected for a molecule with a 48 VEC skeleton $[\operatorname{Pt}(1) \cdot \cdot \operatorname{Pt}(2)=3.662(1) \AA$ and $\operatorname{Pt}(2) \cdot \cdot \operatorname{Pt}(3)=$ 3.599(1) Å]. The environments of the Pt centres are not coplanar, the dihedral angles between the $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$ coordination planes being $123.4(2)^{\circ}$, while that formed by the $\mathrm{Pt}(2) \mathrm{Pt}(3)$ coordination planes is $170.8(1)^{\circ}$ (Table 1). The dihedral angle formed by the dppm skeleton and the $\operatorname{Pt}(3)$ coordination plane is $150.47(57)^{\circ}$.

Reactions of complex $\mathbf{2}$ with $\mathbf{A g}^{+}$. We have previously reported that $\mathrm{Ag}^{+}$or $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\right]^{+}$can act as oxidants towards binuclear or trinuclear phosphanido Pt (II) or Pd (II) derivatives, affording M (III) or M (III)/M(II) derivatives, but they can also act as electrophiles, resulting in the formation of complexes with $M$ Ag donor-acceptor bonds. ${ }^{1,32}$
Complex $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm})\right]$ (2) is an excellent candidate to study its reaction with $\mathrm{Ag}^{+}$. In fact, considering that complex 2 displays several nucleophilic positions (namely the $\mathrm{Pt}(\mathrm{II})$ centres and some of the $\mathrm{Pt}-(\mu \mathrm{P})$, $\mathrm{Pt}-\mathrm{P}$ or $\mathrm{Pt}-\mathrm{O}$ bonds) and that the $\mathrm{Pt}(\mathrm{II})$ centres could also be oxidized by $\mathrm{Ag}^{+}$, different types of complexes could be produced when this reaction is carried out, depending on the process (or processes) which effectively take place.
The reaction between $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm})\right]$ (2) and $\mathrm{AgClO}_{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperature ( 253 K ) and in the dark, results in the formation of a yellow solid which, according to structural data, is the tetranuclear complex $\quad\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm}) \mathrm{Ag}\left(\mathrm{ClO}_{4}\right)\right](3)$, in which the two Pt centres that are more anionic in character (i.e. the one bonded to the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and the other bonded to one phosphanido and one phosphinito ligand of the starting material), act as donors toward the silver centre, forming two $\mathrm{Pt}-\mathrm{Ag}$ bonds (Scheme 2). The solid state structure of the tetranuclear complex 3 was established by an X-ray diffraction study.
$\mathbf{X}$-ray structure of $\mathbf{3}$. The molecular structure of complex $\mathbf{3}$ is shown in Figure 4. Relevant structural parameters are collected in Tables 1 and 2. The structure of 3 is the result of the interaction of two of the Pt centres ( $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2))$ with $\mathrm{Ag}^{+}$through two $\mathrm{Pt}-\mathrm{Ag}$ donor-acceptor bonds. Thus the Pt skeleton is very similar to that of the starting material and the silver centre is located on the inner side of the "open book"


Fig. 4 Molecular structure of the complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{dppm}) \mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 4\right.$ hexane.
structure with the Pt atoms in square planar environments. The silver centre completes its coordination sphere with an O atom of the perchlorate ligand. The two square planar coordination planes of the platinum atoms connected to $\mathrm{Ag}^{+}$ form a dihedral angle of 134.1(2) ${ }^{\circ}$ while the dihedral angle formed by the $\operatorname{Pt}(2)$ and $\operatorname{Pt}(3)$ coordination planes is $167.5(2)^{\circ}$. The Pt-Ag distances are 2.7596(10) and 2.8741(11) Å and, as observed in previous examples, the shorter distance corresponds to the $\operatorname{Pt}(1)$ centre, which is bonded to the pentafluorophenyl ligands. Assuming that the shorter $\mathrm{Pt}-\mathrm{Ag}$ distance should be related to a stronger metal-metal bond, and due to the nature of the donor-acceptor $\mathrm{Pt}-\mathrm{Ag}$ bonds, it seems plausible to assume that the $\mathrm{Pt}(1)$ centre bearing the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups should probably be the most basic in character. It is remarkable that the dihedral angle formed by the $\operatorname{Pt}(1)$ and $\mathrm{Pt}(2)$ coordination planes in complexes $\mathbf{2}$ and $\mathbf{3}$ are rather similar in spite of the fact that in $\mathbf{3}, \mathrm{Ag}^{+}$is bonded to the Pt centres, on the inner side of the book, forming two $\mathrm{Pt}-\mathrm{Ag}$ bonds. ${ }^{1,16,32}$
The ESI-MS(+) analysis of $\mathbf{3}$ in acetonitrile shows a peak ascribable to $\left[3-\mathrm{ClO}_{4}\right]^{+}$at $m / z=2168.1084$ (exact mass for [3 $\left.-\mathrm{ClO}_{4}\right]^{+}=2168.1070$ ) indicating that the Ag adduct is stable in solution.
The chemical shift and the multiplicity of the ${ }^{31}$ P NMR signals of $\mathbf{3}$ are similar to those of $\mathbf{2}$, the main difference being the direct coupling constants between $\mathrm{Pt}^{1 / 2}$ and $\mathrm{P}^{1 / 2}$ which are considerably lower in the case of 3 . For instance, the ${ }^{1} J_{\mathrm{P} 2, \mathrm{Pt} 1}$ and ${ }^{1} J_{\mathrm{P} 2, \mathrm{Pt} 2}$ values are 1868 Hz and 1890 Hz for 2 and 1271 Hz and 1376 Hz for 3, respectively. The ${ }^{195} \mathrm{Pt}$ NMR features are conclusive that the $\mathrm{AgClO}_{4}$ is bonded to $\mathrm{Pt}^{1}$ and $\mathrm{Pt}^{2}$. In fact, the ${ }^{195} \mathrm{Pt}$ NMR signals of $\mathrm{Pt}^{1}$ and $\mathrm{Pt}^{2}$ of 3 were found at $\delta-3954$ and $\delta-3022$, respectively, compared to $\delta-4461$ and $\delta-3584$, respectively, for $\mathrm{Pt}^{1}$ and $\mathrm{Pt}^{2}$ of $\mathbf{2}$. The $\mathrm{Pt}^{3} \mathrm{NMR}$ resonance of 3 ( $\delta-4058$ ) did not differ significantly from that of $2(\delta-4027)$. A downfield shift for the ${ }^{195} \mathrm{Pt}$ nuclei upon Ag bridging coordination has been already observed in the case of $\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{L}-\mathrm{L}^{\prime}\right)$ complexes (L-L' = benzoquinolinate, $8-$ hydroxyquinolinate, picolinate). ${ }^{1}$
The ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (or in acetone- $d_{6}$ ) at 258 K showed two broad signals assigned to the ortho-F signals of


Scheme $\mathbf{3}$ Dynamic process involving complex $\mathbf{3}$ in solution.
the unequivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ rings. Given that at low T the pentafluorophenyl ring rotation is expected to block ${ }^{1,20,28,32}$ the equivalence of the ortho-F signals of each ring would point to a dynamic process in which the $\mathrm{Ag}\left(\mathrm{ClO}_{4}\right)$ moiety passes from one face to the other of the complex (Scheme 3). This view is substantiated by the ${ }^{1} \mathrm{H}_{-}^{31} \mathrm{P}$ HMQC spectrum that shows only one (averaged) type of ortho-phenyl proton bonded to each $P$ atom and not two, as would have been expected if the upper and bottom part of the molecule were differentiated by the steady presence of the $\mathrm{Ag}\left(\mathrm{ClO}_{4}\right)$.
Synthesis of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$
$(\mathbf{4 a}, \mathbf{4 b})$. The reaction of acetone solutions of the solvento species 1-(solv)(solv') with $\mathrm{NBu}_{4} \mathrm{Cl}$ (approx. 1:1 molar ratio) allowed the isolation of the hexanuclear derivatives $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \operatorname{Pt}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ ] (4) (Scheme 2). In this process, the chloride is coordinated to the Pt centre with elimination of the two labile molecules solv, solv'. As observed in some other instances, ${ }^{33,} 34$ the supposed intermediate $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{PtCl}_{2}\right]^{2-}$, if formed, does not crystallise from the solution, the hexanuclear complex being crystallised instead. The NMR spectra indicate that complex 4 is in fact a mixture of the two expected isomers 4 a and 4b (see Scheme 2).
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4 a - b}$ (Figure 5 ) shows one signal for the phosphinite $\mathrm{P}^{1}(\delta 124.9)$ and for the phosphanide $\mathrm{P}^{2}(\delta$ 13.0) and two signals each for the phosphanide $P$ atoms $P^{3}(\delta-$ 147.9 and $\delta-148.2$, ddd) and $P^{4}(\delta-138.5$ and $\delta-138.7$, d) indicating that, as expected, slight differences in ${ }^{31} \mathrm{P}$ chemical shift were found, at 161 MHz , only for of the atoms adjacent to the $\mathrm{Pt}_{2} \mathrm{Cl}_{2}$ ring (i.e. $\mathrm{P}^{3}$ and $\mathrm{P}^{4}$ ) for the two isomers. The phenyl protons bonded to $P^{3}$ and $P^{4}$ are also differentiated, as indicated by the ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC spectrum shown in Figure 6. The ${ }^{195} \mathrm{Pt}$ signals of $\mathbf{4 a - b}$ were detected by combining data from ${ }^{195} \mathrm{Pt}$ spectrum $\left(\delta \mathrm{Pt}^{2}=-3789, \delta \mathrm{Pt}^{3}=-3495\right)$ and ${ }^{19} \mathrm{~F}-{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ experiments $\left(\delta \mathrm{Pt}^{1}=-4515\right)$. Due to the weakness of the signals, caused by the moderate solubility of the complexes, the expected difference in chemical shift for at least $\mathrm{Pt}^{2}$ and $\mathrm{Pt}^{3}$ of 4a-b, was not seen.
X-ray structure of 4a. The structure of the hexanuclear anion of 4 a is shown in Figure 7 with the six Pt atoms disposed in an almost linear array. Selected bond distances and angles are


Fig. $5{ }^{31}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4a-b (acetone- $d_{6}, 298 \mathrm{~K}$ ).


Fig. $6{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC spectrum of 4a-b (acetone- $d_{6}, 298 \mathrm{~K}$ ).
collected in Tables 1 and 2. The anion has an inversion centre, and thus both halves are equivalent. The six Pt(II) centres are located in approximately square planar coordination environments. In fact, the anion complex consists of two of the abovementioned fragments " $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}(1)\left(\mu-\mathrm{OPPh}_{2}\right)(\mu-$ $\left.\mathrm{PPh}_{2}\right) \operatorname{Pt}(2)\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(3)$ ", which are connected by two bridging chloro ligands. The Pt‥Pt distances range from 3.583(1) A to $3.907(1) \AA$ ) excluding any kind of Pt $\cdots$ Pt interactions, as is to be expected for a $96 \mathrm{VEC}_{\mathrm{Pt}}^{3}$ species. Table 1 shows other distances and dihedral angles of the skeleton that do not show significant differences with the parameters corresponding to complex 2.
The " $\mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}^{\prime \prime}$ bridging system is expected to be easily split and thus the mixture of isomers $\mathbf{4 a}$ and $\mathbf{4 b}$ represents an
excellent starting material for the synthesis of unsymmetrical trinuclear phosphanido/phosphinito-bridged derivatives.
Reactions of 4 with $\mathrm{Tl}(\mathrm{acac})$ or $\mathrm{PPh}_{3}$. The " $\mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}^{\prime \prime}$ bridging system in 4a-b is expected to be a very reactive point to produce other polynuclear complexes. ${ }^{\S \S}$ Thus, reaction of 4a-b with TI (acac) (1:2 molar ratio) in acetone afforded, after workup, crystalline $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \operatorname{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{acac})\right]$ (5) (Scheme 4). Since the incorporated acetylacetonato ligand is symmetric, only one isomer was expected and only one isomer formed. As expected, ${ }^{11,14,35-38}$ the acetylacetonato complex 5 reacts with HCl in acetone (1:1 molar ratio) producing acetylacetone and again, the mixture of the isomers $\mathbf{4 a - b}$.
The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 in acetone- $d_{6}$ showed the phosphinito $\mathrm{P}^{1}$ signal at $\delta 125.3$, the phosphanido $\mathrm{P}^{2}$ involved in a five-membered ring at $\delta 13.9$, and the phosphanides $\mathrm{P}^{3}$


Fig. 7 Molecular structure of the anion of the complex $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right] \cdot 2$ acetone $\cdot 1.5 n-$ hexane (4a•2acetone $\cdot 1.5 n$-hexane).


Scheme 4 Reactivity of 4 with T (acac) or $\mathrm{PPh}_{3}$.
and $\mathrm{P}^{4}$ involved in a four-membered ring at $\delta-150.8$ and $\delta-$ 142.9, respectively. As expected, on the basis of the different trans influence between acetylacetonato and dppm, the direct $\mathrm{P}^{3 / 4}-\mathrm{Pt}^{3}$ coupling constants of $5\left({ }^{1} \mathrm{~J}_{\mathrm{P}(3), \mathrm{Pt}(3)}=2636 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{PP}(3)}=\right.$ $2832 \mathrm{~Hz})$ are higher than $2\left({ }^{1} J_{\mathrm{P}(3), \mathrm{P}(3)} \approx 1680 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{Pt}(3)}=1928\right.$ Hz).
X-ray structure of 5. The solid state structure of 5 (Figure 8, relevant bond distances and angles in Tables 1 and 2) confirms that it is a trinuclear unsymmetrical complex resulting from the elimination of the chloro bridging system in 4a-b and the replacement of these ligands by acac. The " $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-$ $\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}$ fragment is very similar to the analogous fragments found in the complexes described so far. The Pt atoms are located in square-planar environments and no Pt $\cdots$ Pt interactions are detected. The coordination planes of the Pt centres are not coplanar. The acac ligand is planar and almost coplanar with the $\mathrm{Pt}(3)$ coordination plane (dihedral angle $\left.12.59(14)^{\circ}\right)$.
In polynuclear complexes with a double halide bridging system, the " $\mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}^{\prime}$ moiety can also be split by treating the complex with neutral ligands. Thus, reacting acetone solutions of 4a-b with $\mathrm{PPh}_{3}$ (1:1 molar ratio) yielded a white solid identified, by multinuclear NMR analyses, as a mixture of isomers of formula $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right](6)$, with the chloro ligand located syn (6a) or anti (6b) to the $\mathrm{PPh}_{2} \mathrm{O}^{-}$group (Scheme 4). The ${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{6 a - b}$ shows ten signals, five for each isomer, which, despite the high number of peaks due to different ${ }^{195} \mathrm{Pt}$ isotopomers present in solution, were easily assigned to $\mathbf{6 a}$ or 6b by combining ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ COSY and ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC data. Figure 9 shows the ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC spectrum of $\mathbf{6 a} \mathbf{- b}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. The phosphinito ( $\delta 122.6$ for $\mathbf{6 a}$ and $\delta 127.3$ for $\mathbf{6 b}$ ) and
phosphanido ${ }^{31} \mathrm{P}$ resonances ( $\delta 15.2, \mathrm{P}^{2} ; \delta-151.5, \mathrm{P}^{4} ; \delta-158.9$, $\mathrm{P}^{3}$ for $\mathbf{6 a}$ and $\delta 11.3, \mathrm{P}^{2} ; \delta-153.0, \mathrm{P}^{4} ; \delta-141.2, \mathrm{P}^{3}$ for $\mathbf{6 b}$ ) gave signals at chemical shifts comparable to those of the other complexes described in this paper. The coordinated triphenylphosphanes gave doublets of doublets at $\delta 25.9$ for $\mathbf{6 a}$ and at $\delta 23.7$ for $\mathbf{6 b}$.
Monitoring the reaction between the hexanuclear complexes 4a-b with 1 equiv $\mathrm{PPh}_{3}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at 298 K by ${ }^{31} \mathrm{P} \mathrm{NMR}$, we observed the immediate transformation of the reagents into a mixture consisting of $\mathbf{6 a} / \mathbf{6} \mathbf{b}$ in a molar ratio of $25 / 75$. On standing in solution the 6a/6b molar ratio increased progressively, becoming $45 / 55$ after 24 h . This suggests that a dissociative process occurs in solution, transforming the kinetic mixture into a thermodynamic one. The same reaction carried in acetone at 298 K yielded, after 24 h , a mixture consisting of $\mathbf{6 a} / 6 \mathrm{~b}$ in a molar ratio of 60/40. Crystallisation of this mixture from dichloromethane/ $n$-hexane afforded crystals of $\mathbf{6 a}$ suitable for diffractometric analysis.
$\mathbf{X}$-ray structure of $\mathbf{6 a}$. The structure of the anion of the isomer 6a is shown in Figure 10. Relevant bond distances and angles are collected in Tables 1 and 2. The structure confirms that 6a is an unsymmetrical trinuclear complex resulting from the cleavage of the chloro bridging system in 4a-b. In fact the anion complex consists of the aforementioned fragment " $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}(1)\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Pt}(2)\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}(3)$ " with $\mathrm{Pt}(3)$ completing its coordination environment with one chloro


Fig. 8 Molecular structure of the anion of complex $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}($ acac $\left.)\right]$-acetone ( 5 -acetone).




Fig. $9{ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC spectrum of $\mathbf{6 a - b}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$.

## ARTICLE

ligand and one molecule of triphenyphosphine, the $\mathrm{PPh}_{3}$ ligand being located anti to the $\mathrm{PPh}_{2} \mathrm{O}$ group. Other relevant data of the skeleton of $\mathbf{6 a}(48 \mathrm{VEC})$ are given in Table 2.
Synthesis of complex 7. Since complexes 6a and 6b do not display Pt-Pt bonds ( 16 n valence electron skeleton, $48 \mathrm{e}^{-}$), it would be expected that the elimination of one of the ligands coordinated to $\mathrm{Pt}(3)$ would produce a species consisting of a symmetric complex (only one isomer) with a $\mathrm{Pt}(2)-\mathrm{Pt}(3)$ bond (46 VEC), as observed in other polynuclear phosphanido complexes. ${ }^{21,39, \S \S \S}$
Hence, the addition of $\mathrm{AgClO}_{4}$ to $\mathbf{6 a + 6} \mathbf{b}$ (1:1 molar ratio, in the dark) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in the precipitation of AgCl and the formation of a compound of stoichiometry $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}_{3}\left(\mathrm{PPh}_{2}\right)_{3}\left(\mathrm{PPh}_{2} \mathrm{O}\right)\left(\mathrm{PPh}_{3}\right)\right]$ which was isolated from the solution. The same compound was obtained when 5 was treated with $\left[\mathrm{PPh}_{3} \mathrm{H}\right]\left[\mathrm{ClO}_{4}\right]$ (1:1 molar ratio) in a noncoordinating solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. In the latter experiment it was observed that the pale-yellow colour of the initial solution turned red instantaneously and, after a few minutes, the colour of the solution turned orange. Complex 7 was isolated from the resulting reaction mixture. Surprisingly, complex 7 is not the mere result of eliminating a chloro ligand, although this could well be an intermediate, but rather it results from the reductive coupling between one $\mathrm{PPh}_{2}$ and one $\mathrm{PPh}_{2} \mathrm{O}$ ligand, with formation of a diphosphoxane-bridged ligand, (Scheme 5) and the $\mathrm{Pt}(\mathrm{II}), \mathrm{Pt}(\mathrm{I}), \mathrm{Pt}(\mathrm{I})$ trinuclear derivative $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}^{1}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}^{3}\left(\mathrm{PPh}_{3}\right)\right] \quad$ (7), as established by XRD and NMR data.
X-ray structure of complex 7. The structure of complex 7 together with the atom-labelling scheme is shown in Figure 11. Relevant bond distances and angles are given in Table 3. The compound is trinuclear, the three platinum atoms being ordered in a triangular array with only two Pt-Pt bonds ${ }^{\S \S \S \S}$ and bridged by two diphenylphosphanido and one diphosphoxane ligands which display peculiar structural features. In addition, one triphenylphosphine and two pentafluorophenyl groups are bonded to the metal centres $\mathrm{Pt}(3)$ and $\mathrm{Pt}(1)$, respectively as terminal ligands. In order to facilitate the understanding of the structural features of complex 7, this can be considered to form as consequence of the interaction of two fragments $\mathbf{C}$ and $\mathbf{D}$ (Scheme 6).


Fig. 10 Molecular structure of the anion of complex $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(6 \mathbf{a} \cdot \mathrm{CH}_{2} \mathrm{Cl} \cdot \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right)$.




Scheme 5 Syntheses of cluster 7.


Fig. 11 Molecular structure of the complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}^{1}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}^{3}\left(\mathrm{PPh}_{3}\right)\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Fragment C is a $\mathrm{Pt}(\mathrm{I})-\mathrm{Pt}(\mathrm{I})$ fragment formed due to the reductive $\mathrm{P}-\mathrm{O} / \mathrm{P}$ coupling, with a $\mathrm{Pt}-\mathrm{Pt}$ bond, as is usual in Pt centres with formal oxidation state $+1[\operatorname{Pt}(2)-\operatorname{Pt}(3)=$ 2.62204(6) $\AA$ ] and with bridging $P(3)-O-P(4)$ and $P(2) P h_{2}$ ligands and one terminal $P(5) \mathrm{Ph}_{3}$. The $\mathrm{P}(1) \mathrm{Ph}_{2}$ ligand displays an unusual structural situation since it is bonded to both $\operatorname{Pt}(2)$, completing fragment $\mathbf{C}$, and $\mathrm{Pt}(1)$ of fragment $\mathbf{D}$.


Scheme 6 Fragments constituting cluster 7.

Pd and $\mathrm{Pt}(\mathrm{I})$ complexes with structures similar to fragment $\mathbf{C}$ are well-known. ${ }^{31,40-44}$
Furthermore, fragment $\mathbf{D}$ is formed by the $\mathrm{Pt}(\mathrm{II})$-based synthon " $\mathrm{Pt}(1)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ ", which is bonded to the $\mathrm{P}(2) \mathrm{Ph}_{2}$ bridging ligand. This bridging ligand links fragment $\mathbf{C}$ and $\mathbf{D}$ through the $P(2)$ $\mathrm{Pt}(2)$ bond but fragment $\mathbf{D}$ still displays a coordination vacancy that is filled through the donor-acceptor interaction of the $\mathrm{P}(2)-\mathrm{Pt}(2)$ bond with $\mathrm{Pt}(1)$ (a three-centre two-electron bond). This type of bond causes the formation of a metal-metal bond between $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)[\mathrm{Pt}(1)-\mathrm{Pt}(2)=2.7509(3) \mathrm{A}]$ and causes $P(4) \mathrm{Ph}_{2}$ to act as a $\left(\mu_{3}-P\right)$ ligand bonded to the three Pt centres $[P t(3)-P(4)=2.319(3), \operatorname{Pt}(2)-P(4)=2.586(3)$ and $\operatorname{Pt}(1)-P(4)=$ $2.455(3) \mathrm{A}]$.
The $\mu_{3}-P$ coordination of the formally anionic $P(2)$ phosphanide ligand is rather unusual, but has been found previously in other compounds prepared by us, $\left[\mathrm{Pt}_{2} \mathrm{Pd}_{2}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{CO})\right]^{25} \quad\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pt}_{3}\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{5}\right],{ }^{26}$ $\left.\left[\mathrm{Pt}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\right]^{22} \quad\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pt}_{4}\left(\mu-\mathrm{PPh}_{2}\right)_{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{5}\right]^{23} \quad$ and $\left[\mathrm{Pt}_{2} \mathrm{Pd}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{3}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right)\right] .{ }^{24}$ Other complexes in which the phosphorus atom of a phosphanido ligand is five coordinated are also known. ${ }^{45-48}$
Although CCDC reports examples of complexes with the diphosphoxane $\mathrm{PPh}_{2} \mathrm{OPPh}_{2}$ ligand acting as a bridging ${ }^{49-53}$ or chelate ligand, ${ }^{54-58}$ cluster 7 is the first-reported example of a platinum derivative with this ligand. It is also noteworthy that this ligand is formed via intramolecular reductive $\mathrm{PPh}_{2} \mathrm{O} / \mathrm{PPh}_{2}$ coupling.
Finally it is notable that 7, which actually is produced from $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mathrm{NCCH}_{3}\right)_{2}\right]$ (A), requires two independent reductive coupling processes $\mathrm{PPh}_{2}^{-} / \mathrm{OH}^{-}$and $\mathrm{PPh}_{2} \mathrm{O}^{-} / \mathrm{PPh}_{2}^{-}$, the first one induced by the presence of the nucleophile in the oxidation of $\mathbf{A}$, and the second by elimination of a ligand (one pair of electrons) of the skeleton. Multinuclear 1D and 2D NMR analyses of 7 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ indicate that the structure of the cluster in the solid state is preserved in solution. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 7 (Figure 12) shows five multiplets, four of which in the region from 145 to 98 ppm and one centred at $\delta 24.8$. The latter signal is a ddd and is attributed to the coordinated $\mathrm{PPh}_{3}, \mathrm{P}^{5}$. The multiplicity of this signal is due to homocouplings with the phosphanido $P^{2}$ nucleus $\left({ }^{2} J_{P(5), P(2)}=70 \mathrm{~Hz}\right)$ and with the phosphinito $P^{1}$ and $P^{3}$ nuclei $\left({ }^{2} J_{P(5), P(1)}=26 \mathrm{~Hz},{ }^{2} J_{P(5), P(3)}=5 \mathrm{~Hz}\right)$. The mutually coupled phosphinito $P^{1}$ and $P^{3}$ atoms $\left({ }^{2} J_{P(1), P(3)} 14 \mathrm{~Hz}\right)$ gave signals

Table 3.- Selected Bond Distances $(\AA)$ and Angles $\left({ }^{\circ}\right)$ for $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{PPh})_{2} \operatorname{Pt}(\mu-\right.$ $\left.\left.\left.\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}^{( } \mathrm{PPh}_{3}\right)\right]\left(\mathbf{7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

| Distances |  |  |
| :---: | :---: | :---: |
| $\operatorname{Pt}(1)-\mathrm{C}(7)=2.067(12) \quad \mathrm{Pt}(2)$ | $\mathrm{Pt}(2)-\mathrm{P}(1)=2.186(3)$ | $\mathrm{Pt}(3)-\mathrm{P}(3)=2.251(3)$ |
| $\mathrm{Pt}(1)-\mathrm{C}(1)=2.072(12) \quad \mathrm{Pt}(2)$ | $\mathrm{Pt}(2)-\mathrm{P}(2)=2.224(3)$ | $\mathrm{Pt}(3)-\mathrm{P}(5)=2.299$ (3) |
| $\mathrm{Pt}(1)-\mathrm{P}(2)=2.329(3) \quad \mathrm{Pt}(2)$ | $\mathrm{Pt}(2)-\mathrm{P}(4)=2.586(3)$ | $\mathrm{Pt}(3)-\mathrm{P}(4)=2.319(3)$ |
| $\mathrm{Pt}(1)-\mathrm{P}(4)=2.455(3) \quad \mathrm{Pt}(2)$ | $\mathrm{Pt}(2)-\mathrm{Pt}(3)=2.6204(6)$ | $\mathrm{P}(1)-\mathrm{O}=1.644(8)$ |
| $\mathrm{Pt}(1)-\mathrm{Pt}(2)=2.7509(6)$ |  | $\mathrm{P}(3)-\mathrm{O}=1.656(8)$ |
| Angles |  |  |
| $C(7)-\operatorname{Pt}(1)-C(1)=83.2(4)$ | ) $\quad \mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{P}(4)=104.74(11)$ |  |
| $C(7)-P t(1)-P(2)=85.6(3)$ | 3) $\quad \mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(3)=89.21$ (8) |  |
| $C(1)-P t(1)-P(2)=163.7(3)$ | ) $\quad \mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{Pt}(3)=156.46$ (8) |  |
| $C(7)-P t(1)-P(4)=164.1(4)$ | (4) $\quad \mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{Pt}(3)=52.90$ (6) |  |
| $C(1)-P t(1)-P(4)=87.7(3)$ | (3) $\quad \mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{Pt}(1)=168.44$ (9) |  |
| $\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{P}(4)=105.75$ (10) | 10) $\quad \mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{Pt}(1)=54.60$ (8) |  |
| $C(7)-\operatorname{Pt}(1)-\operatorname{Pt}(2)=135.0(3)$ | 3) $\quad \mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{Pt}(1)=54.68(6)$ |  |
| $\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{Pt}(2)=135.6(3)$ | 3) $\quad \mathrm{P}(3)-\mathrm{Pt}(3)-\mathrm{P}(5)=106.28(11)$ |  |
| $\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{Pt}(2)=51.11(7)$ | 7) $\quad P(3)-P t(3)-P(4)=140.65(11)$ |  |
| $\mathrm{P}(4)-\mathrm{Pt}(1)-\mathrm{Pt}(2)=59.23(7)$ | $7) \quad \mathrm{P}(5)-\mathrm{Pt}(3)-\mathrm{P}(4)=111.99$ (11) |  |
| $\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{Pt}(1)=74.30$ (9) | 9) $\quad \mathrm{P}(3)-\mathrm{Pt}(3)-\mathrm{Pt}(2)=82.34(8)$ |  |
| $\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)=114.31$ (12) | 12) $\quad \mathrm{P}(5)-\mathrm{Pt}(3)-\mathrm{Pt}(2)=164.54(8)$ |  |
| $\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{P}(4)=136.65$ (11) | 1) $\quad \mathrm{P}(4)-\operatorname{Pt}(3)-\operatorname{Pt}(2)=62.78(8)$ |  |
| $\operatorname{Pt}(3)-P(4)-P t(1)=121.90$ (13) | 3) $\quad \mathrm{Pt}(3)-\mathrm{P}(4)-\mathrm{Pt}(2)=64.31$ (8) |  |
| $\operatorname{Pt}(3)-\operatorname{Pt}(2)-\operatorname{Pt}(1)=101.982(19)$ | 19) $\operatorname{Pt}(1)-\mathrm{P}(4)-\mathrm{Pt}(2)=66.08(8)$ |  |
| $\mathrm{O}-\mathrm{P}(1)-\mathrm{Pt}(2)=112.3(3)$ | $\mathrm{O}-\mathrm{P}(3)-\mathrm{Pt}(3)=112.6(3)$ |  |



Fig. $12{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $7\left(\mathrm{CD}_{2} \mathrm{Cl}, 288 \mathrm{~K}\right)$.
centred at $\delta 132.3$ and $\delta$ 109.1, respectively, and showed measurable scalar couplings with all the ${ }^{31} \mathrm{P}$ nuclei of the molecule. The bridging phosphanido atoms $P^{2}$ and $P^{4}$ subtending $\mathrm{Pt}-\mathrm{Pt}$ bonds gave the expected deshielded signals at $\delta 143.8$ and $\delta 99.1$, respectively. The difference in the chemical shifts of these signals presumably reflects the different coordination mode of the P atoms: $\mu_{3}$ bridging for $\mathrm{P}^{4}$ and $\mu_{2}$ bridging for $\mathrm{P}^{2}$. ${ }^{195} \mathrm{Pt}$ resonances were found at $\delta-5235$ $\left(\mathrm{Pt}^{1}\right),-5032\left(\mathrm{Pt}^{2}\right)$, and $-5183\left(\mathrm{Pt}^{3}\right)$.
The mechanism outlined in Scheme 7 can be proposed to explain the formation of 7 . Both the reaction of the trinuclear compound 6a with $\mathrm{Ag}^{+}$, which results in the precipitation of AgCl , or the reaction of 5 with $\left[\mathrm{PPh}_{3} \mathrm{H}\right]^{+}$could generate the species $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}^{1}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}^{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{3}\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{Pt}^{2}-\right.$ $P t^{3}$ ) ( $\boldsymbol{\alpha}$ ) prone to undergo the $\mathrm{P}-\mathrm{O} / \mathrm{P}$ reductive coupling affording $\boldsymbol{\beta}$. Intermediate $\boldsymbol{\beta}$ could evolve to $\boldsymbol{\gamma}$ by rupture of the $\mathrm{P}^{1}-\mathrm{Pt}^{1}$ bond and formation of the $\mathrm{P}^{1}-\mathrm{Pt}^{2}$ bond. Finally, coordination of $\mathrm{P}^{4}$ to $\mathrm{Pt}^{1}$ and formation of the $\mathrm{Pt}^{1}-\mathrm{Pt}^{2}$ bond yields cluster 7.

$R_{F}=C_{6} F_{5}$
$\mathrm{P}^{*}=\mathrm{PPh}_{2}$


7

Scheme 7 Proposed mechanism for the synthesis of 7.

The complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}\left(\mathrm{PPh}_{3}\right)\right]$, analogous to $\alpha$ but with a $\mathrm{PPh}_{2}$ instead of $\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}$, is formed by reaction of $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right]$ with $\mathrm{Ag}^{+}$or by reaction of $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{acac})\right]$ with $\mathrm{H}^{+} / \mathrm{PPh}_{3} .{ }^{21,}{ }^{39}$ However, in the present study the intermediate $\boldsymbol{\alpha}$ was neither isolated, nor detected by NMR monitoring, indicating that such an intermediate is very reactive. A similar situation has been observed in the formation of the heterotrinuclear $\mathrm{Pt} / \mathrm{Pd}$ complexes: $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pd}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{P}-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{R}_{\mathrm{F}}\right)_{2}\right]^{19} \quad\left[\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pd}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{P}-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ and $\left[\left(\mathrm{PEtPh}_{2}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right) \operatorname{Pd}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{Ph}_{2} \mathrm{P}-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right],{ }^{20}$ which are produced through a $\mathrm{PPh}_{2}^{-} / \mathrm{PPh}_{2}{ }^{-}$reductive coupling but the postulated $\operatorname{Pt}($ III $) \operatorname{Pd}($ III $) P \mathrm{Pt}$ (II) intermediates could not be detected. Furthermore, the structure of intermediate $\boldsymbol{\beta}$ resembles that of complex $\left[\mathrm{NBu}_{4}\right]\left[\left(R_{\mathrm{F}}\right)_{2} \mathrm{Pt}\left(\mu^{3}-\mathrm{Ph}_{2} \mathrm{PNPPh}_{2}\right)(\mu-\right.$ $\left.\left.\operatorname{PPh}_{2}\right) \operatorname{Pt}\left(\mu-\operatorname{PPh}_{2}\right) \operatorname{Pt}\left(R_{\mathrm{F}}\right)_{2}\right]^{12}$, which is also formed through a reductive coupling process.
Finally, the outcome of this reaction contrasts with the similar process carried out with $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right]$ in which, the elimination of $\mathrm{Cl}^{-}$produces $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)\right]$ similar to the intermediate reported in Scheme 5 and no reductive $\mathrm{PPh}_{2} /$ $\mathrm{PPh}_{2}$ coupling is observed.

## Conclusions

A mixture of the solvento species $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)(\mu\right.$ $\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\right.$ solv )(solv$\left.\left.{ }^{\prime}\right)\right]$ (solv, solv' $=\mathrm{H}_{2} \mathrm{O}$, acetone, acetonitrile) 1-(solv)(solv') is obtained by oxidation of the trinuclear $\mathrm{Pt}(\mathrm{II})$ complex $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mathrm{NCCH}_{3}\right)_{2}$ ] with $\mathrm{AgClO}_{4}$ in acetonitrile/wet acetone to the corresponding $\mathrm{Pt}(\mathrm{III}), \mathrm{Pt}(\mathrm{III}), \mathrm{Pt}(\mathrm{II})$ derivative, followed by a reductive $\mathrm{Ph}_{2} \mathrm{P} / \mathrm{OH}^{-}$coupling. The lability of the Pt -solv bonds allows the displacement of solv, solv' and the formation of pure complexes. For instance, in benzonitrile the mixture 1(solv)(solv') is quantitatively transformed into $\left[\left(R_{\mathrm{F}}\right)_{2} \mathrm{Pt}(\mu\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PO}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{PhCN})_{2}\right] \quad\left[1-(\mathrm{PhCN})_{2}\right]$. The treatment of 1-(solv)(solv') with the suitable ligand (dppm or $\left.\mathrm{Cl}^{-}\right)$permitted the isolation of $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm})\right] \quad$ (2) and $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\mathrm{PPh}_{2} \mathrm{O}\right) \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}(\mu-\mathrm{Cl})_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-$
$\left.\mathrm{PPh}_{2} \mathrm{O}\right) \operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ ] (4), the latter being in fact a mixture of the two possible isomers 4a ( $\mathrm{P}-\mathrm{O}$ ligands in transoid position) and 4b ( $\mathrm{P}-\mathrm{O}$ ligands in cisoid position), as demonstrated by NMR experiments.
The reaction of $\left[\left(R_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm})\right]$ with $\mathrm{AgClO}_{4}$ produces $\left[\left(\mathrm{R}_{\mathrm{F}}\right)_{2} \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{OPPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right) \mathrm{Pt}^{\prime \prime}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime \prime}(\mathrm{dppm}) \mathrm{Ag}\left(\mathrm{ClO}_{4}\right)\right]$ (3), a complex in which the starting " $\left(\mathrm{Pt}_{3} \mathrm{dppm}\right)$ "complex 2 acts as a bidentate Pt donor ligand towards the silver centre forming two $\mathrm{Pt}-\mathrm{Ag}$ donor-acceptor bonds. Complex 3 is dynamic in solution ( ${ }^{19} \mathrm{~F}$ NMR and ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P}$ HMQC spectra) with the $\mathrm{Ag}\left(\mathrm{ClO}_{4}\right)$ moiety passing from one face to the other of the complex. It is also remarkable that no evidence, either in solid state or in solution, of any other behaviour of $\mathrm{Ag}^{+}$towards complex 2 (oxidation of some the Pt centres or insertion reactions into PtO or Pt-P bonds that are also well-documented in phosphanido platinum complexes) was obtained.
Additionally, the " $\mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}$ " bridging system in the mixture of $\mathbf{4 a} \mathbf{a} \mathbf{4 b}$ is easily eliminated by reaction with $\mathrm{T}(\mathrm{acac})$ or split by treatment with one equivalent of $\mathrm{PPh}_{3}$. In this case, a mixture of the two trinuclear isomers $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu\right.$ -$\left.\left.\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right](\mathbf{6 a + 6 b})$ with the chloro ligand located syn (6a) or anti (6b) to the $\mathrm{PPh}_{2} \mathrm{O}^{-}$group are obtained.
The XRD studies of $\mathbf{1 , 2 , 3 , 4 a , 5 , 6 a}$ show that no important differences are observed in the structures of the trinuclear fragment " $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{\prime}$, which forms part of all of them.
Finally, the experiments designed for the atom, to eliminate one of the ligands coordinated to it, which were expected to give rise to the formation of a $\mathrm{Pt}^{2}-\mathrm{Pt}^{3}$ bond ( 46 VEC ), resulted in an unprecedented $\mathrm{PPh}_{2} \mathrm{O}^{-} / \mathrm{PPh}_{2}^{-}$reductive coupling with formation of the very unusual trinuclear $\operatorname{Pt}(I I), \operatorname{Pt}(1), \operatorname{Pt}(1)$ complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}^{1}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}^{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}^{3}\left(\mathrm{PPh}_{3}\right)\right]$ (7), displaying two Pt-Pt bonds (44 VEC).

## Experimental

## General procedures and Materials

C, H, N analyses were performed with a Perkin-Elmer2400 CHNS/O Series II microanalyzer. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR spectrometer (ATR in the range $4000-200 \mathrm{~cm}^{-1}$ ). Multinuclear NMR spectra were recorded with a Bruker Avance 400 spectrometer ( 400 MHz for ${ }^{1} \mathrm{H}$ ) at 298 K ; chemical shifts are reported in ppm referenced to $\mathrm{SiMe}_{4}$ for ${ }^{1} \mathrm{H}, \mathrm{CFCl}_{3}$ for ${ }^{19} \mathrm{~F}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ and $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ for ${ }^{195} \mathrm{P}$. Literature methods were used to prepare the starting materials $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}\left(\mathrm{NCCH}_{3}\right)_{2}\right]^{11} \quad$ and $\left[\mathrm{PPh}_{3} \mathrm{H}\right]\left[\mathrm{ClO}_{4}\right]$. ${ }^{59}$

## Synthesis

Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only small amounts of material should be prepared, and they should be handled with great caution.
Synthesis of $\quad\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\mathbf{P P h}_{2}\right)_{2} \mathbf{P t}($ solv)(solv')] [1-(solv)(solv')]. To a yellow solution of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\mathrm{PPh})_{2} \mathrm{Pt}\left(\mathrm{NCCH}_{3}\right)_{2}\right]$ (A) $(0.250 \mathrm{~g}, 0.15$ mmol ) in acetone ( 10 mL ) and acetonitrile ( 5 mL ), $\mathrm{AgClO}_{4}$ $(0.060 \mathrm{~g}, 0.30 \mathrm{mmol})$ was added. The mixture was stirred in the dark at room temperature for 4 h following which it was filtered through celite and the resulting orange solution evaporated to dryness. Yield: 0.204 g of 1 -(solv)(solv'). The obtained powder was shown to be a mixture of solvento species containing $\mathrm{H}_{2} \mathrm{O}$, acetone or acetonitrile bonded to $\mathrm{Pt}^{3}$. By dissolving 1-(solv)(solv') in benzonitrile the mixture was quantitatively converted into the bis-benzonitrile species of formula $\quad\left[\left(R_{\mathrm{F}}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{Ph}_{2} \mathrm{PO}\right)\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{PhCN})_{2}\right] \quad[1-$ $(\mathrm{PhCN})_{2}$ ] which was characterised in solution by NMR (in benzonitrile) and ESI-MS (in $\mathrm{CH}_{3} \mathrm{OH}$ ).
HRMS(+), exact mass for the cation $\left[\mathrm{C}_{67} \mathrm{H}_{45} \mathrm{~F}_{10} \mathrm{NNaOP}_{4} \mathrm{Pt}_{3}\right]^{+}$: 1801.1213. Measured $\mathrm{m} / \mathrm{z}: 1801.1046,\left[\mathrm{M}-\mathrm{PhCN}+\mathrm{Na}^{+}{ }^{+} .{ }^{1} \mathrm{H}\right.$ NMR (PhCN, $298 \mathrm{~K}, 400 \mathrm{MHz}$ ): $\delta 7.94$ ( $\mathrm{m}, \mathrm{o}-\mathrm{Ph}$ bonded to $\mathrm{P}^{3}$ ), 7.63-7.04 (m, Ph). ${ }^{19}$ F NMR (PhCN, $298 \mathrm{~K}, 376.5 \mathrm{MHz}$ ): $\delta-114.4$ (broad, $2 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=283 \mathrm{~Hz}$ ), -114.8 (broad, $2 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=329$ $\mathrm{Hz}),-164.8(\mathrm{~m}, 2 \mathrm{~m}-\mathrm{F}),-165.3(\mathrm{~m}$, overlapped $2 \mathrm{~m}-\mathrm{F}+1 \mathrm{p}-\mathrm{F}),-$ $166.0\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19 \mathrm{~Hz}, 1 \mathrm{p}-\mathrm{F}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(\mathrm{PhCN}, 298 \mathrm{~K}, 161$ $\mathrm{MHz}): \delta 130.2\left(\right.$ broad s, $\left.\mathrm{P}^{1},{ }^{1} \mathrm{~J}_{\mathrm{P}(1), \mathrm{Pt}(1)}=2914 \mathrm{~Hz}\right), 13.6($ broad d, $\left.\mathrm{P}^{2},{ }^{2} J_{\mathrm{P}(2), \mathrm{P}(3)}=325 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(1)}=1809 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{P}(2)}=1906 \mathrm{~Hz}\right)-$ $141.3\left(\mathrm{~d}, \mathrm{P}^{4},{ }^{2} \mathrm{~J}_{\mathrm{P}(4), \mathrm{P}(3)}=166 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(2)}=3270 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{P}(3)}=\right.$ $2576 \mathrm{~Hz}),-150.0\left(\mathrm{dd}, \mathrm{P}^{3},{ }^{2} \mathrm{~J}_{\mathrm{P}(3), \mathrm{P}(2)}=325 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}(3), \mathrm{P}(4)}=166 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{\mathrm{P}(3), \mathrm{P}(2)}=1766 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(3), \mathrm{Pt}(3)}=2374 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt} \mathrm{NMR}(\mathrm{PhCN}, 298$ $\mathrm{K}, 86 \mathrm{MHz}): \delta-3792\left(\mathrm{Pt}^{2}\right),-3875\left(\mathrm{Pt}^{3}\right),-4500\left(\mathrm{Pt}^{1}\right)$.
Synthesis of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{dppm})\right]$ (2). To a yellow solution of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \operatorname{Pt}\left(\mathrm{NCCH}_{3}\right)_{2}\right]$ (A) ( $0.250 \mathrm{~g}, 0.15 \mathrm{mmol}$ ) in acetone ( 10 mL ) and acetonitrile ( 5 mL ), $\mathrm{AgClO}_{4}(0.060 \mathrm{~g}, 0.30 \mathrm{mmol})$ was added. The mixture was stirred in the dark at room temperature for 4 h and then was filtered through celite and the resulting solution was evaporated to ca. 1 mL , $i-\mathrm{PrOH}$ ( 5 mL ) was added. The resulting white solid was dissolved in 20 mL of acetone and bis(diphenylphosphanyl)methane (dppm) ( $0.059 \mathrm{~g}, 0.15 \mathrm{mmol}$ ) was added. The mixture was stirred at
room temperature for 1 h . The resulting yellow solution was evaporated to ca. 1 mL and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added. Complex 2 crystallised as a yellow solid, which was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 2 \mathrm{~mL})$ and vacuum-dried. Yield: $0.233,81 \%$. Anal. Found (Calcd for $\mathrm{C}_{85} \mathrm{H}_{62} \mathrm{~F}_{10} \mathrm{OP}_{6} \mathrm{Pt}_{3}$ ): $\mathrm{C}, 49.52$ (49.55); $\mathrm{H}, 2.98$ (3.03). IR ( $\mathrm{cm}^{-1}$ ): 951 (s), 781 (m, d), $\mathrm{C}_{6} \mathrm{~F}_{5}{ }^{60} 689$ ( s$), 496$ (s) (dppm), $v\left(\mathrm{PPh}_{2}-\mathrm{O}\right)$ should appear in the $1025(\mathrm{~m})-998(\mathrm{~m})$ region ${ }^{61-63}$ however, internal absorptions of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups preclude unambiguous assignment of this absorption.
HRMS(+), exact mass for the cation $\left[\mathrm{C}_{85} \mathrm{H}_{63} \mathrm{~F}_{10} \mathrm{OP}_{6} \mathrm{Pt}_{3}\right]^{+}$: 2060.2185. Measured $m / z:$ 2060.1873, $[\mathrm{M}+\mathrm{H}]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 7.60-6.53(\mathrm{~m}, \mathrm{Ph}, 60 \mathrm{H}), 4.48(\mathrm{dt}$, $\left.{ }^{2} J_{\mathrm{H}-\mathrm{H}}=66 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=10 \mathrm{~Hz}, \mathrm{CH} \mathrm{dppm}, 1 \mathrm{H}\right), 4.44$ (broad dt, ${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=$ $66 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}-\mathrm{P}}=10 \mathrm{~Hz}, \mathrm{CH}$ dppm, 1 H ). ${ }^{19} \mathrm{~F}$ NMR (acetone- $d_{6}, 298$ $\mathrm{K}, 376.5 \mathrm{MHz}): \delta-115.1\left(\mathrm{~m}, 4\right.$ overlapped $\left.o-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{pt}} \approx 320 \mathrm{~Hz}\right)$, $167.0(\mathrm{~m}, 2 \mathrm{~m}-\mathrm{F}),-167.5(\mathrm{~m}, 2 \mathrm{~m}-\mathrm{F}),-167.7\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 \mathrm{p}-\right.$ F), $\left.-168.3\left(\mathrm{t},{ }^{3} J_{\mathrm{F}, \mathrm{F}}=19 \mathrm{~Hz}, 1 p-\mathrm{F}\right) .{ }^{31} \mathrm{P}_{\{ }{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl} 2,298 \mathrm{~K}\right.$, $161 \mathrm{MHz}): \delta 127.9\left(\mathrm{~s}, \mathrm{P}^{1},{ }^{1} \mathrm{~J}_{\mathrm{P}(1), \mathrm{Pt}(1)}=2925 \mathrm{~Hz}\right), 13.8$ (broad d, $\mathrm{P}^{2}$, $\left.{ }^{2} J_{P(2), P(3)}=307 \mathrm{~Hz},{ }^{1} J_{P(2), P \mathrm{P}(1)}=1868 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(2)}=1890 \mathrm{~Hz}\right),-28.3$ $\left(d d, P^{5},{ }^{2} J_{P(5), P(4)}=323 \mathrm{~Hz},{ }^{2} J_{P(5), P(6)}=23 \mathrm{~Hz},{ }^{1} J_{P(5), P(3)}=1740 \mathrm{~Hz}\right),-$ $30.5\left(\mathrm{~m}, \mathrm{P}^{6},{ }^{2} J_{\mathrm{P}(6), \mathrm{P}(3)}=284 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(6), \mathrm{P}(5)}={ }^{2} J_{\mathrm{P}(6), \mathrm{P}(2)}=23 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{\mathrm{P}(5), \mathrm{P}(3)}=1550 \mathrm{~Hz}\right),-134.2\left(\mathrm{dd}, \mathrm{P}^{4},{ }^{2} \mathrm{~J}_{\mathrm{P}(4), \mathrm{P}(5)}=323 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(3)}=\right.$ $\left.161 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{Pt}(2)}=3070 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(3)}=1928 \mathrm{~Hz}\right),-142.4\left(\mathrm{~m}, \mathrm{P}^{3}\right.$, ${ }^{2} J_{P(3), P(6)}=343 \mathrm{~Hz},{ }^{2} J_{P(3), P(2)}=307 \mathrm{~Hz},{ }^{2} J_{P(3), P(4)}=161 \mathrm{~Hz},{ }^{1} J_{P(3), P(2)} \approx$ $\left.{ }^{1} \mathrm{~J}_{\mathrm{P}(3), \mathrm{Pt}(3)} \approx 1680 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt} \operatorname{NMR}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}, 298 \mathrm{~K}, 86 \mathrm{MHz}\right): \delta-$ $3584\left(\mathrm{Pt}^{2}\right),-4027\left(\mathrm{Pt}^{3}\right),-4461\left(\mathrm{Pt}^{1}\right)$.

## Synthesis of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{dppm}) \mathrm{Ag}\left(\mathrm{OClO}_{3}\right)\right]$ (3)

To a yellow solution of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \operatorname{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{dppm})\right]$ (2) $(0.050 \mathrm{~g}, 0.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, $\mathrm{AgClO}_{4}(0.005 \mathrm{~g}, 0.02 \mathrm{mmol})$ was added. The mixture was stirred at 253 K in the dark for 6 h . The resulting orange solution was evaporated to dryness and the residue was washed with cold toluene. Complex $\mathbf{3}$ was obtained as a yellow solid, which was filtered, washed with cold toluene ( $2 \times 2 \mathrm{~mL}$ ) and vacuum-dried. Yield: 0.033, 61 \%. Anal. Found (Calcd for $\mathrm{C}_{85} \mathrm{H}_{62} \mathrm{AgClF}_{10} \mathrm{O}_{5} \mathrm{P}_{6} \mathrm{Pt}_{3}$ ): C, 45.00 (45.02); $\mathrm{H}, 2.72$ (2.76). IR ( $\mathrm{cm}^{-}$ ${ }^{1}$ ): 951 (s) 784 (s) ( $\mathrm{C}_{6} \mathrm{~F}_{5}$ ), 689 (f), 500 (f) (dppm), 1092 (f), 620 (f) $\mathrm{ClO}_{4}$. $\mathrm{HRMS}(+)$, exact mass for the cation $\left[\mathrm{C}_{85} \mathrm{H}_{62} \mathrm{AgF}_{10} \mathrm{OP}_{6} \mathrm{Pt}_{3}\right]^{+}$: 2168.1070. Measured $m / z:$ 2168.1084, $\left[\mathrm{M}-\mathrm{ClO}_{4}\right]^{+} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 258 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta 7.89-5.74(\mathrm{~m}, \mathrm{Ph}, 60 \mathrm{H}), 4.46(\mathrm{~m}$, $\mathrm{CH}_{2}$ dppm, 2 H ). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 258 \mathrm{~K}, 376.5 \mathrm{MHz}\right): \delta-116.2$ $\left(\mathrm{m}, 2 \mathrm{o}-\mathrm{F},{ }^{3} J_{\mathrm{F}, \mathrm{Pt}}=320 \mathrm{~Hz}\right), \delta-116.6\left(\mathrm{~m}, 2 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=352 \mathrm{~Hz}\right),-$ $165.7(\mathrm{~m}, 2 \mathrm{~m}-\mathrm{F}),-166.0\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 \mathrm{p}-\mathrm{F}\right),-166.3(\mathrm{~m}, 2 \mathrm{~m}-$ $\mathrm{F}),-166.8\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19 \mathrm{~Hz}, 1 \mathrm{p}-\mathrm{F}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 253 \mathrm{~K}\right.$, $161 \mathrm{MHz}): \delta 123.5\left(\mathrm{~s}, \mathrm{P}^{1},{ }^{1} \mathrm{~J}_{\mathrm{P}(1), \mathrm{Pt}(1)}=2435 \mathrm{~Hz}\right), 15.1\left(\mathrm{~d}, \mathrm{P}^{2}\right.$, $\left.{ }^{2} J_{\mathrm{P}(2), \mathrm{P}(3)}=287 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(1)}=1271 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{P}(2)}=1376 \mathrm{~Hz}\right),-27.5$ (ddd, $\mathrm{P}^{5},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(4)}=331 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(6)}=35 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(3)}=21 \mathrm{~Hz}$, $\left.{ }^{1} J_{P(5), P \mathrm{Pt}(3)}=1663 \mathrm{~Hz}\right),-28.9\left(\mathrm{~m}, \mathrm{P}^{6},{ }^{2} \mathrm{~J}_{\mathrm{P}(6), \mathrm{P}(3)}=299 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}(6), \mathrm{P}(5)}=35\right.$ $\left.\mathrm{Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(6), \mathrm{P}(3)}=1784 \mathrm{~Hz}\right),-132.3\left(\mathrm{dd}, \mathrm{P}^{4},{ }^{2} \mathrm{~J}_{\mathrm{P}(4), \mathrm{P}(5)}=331 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(3)}=161 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(2)}=2784 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{P}(3)}=1972 \mathrm{~Hz}\right),-$ $145.9\left(\mathrm{ddd}, \mathrm{P}^{3},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(2)}=287 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(6)}=299 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(4)}=\right.$ $\left.161 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(3), \mathrm{P}(2)} \approx{ }^{1} \mathrm{~J}_{\mathrm{P}(3), \mathrm{Pt}(3)} \approx 1700 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 253 \mathrm{~K}\right.$, $86 \mathrm{MHz}): \delta-3022\left(\mathrm{Pt}^{2}\right),-4058\left(\mathrm{Pt}^{3}\right),-3954\left(\mathrm{Pt}^{1}\right)$.

Synthesis of $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\right.$ $\mathrm{Cl})_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](4 \mathrm{a}-\mathrm{b}) .}$

To a yellow solution of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\right.$ $\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{NCCH}_{3}\right)_{2}$ ] (A) ( $\left.0.250 \mathrm{~g}, 0.15 \mathrm{mmol}\right)$ in acetone ( 10 mL ) and acetonitrile ( 5 mL ), $\mathrm{AgClO}_{4}(0.060 \mathrm{~g}, 0.30 \mathrm{mmol})$ was added. The mixture was stirred in the dark at room temperature for 4 h and then was filtered through celite. The resulting solution was evaporated to ca. 1 mL and $i$-PrOH (5 mL ) was added. The white solid obtained was dissolved in 40 mL of acetone and $\mathrm{NBu}_{4} \mathrm{Cl}(0.042 \mathrm{~g}, 0.15 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 24 h . The solution was evaporated to ca. 1 mL and $i-\mathrm{PrOH}(5 \mathrm{~mL})$ was added. A mixture of two isomers (4a-b) crystallised as a white solid, which was filtered, washed with $i$ - $\operatorname{PrOH}(2 \times 2 \mathrm{~mL})$ and vacuum-dried. Yield: 0.189, 69 \%. Anal. Found (Calcd for $\mathrm{C}_{152} \mathrm{H}_{152} \mathrm{Cl}_{2} \mathrm{~F}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}_{8} \mathrm{Pt}_{6}$ ): C, 46.69 (46.71); H, 3.92 (3.92); N , 0.71 (0.72). IR ( $\mathrm{cm}^{-1}$ ): 950 (s), 779 (s) $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right), 880$ (d) $\left(\mathrm{NBu}_{4}^{+}\right)$. HRMS(-), exact mass for the anion $\left[\mathrm{C}_{60} \mathrm{H}_{40} \mathrm{ClF}_{10} \mathrm{OP}_{4} \mathrm{Pt}_{3}\right]^{+}$: 1711.0507. Measured $m / z$ : 1711.0381, $[\mathrm{M} / 2]^{-} .{ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 298 \mathrm{~K}, 400 \mathrm{MHz}$ ): $\delta 7.87$ and 7.77 (4a-b, partially overlapped dd, $o$-Ph bonded to $\mathrm{P}^{3},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=11 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8 \mathrm{~Hz}$ ), 7.40-6.54 ( $\mathrm{m}, \mathrm{Ph}$ ), $3.44\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{~N} \mathrm{NBu}{ }_{4}{ }^{+}\right.$), $1.83\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$, $\left.\mathrm{NBu}_{4}{ }^{+}\right), 1.43\left(\mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{NBu}_{4}{ }^{+},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}\right), 0.97\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$, $\mathrm{NBu}_{4}{ }^{+},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}$ ). ${ }^{19} \mathrm{~F}$ NMR (acetone- $d_{6}, 298 \mathrm{~K}, 376.5 \mathrm{MHz}$ ): $\delta-114.81$ and -114.84 ( $\mathbf{4 a - b}, \mathrm{m}, 2$ overlapped $o-\mathrm{F},{ }^{2} J_{\mathrm{F}, \mathrm{Pt}} \approx 272$ $\mathrm{Hz}),-115.07\left(4 \mathbf{b}, \mathrm{~m}, 1 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=23 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{P}}=11 \mathrm{~Hz},{ }^{2} J_{\mathrm{F}, \mathrm{Pt}}=340\right.$ $\mathrm{Hz}),-115.13\left(4 \mathrm{a}, \mathrm{m}, 1 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=23 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{P}}=11 \mathrm{~Hz},{ }^{2} J_{\mathrm{F}, \mathrm{Pt}}=348\right.$ $\mathrm{Hz}),-167.1$ (4b, m, $2 m-F),-167.5$ (4a, m, $2 m-F),-168.1$ (4a-b, $\left.\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19 \mathrm{~Hz}, 1 p-\mathrm{F}\right),-168.6\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19 \mathrm{~Hz}, 1 p-\mathrm{F}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone- $\left.d_{6}, 298 \mathrm{~K}, 161 \mathrm{MHz}\right): \delta 124.9\left(4 \mathrm{a}-\mathrm{b}, \mathrm{P}^{1},{ }^{3} \mathrm{~J}_{\mathrm{P}(1), \mathrm{P}(4)}=14\right.$ $\left.\mathrm{Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(1), \mathrm{Pt}(1)}=2928 \mathrm{~Hz}\right), 13.0\left(4 \mathbf{a}-\mathbf{b}, \mathrm{P}^{2},{ }^{2} J_{\mathrm{P}(2), \mathrm{P}(3)}=321 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(2)}=1872,{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(1)}=1766 \mathrm{~Hz}\right),-138.5$ and -138.7 (4a-b, overlapped d, $\mathrm{P}^{4},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(3)}=178 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{Pt}(3)}=2840 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{Pt}(2)}$ $=3200 \mathrm{~Hz}$ ), -147.9 and -148.2 (4a-b, overlapped ddd, $\mathrm{P}^{3}$, ${ }^{2} J_{\mathrm{P}(3), \mathrm{P}(2)}=321 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(4)}=178 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(1)}=14 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(2)}=$ $1736,{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(3)}=2729 \mathrm{~Hz}$ ). ${ }^{195} \mathrm{Pt}$ NMR (acetone- $d_{6}, 298 \mathrm{~K}, 86$ $\mathrm{MHz}): \delta-3495\left(\mathrm{Pt}^{3}\right),-3789\left(\mathrm{Pt}^{2}\right),-4515\left(\mathrm{Pt}^{1}\right)$.
Synthesis of $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\right.$ acac $\left.)\right]$ (5)

To a colourless solution of $4 \mathbf{a}-\mathrm{b}$ ( $0.100 \mathrm{~g}, 0.02 \mathrm{mmol}$ ) in acetone ( 40 mL ), $\mathrm{Tl}(\mathrm{acac})(0.015 \mathrm{~g}, 0.05 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 24 h and filtered through celite. The solution was evaporated to ca. 1 mL and $i$ $\mathrm{PrOH}(5 \mathrm{~mL})$ was added. Complex 5 crystallised as a white solid, which was filtered, washed with $i-\mathrm{PrOH}(2 \times 2 \mathrm{~mL})$ and vacuum-dried. Yield: $0.05 \mathrm{~g}, 48 \%$ Anal. Found (Calcd for $\mathrm{C}_{81} \mathrm{H}_{83} \mathrm{~F}_{10} \mathrm{NO}_{3} \mathrm{P}_{4} \mathrm{Pt}_{3}$ ): C, 48.22 (48.22); H, 4.15 (4.15); $\mathrm{N}, 0.69$ (0.69). IR (cm ${ }^{-1}$ ): 1500 (s) acac.; 951 (s), 792 (s), 780 (sh) $\mathrm{C}_{6} \mathrm{~F}_{5}$; 880 (d) $\left(\mathrm{NBu}_{4}{ }^{+}\right)$. HRMS(-), exact mass for the anion $\left[\mathrm{C}_{65} \mathrm{H}_{47} \mathrm{~F}_{10} \mathrm{O}_{3} \mathrm{P}_{4} \mathrm{Pt}_{3}\right]^{-}: 1774.1262$. Measured $\mathrm{m} / \mathrm{z}: 1774.1307$ [ $\mathrm{M}^{-}$ ]. ${ }^{1} \mathrm{H}$ NMR (acetone- $d_{6}, 298 \mathrm{~K}, 400 \mathrm{MHz}$ ): $\delta 8.06$ (dd, ${ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.9$ $\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=10.8 \mathrm{~Hz}$, ortho-Ph bonded to $\left.\mathrm{P}^{3}, 4 \mathrm{H}\right) 7.46-7.36(\mathrm{~m}$, ortho- Ph bonded to $\mathrm{P}^{1}+$ ortho- Ph bonded to $\mathrm{P}^{4}, 8 \mathrm{H}$ ), 7.30-7.12 ( m, para- Ph bonded to $\mathrm{P}^{1}$, para- Ph bonded to $\mathrm{P}^{3}$, para- Ph bonded to $\mathrm{P}^{4}$, meta-Ph bonded to $\mathrm{P}^{3}, 10 \mathrm{H}$ ), 7.05 (m, ortho- Ph bonded to $P^{2}+$ meta- Ph bonded to $\mathrm{P}^{1}+$ meta- Ph bonded to $\mathrm{P}^{4}$,

12 H ), 6.87 (t, para-Ph bonded to $\left.\mathrm{P}^{2},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right) 6.61$ (td, meta-Ph bonded to $\mathrm{P}^{2},{ }^{4} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=1.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 4 \mathrm{H}$ ),
 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{NBu}_{4}{ }^{+}$), 1.74 (s, $3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}, \mathrm{acac}$ ), 1.51 (s, $3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}$, acac), $1.43\left(\mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{NBu}_{4}{ }^{+},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}\right), 0.98\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right.$, $\mathrm{NBu}_{4}{ }^{+}{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}$ ). ${ }^{19} \mathrm{~F} \mathrm{NMR}$ (acetone- $d_{6}, 298 \mathrm{~K}, 376.5 \mathrm{MHz}$ ): $\delta$ from -114.6 to -115.0 (m, 4 overlapped o-F), -167.1 (ddd, $\left.{ }^{2} J_{F, F}=23 \mathrm{~Hz},{ }^{3} J_{F, F}=20 \mathrm{~Hz},{ }^{4} J_{F, P}=8 \mathrm{~Hz}, 2 \mathrm{~m}-\mathrm{F}\right),-167.4\left(\mathrm{ddd},{ }^{3} J_{F, F}=\right.$ $\left.22 \mathrm{~Hz},{ }^{3} J_{F, F}=20 \mathrm{~Hz},{ }^{4} J_{F, P}=11 \mathrm{~Hz}, 2 \mathrm{~m}-\mathrm{F}\right),-168.1\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1\right.$ $p-F),-168.7\left(\mathrm{t},{ }^{2} J_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 p-\mathrm{F}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone- $d_{6}$, $298 \mathrm{~K}, 161 \mathrm{MHz}): \delta 125.3\left(\mathrm{~m}, \mathrm{P}^{1},{ }^{1} \mathrm{~J}_{\mathrm{P}(1), \mathrm{Pt}(1)}=2937 \mathrm{~Hz}\right), 13.9(\mathrm{~d}$, $\left.\mathrm{P}^{2},{ }^{2} J_{\mathrm{P}(2), \mathrm{P}(3)}=320 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(1)}=1869 \mathrm{~Hz}{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(2)}=1750 \mathrm{~Hz}\right),-$ $142.9\left(\mathrm{~d}, \mathrm{P}^{4},{ }^{2} \mathrm{~J}_{\mathrm{P}(4), \mathrm{P}(3)}=171 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(2)}=3189 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(3)}=\right.$ 2832 Hz ), -150.8 (ddd, $\mathrm{P}^{3},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(2)}=320 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(4)}=171 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(1)}=16 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(2)}=1843 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(3)}=2636 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt}$ NMR (acetone $\left.-d_{6}, 298 \mathrm{~K}, 86 \mathrm{MHz}\right): \delta-3310\left(\mathrm{Pt}^{3}\right),-3824\left(\mathrm{Pt}^{2}\right),-$ 4509 ( $\mathrm{Pt}^{1}$ ).

## Synthesis of $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right](6 \mathrm{a}-\mathrm{b})$.

To a colourless solution of the mixture of isomers $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right] \quad$ (4a-b) $\quad(0.150 \mathrm{~g}, 0.38$ $\mathrm{mmol})$ in acetone ( 40 mL ), $\mathrm{PPh}_{3}(0.020 \mathrm{~g}, 0.77 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 24 h . The resulting solution was evaporated to ca. 1 mL and $i-\mathrm{PrOH}$ ( 5 mL ) was added. A mixture of complexes ( $\mathbf{6 a - b}$, ) crystallised as a white solid, which was filtered, washed with $i-\mathrm{PrOH}(2 \times 2$ mL ) and vacuum-dried. Yield: 0.124, 73 \%. Anal. Found (Calcd for $\mathrm{C}_{94} \mathrm{H}_{91} \mathrm{ClF}_{10} \mathrm{NOP}_{5} \mathrm{Pt}_{3}$ ): C, 50.97 (50.94); $\mathrm{H}, 4.13$ (4.14); N , 0.62 (0.63). IR ( $\mathrm{cm}^{-1}$ ): 951 ( s$), 781$ (s) $\mathrm{C}_{6} \mathrm{~F}_{5} ; 880$ (d) $\left(\mathrm{NBu}_{4}{ }^{+}\right)$. HRMS(-), exact mass for the anion $\left[\mathrm{C}_{78} \mathrm{H}_{55} \mathrm{ClF}_{10} \mathrm{OP}_{5} \mathrm{Pt}_{3}\right]^{-}$: 1973.1434. Measured $m / z: 1973.1470[\mathrm{M}]^{-1}{ }^{1} \mathrm{H}$ NMR (acetone$\left.d_{6}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right)$ : $\delta$ from 8.14 to $6.50(\mathrm{~m}, \mathrm{Ph}), 3.42\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ $\mathrm{NBu}_{4}{ }^{+}$), $1.81\left(\mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}, \mathrm{NBu}_{4}{ }^{+}\right), 1.41\left(\mathrm{~m}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{NBu}_{4}{ }^{+},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=7.3 \mathrm{~Hz}$ ), $0.96\left(\mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}, \mathrm{NBu}_{4}{ }^{+},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}$ (acetone- $d_{6}, 298 \mathrm{~K}, 376.5 \mathrm{MHz}$ ): $\delta$ from -114.4 to $-115.3(\mathrm{~m}$, overlapped o-F, ${ }^{3} J_{F, P t} \approx 340 \mathrm{~Hz}$ ), -167.2 (m, overlapped $\left.m-F\right)$, $167.5\left(\mathrm{~m},{ }^{3} J_{\mathrm{F}, \mathrm{F}}=23 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=19 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{P}}=11 \mathrm{~Hz}\right.$, overlapped m F), -168.2 ( $\left.\mathrm{t},{ }^{2} J_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 p-\mathrm{F}\right),-168.3\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 p-\mathrm{F}\right),-$ $168.8\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 \mathrm{p}-\mathrm{F}\right),-168.9\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}, 1 \mathrm{p}-\mathrm{F}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (acetone $-d_{6}, 298 \mathrm{~K}, 161 \mathrm{MHz}$ ): 6a: $\delta 122.6\left(\mathrm{~m}, \mathrm{P}^{1}\right.$, $\left.{ }^{1} J_{P(1), P t(1)}=2937 \mathrm{~Hz}\right), 25.9\left(\mathrm{dd}, \mathrm{P}^{5},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(4)}=339 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(4)} 3 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{\mathrm{P}(5), \mathrm{Pt}(3)}=2089 \mathrm{~Hz}\right), 15.2\left(\mathrm{~d}, \mathrm{P}^{2},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(4)}=303 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(2), \mathrm{Pt}(1)}=\right.$ $\left.1730 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(2), \mathrm{Pt}(2)}=1840 \mathrm{~Hz}\right),-151.5\left(\mathrm{~d}, \mathrm{P}^{4},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(3)}=185 \mathrm{~Hz}\right.$, $\left.{ }^{1} J_{\mathrm{P}(4), \mathrm{Pt}(2)}=3082 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(3)}=2762 \mathrm{~Hz}\right),-158.9$ (dddd, $\mathrm{P}^{3}$, ${ }^{2} J_{\mathrm{P}(3), \mathrm{P}(5)}=339 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(2)}=303 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(4)}=185 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(1)}=$ $\left.12 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(2)}=1714 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(3)}=1816 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt} \mathrm{NMR}$ (acetone $\left.-d_{6}, 298 \mathrm{~K}, 86 \mathrm{MHz}\right): \delta-3674\left(\mathrm{Pt}^{2}\right),-4006\left(\mathrm{Pt}^{3}\right),-4522$ $\left(\mathrm{Pt}^{1}\right) .6 \mathrm{~b}: \delta 127.3\left(\mathrm{~m}, \mathrm{P}^{1},{ }^{1} \mathrm{~J}_{\mathrm{P}(1), \mathrm{Pt}(1)}=2934 \mathrm{~Hz}\right), 23.7\left(\mathrm{~m}, \mathrm{P}^{5}\right.$, $\left.{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(4)}=379 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}(5), \mathrm{P}(3)}=13 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(5), \mathrm{Pt}(3)}=1970 \mathrm{~Hz}\right), 11.3(\mathrm{~d}$, $\left.\mathrm{P}^{2},{ }^{2} \mathrm{~J}_{\mathrm{P}(5), \mathrm{P}(4)}=319 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(1)}=1737,{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(2)}=1832 \mathrm{~Hz}\right),-$ 141.2 (ddd, $\mathrm{P}^{4},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(5)}=379 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(3)}=187 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}(4), \mathrm{P}(1)}=11$ $\left.\mathrm{Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(2)}=2974 \mathrm{~Hz},{ }^{1} \mathrm{~J}_{\mathrm{P}(4), \mathrm{Pt}(3)}=1910 \mathrm{~Hz}\right),-153.0$ (ddt, $\mathrm{P}^{3}$, ${ }^{2} J_{P(3), P(2)}=319 \mathrm{~Hz},{ }^{2} J_{P(3), P(4)}=187 \mathrm{~Hz},{ }^{2} J_{P(3), P(5)}={ }^{2} J_{P(3), P(1)}=13 \mathrm{~Hz}$, $\left.{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(2)}=1508 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(3)}=2243 \mathrm{~Hz}\right) .{ }^{195} \mathrm{Pt}$ NMR (acetone- $d_{6}$, $298 \mathrm{~K}, 86 \mathrm{MHz}): \delta-3729\left(\mathrm{Pt}^{2}\right),-4083\left(\mathrm{Pt}^{3}\right),-4506\left(\mathrm{Pt}^{1}\right)$.

Reaction of $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{acac})\right]$ (5) with HCl

To a yellow solution of 5 ( $0.150 \mathrm{~g}, 0.074 \mathrm{mmol}$ ) in acetone (10 $\mathrm{mL})$ was added $0.31 \mathrm{~mL}(0.074 \mathrm{mmol})$ of $\mathrm{HCl}\left(\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}, 0.24\right.$ $\mathrm{M})$. The solution was stirred for 24 h and evaporated to ca. 1 mL and $i-\mathrm{PrOH}(10 \mathrm{~mL})$ was added. A mixture of 4a-b crystallised upon stirring and was filtered off, washed with $i$ $\mathrm{PrOH}(2 \times 1 \mathrm{~mL})$ and vacuum-dried ( $0.072 \mathrm{~g}, 50 \%$ yield).
Synthesis of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)\right]$ (7)

## Method A

To a colourless solution of the mixture of isomers $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right]$ (6ab) $(0.100 \mathrm{~g}, 0.039 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, protected from the light, $\mathrm{AgClO}_{4}(0.009 \mathrm{~g}, 0.039 \mathrm{mmol})$ was added. The mixture was stirred in the dark at room temperature for 5 h . The resulting solution was evaporated to ca. 1 mL and $i-\mathrm{PrOH}$ $(5 \mathrm{~mL})$ was added. Complex 7 crystallised as an orange solid, which was filtered, washed with $i$ - $\operatorname{PrOH}(2 \times 2 \mathrm{~mL})$ and vacuum-dried. Yield: 0.044, 57\%.

## Method B

To a colourless solution of $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{acac})\right]$ (5) $(0.050 \mathrm{~g}, 0.025 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL}), \mathrm{HPPh}_{3} \mathrm{ClO}_{4}(0.009 \mathrm{~g}, 0.025 \mathrm{mmol})$ was added. The colour of the solution changed immediately to dark red and in a few minutes to orange. This mixture was stirred at room temperature for 1 h . The solution was evaporated to ca. 1 mL and $i-\mathrm{PrOH}(5 \mathrm{~mL})$ was added. Complex 7 crystallised as an orange solid, which was filtered, washed with i-PrOH ( $2 \times 2 \mathrm{~mL}$ ) and vacuum-dried. Yield: 0.037, 77\%.
HRMS(+), exact mass for the cation $\left[\mathrm{C}_{78} \mathrm{H}_{55} \mathrm{~F}_{10} \mathrm{OP}_{5} \mathrm{Pt}_{3}\right]^{+}$: 1938.1737. Measured $m / z: 1938.1844[\mathrm{M}]^{+}$. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 952(\mathrm{~s})$, 737 (s) $\mathrm{C}_{6} \mathrm{~F}_{5}$; Anal. Found (Calcd for $\mathrm{C}_{78} \mathrm{H}_{55} \mathrm{~F}_{10} \mathrm{OP}_{5} \mathrm{Pt}_{3}$ ): C, 48.36 (48.33); H, 2.82 (2.86). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, 400 \mathrm{MHz}\right): \delta$ 7.45 (dd, $4 \mathrm{H}, \mathrm{O}-\mathrm{H}$ bonded to $\mathrm{P}^{4},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=12.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}$ ), 7.41 (dd, $4 \mathrm{H}, \mathrm{o}-\mathrm{H}$ bonded to $\mathrm{P}^{1},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=11.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}$ ), $7.32\left(\mathrm{t}, 2 \mathrm{H}, p-\mathrm{H}\right.$ bonded to $\left.\mathrm{P}^{1},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}\right), 7.28(\mathrm{t}, 2 \mathrm{H}, p-\mathrm{H}$ bonded to $\mathrm{P}^{3},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}$ ), 7.18 (pseudo $\mathrm{t}, 4 \mathrm{H}, m-\mathrm{H}$ bonded to $\mathrm{P}^{1},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}$ ), from 7.13 to 6.94 (overlapped, $14 \mathrm{H}, m-\mathrm{H}$ bonded to $\mathrm{P}^{3}, p-\mathrm{H}$ bonded to $\mathrm{P}^{2}, p-\mathrm{H}$ bonded to $\mathrm{P}^{5}, p-\mathrm{H}$ bonded to $\mathrm{P}^{4}, o-H$ bonded to $\mathrm{P}^{3}$ ), 6.88 (pseudo $\mathrm{t}, 4 \mathrm{H}, m-\mathrm{H}$ bonded to $\mathrm{P}^{4}$, ${ }^{3} J_{H, H}=7.5 \mathrm{~Hz}$ ), 6.84 (pseudo $\mathrm{t}, 4 \mathrm{H}, m-\mathrm{H}$ bonded to $\mathrm{P}^{5},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9$ Hz ), 6.82 (pseudo $\mathrm{t}, 4 \mathrm{H}, m-\mathrm{H}$ bonded to $\mathrm{P}^{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}$ ), 6.72 (dd, $4 \mathrm{H}, \mathrm{o}-\mathrm{H}$ bonded to $\mathrm{P}^{2},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=10.4 \mathrm{~Hz}$ ), 6.66 (dd, $4 \mathrm{H}, \mathrm{O}-\mathrm{H}$ bonded to $\mathrm{P}^{5},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{P}}=12.6 \mathrm{~Hz}$ ). ${ }^{19} \mathrm{~F}$ NMR ( $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, 376.5 \mathrm{MHz}\right): \delta-116.7\left(\mathrm{~d}, 2 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=29\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=340 \mathrm{~Hz}\right), \delta-117.0\left(\mathrm{~d}, 2 \mathrm{o}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=32 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=340\right.$ $\mathrm{Hz}), \delta-163.9\left(\mathrm{t}, 1 \mathrm{p}-\mathrm{F}^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20 \mathrm{~Hz}\right),-165.1\left(\mathrm{~m}, 2 \mathrm{~m}-\mathrm{F},{ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=82\right.$ $\mathrm{Hz}),-165.8\left(\mathrm{~m}, 2 \mathrm{~m}-\mathrm{F},{ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{Pt}}=92 \mathrm{~Hz}\right),-166.1\left(\mathrm{t}, 1 \mathrm{p}-\mathrm{F},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=20\right.$
$\mathrm{Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}, 161 \mathrm{MHz}\right): \delta 143.8\left(\mathrm{~m}, \mathrm{P}^{2}\right.$, ${ }^{3} J_{\mathrm{P}(2), \mathrm{P}(5)}=70 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}(2), \mathrm{P}(3)}=41 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(2), \mathrm{P}(4)}=36 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(1)}=$ $\left.1702 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(2), \mathrm{Pt}(2)}=2620 \mathrm{~Hz}\right), 132.3\left(\mathrm{ddd}, \mathrm{P}^{1},{ }^{2} J_{\mathrm{P}(1), \mathrm{P}(4)}=264 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{P}(1), \mathrm{P}(5)} 26 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(1), \mathrm{P}(3)} 14 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(1), \mathrm{Pt}(2)}=3547 \mathrm{~Hz}\right), 109.1$ (dddd, $\mathrm{P}^{3},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(4)}=90 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}(3), \mathrm{P}(2)}=41 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(1)}=14 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(5)}=5$ $\left.\mathrm{Hz},{ }^{1} J_{\mathrm{P}(3), \mathrm{Pt}(3)}=5474 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{Pt}(2)}=205 \mathrm{~Hz}\right), 99.1$ (ddd, $\mathrm{P}^{4}$, ${ }^{2} J_{\mathrm{P}(4), \mathrm{P}(1)}=264 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(3)}=90 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(4), \mathrm{P}(2)}=36 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(4), \mathrm{Pt}(1)}=$ $2652 \mathrm{~Hz}), 24.8$ (ddd, $\mathrm{P}^{5},{ }^{2} J_{\mathrm{P}(5), \mathrm{P}(2)}=70 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{\mathrm{P}(5), \mathrm{P}(1)}=26 \mathrm{~Hz}$, ${ }^{2} J_{\mathrm{P}(5), \mathrm{P}(3)}=5 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(3), \mathrm{P}(1)}=12 \mathrm{~Hz},{ }^{1} J_{\mathrm{P}(5), \mathrm{Pt}(3)}=3623 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}(5), \mathrm{Pt}(2)}=$ $298 \mathrm{~Hz}) .{ }^{195} \mathrm{Pt}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 288 \mathrm{~K}, 86 \mathrm{MHz}\right): \delta-5235\left(\mathrm{Pt}^{1}\right),-$ $5032\left(\mathrm{Pt}^{2}\right),-5183\left(\mathrm{Pt}^{3}\right)$.

## X-ray Structure Determinations

Crystal data and other details of the structure analyses are collected in Tables 4 and 5. Suitable crystals of 1(acetone)( $\left.\mathrm{H}_{2} \mathrm{O}\right) \cdot 2.5$ acetone, 2•0.5acetone, 4a.2acetone•1.5hexane, $\quad \mathbf{3} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 4$ hexane, $\quad \mathbf{5}$-acetone, 6a. $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ and $\mathbf{7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained by slow diffusion of $n$-hexane into acetone (1-(acetone)( $\left.\mathbf{H}_{2} \mathbf{O}\right), 2,4 a$ and 5) or $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3,6 a$ and 7$)$ solutions of the complexes. The crystals were mounted at the end of quartz fibres in a random orientation and held in place with fluorinated oil. In all cases the diffraction data were collected with a Bruker Smart Apex diffractometer. The diffraction frames were integrated using the SAINT package ${ }^{64}$ and corrected for absorption with SADABS. ${ }^{65}$ The structures were solved by direct methods. All non-hydrogen atoms of the complexes were assigned anisotropic displacement parameters and refined without positional constraints. H atoms were added at calculated positions with equivalent isotropic displacement parameters set equal to 1.2 or 1.5 times those of the corresponding parent atoms. Areas of residual electron density were modelled as lattice solvent (1: 3 molecules of acetone, one of them at 0.5 occupancy; 2: a molecule of acetone at 0.5 occupancy; 4a: 2 molecules of acetone at full occupancy and 3 molecules of $n$ hexane at 0.5 occupancy each; 3: a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0.5 occupancy. In addition an analysis of the solvent region has been performed using the SQUEEZE program ${ }^{66}$ and, a a result, $4 n$-hexane molecules have been added to the calculations; 5: a molecule of acetone; 6a: a molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with one of the Cl atoms disordered over two positions at 0.75 and 0.25 occupancy each and 2 water molecules at 0.25 occupancy each; 7: 3 molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at full, 0.5 and 0.5 occupancy respectively ). Final difference electron density maps showed some peaks above 1 e $\AA^{-3}$, all of them are close to the heavy metal atoms with no chemical meaning or in the solvent areas. The structures were refined using the SHELXL-97 program. ${ }^{67}$

## Journal Name

Table 4. Crystal data and structure refinement parameters for $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPh} 2 \mathrm{O}) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\right.$ acetone $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)\right](1 \cdot 2.5$ acetone $\cdot),\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{PPh} 2 \mathrm{O}) \mathrm{Pt}(\mu-\right.$

$\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}\right)_{2}\right] \cdot$ 2acetone $\cdot 1.5$ hexane (4a.2acetone $\cdot 1.5$ hexane $)$.

| Complex formula | 1-2.5acetone $\mathrm{C}_{70.5} \mathrm{H}_{63} \mathrm{~F}_{10} \mathrm{O}_{5.50} \mathrm{P}_{4} \mathrm{Pt}_{3}$ | 2.0.5acetone $\mathrm{C}_{86.5} \mathrm{H}_{65} \mathrm{~F}_{10} \mathrm{O}_{1.50} \mathrm{P}_{6} \mathrm{Pt}_{3}$ | 3•0.5 $\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot 4$ hexane $\mathrm{C}_{109.5} \mathrm{H}_{119} \mathrm{AgCl}_{2} \mathrm{~F}_{10} \mathrm{O}_{5} \mathrm{P}_{6} \mathrm{Pt}_{3}$ | 4a-2acetone $\cdot 1$.5hexane $\mathrm{C}_{83.5} \mathrm{H}_{92.50} \mathrm{ClF}_{10} \mathrm{NO}_{2} \mathrm{P}_{6} \mathrm{Pt}_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{M}_{\mathrm{t}}\left[\mathrm{g} \mathrm{mol}^{-1}\right]$ | 1897.36 | 2089.47 | 2654.91 | 2076.69 |
| T [K] | 100(2) | 100(2) | 200(2) | 100(2) |
| $\lambda$ [Á] | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
| cryst syst | orthorhombic | triclinic | triclinic | triclinic |
| space group | P2(1)2(1)2(1) | P-1 | P-1 | P-1 |
| a [Á] | 15.6938(7) | 13.2595(8) | 14.1168(7) | 11.7673(6) |
| b [Á] | 17.0520(8) | 15.3410(9) | 19.3240(10) | 14.5107(7) |
| c [Á] | 26.2736(12) | 21.3535(13) | 19.3754(10) | 26.1772(13) |
| $\alpha$ [deg] | 90 | 76.5992(8) | 81.887(1) | 97.756(1) |
| 8 [deg] | 90 | 83.0608(8) | 73.116(1) | 95.676(1) |
| $\gamma$ [deg] | 90 | 67.1476(8) | 82.839(1) | 97.024(1) |
| $V\left[\hat{A}^{3}\right]$ | 7031.1(6) | 3891.4(4) | 4987.5(4) | 4365.3(4) |
| Z | 4 | 2 | 2 | 2 |
| $\rho\left[\mathrm{g} \mathrm{cm}^{-3}\right]$ | 1.792 | 1.783 | 1.768 | 1.580 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 6.120 | 5.574 | 4.611 | 4.963 |
| F(000) | 3656 | 2020 | 2622 | 2035 |
| $2 \theta$ range [deg] | 1.51-25.00 | 1.67-25.00 | 1.07-25.00 | 1.53-25.00 |
| no. of reflns collected | 38349 | 29108 | 37463 | 32602 |
| no. of unique reflns | 12365 | 13584 | 17412 | 15258 |
| $R$ (int) | 0.0401 | 0.0618 | 0.0435 | 0.0335 |
| Final R indices [ $1>2 \sigma(\mathrm{I})$ ] | $R 1=0.0426, w R 2=0.0993$ | $R 1=0.0637, w R 2=0.1309$ | $R 1=0.0 .0701, w R 2=0.1627$ | $R 1=0.0469, w R 2=0.1098$ |
| R indices (all data) | $R 1=0.0475, w R 2=0.1018$ | $R 1=0.0979, w R 2=0.1456$ | $\mathrm{R} 1=0.0887, w R 2=0.1706$ | $R 1=0.0657, w R 2=0.1178$ |
| GOF | 1.057 | 1.094 | 1.103 | 1.073 |

Table 5. Crystal data and structure refinement for $\left(\mathrm{NBu}_{4}\right)\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\mathrm{PPh})_{2} \operatorname{Pt}(\mathrm{acac})\right] \cdot$ acetone $(5 \cdot$ acetone $),\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{PPh} 2)\left(\mu-\mathrm{PPh}{ }_{2} \mathrm{O}\right) \mathrm{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\left(\mathbf{6 a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathbf{0} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$ and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mu-\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(7 \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

| Complex | 5-acetone |
| :---: | :---: |
| formula | $\mathrm{C}_{84} \mathrm{H}_{89} \mathrm{~F}_{10} \mathrm{NO}_{4} \mathrm{P}_{4} \mathrm{Pt}_{3}$ |
| $\mathrm{M}_{\mathrm{t}}\left[\mathrm{g} \mathrm{mol}^{-1}\right]$ | 2075.71 |
| T [K] | 100(2) |
| $\lambda$ [ ${ }^{\text {d }}$ ] | 0.71073 |
| cryst syst | triclinic |
| space group | P-1 |
| a [Á] | 12.3303(6) |
| $b$ [Á] | 16.2895(7) |
| c [Á] | 20.5648(9) |
| $\alpha$ [deg] | 81.226(1) |
| 8 [deg] | 82.861(1) |
| $\gamma$ [deg] | 86.775(1) |
| $\checkmark\left[\hat{A}^{3}\right]$ | 4047.6(3) |
| Z | 2 |
| $\rho\left[\mathrm{g} \mathrm{cm}^{-3}\right]$ | 1.703 |
| $\mu\left[\mathrm{mm}^{-1}\right]$ | 5.323 |
| F(000) | 2032 |
| $2 \theta$ range [deg] | 1.50-26.00 |
| no. of reflns collected | 43980 |
| no. of unique reflns | 15829 |
| R (int) | 0.0264 |
| Final R indices $[1>2 \sigma(1)]^{\text {a }}$ | $R 1=0.0254, w R 2=0.0594$ |
| R indices (all data) | $R 1=0.0313, w R 2=0.0626$ |
| GOF on $\mathrm{F}^{2 b}$ | 1.045 |

## Acknowledgements

This work was supported by Ministerio de Economía y Competitividad (MINECO)/FEDER (project number CTQ201235251) and the Gobierno de Aragón (Grupo Consolidado E21: Química Inorgánica y de los Compuestos Organometálicos). We express our grateful acknowledgement to the Politecnico di Bari for its financial support. Finally, we thank Dr. Consuelo Fortuño for her helpful discussions

## Notes and references

§Throughout the paper, the calculated (exact mass) and the experimental (accurate) $m / z$ values have been compared considering the principal ion (which gives the most intense peak) of the isotope pattern.
§§In fact, an equilibrium between $\mathbf{4 a}$ and $\mathbf{4 b}$ was revealed by an ${ }^{1} \mathrm{H}$ EXSY experiment in acetone at 298 K , which can be explained in terms of breaking and re-forming of one of the $\mathrm{Pt}-\mathrm{Cl}$ bonds.
$\S \S \S$ The expected complex should be the one represented in Scheme 5 as $\boldsymbol{\alpha}$.
§§§§ Compound 7 has a total valence electron count of 44, which is consistent with the presence of two Pt-Pt bonds between the Pt centres

| $6 \mathrm{a} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathbf{O} .5 \mathrm{H}_{2} \mathrm{O}$ | $\mathbf{7} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ |
| :---: | :---: |
| $\mathrm{C}_{95} \mathrm{H}_{92} \mathrm{Cl}_{3} \mathrm{~F}_{10} \mathrm{NO}_{1.5} \mathrm{P}_{5} \mathrm{Pt}_{3}$ | $\mathrm{C}_{80} \mathrm{H}_{59} \mathrm{Cl}_{4} \mathrm{~F}_{10} \mathrm{OP}_{5} \mathrm{Pt}_{3}$ |
| 2308.17 | 2108.19 |
| $100(2)$ | $100(2)$ |
| 0.71073 | 0.71073 |
| monoclinic | monoclinic |
| $\mathrm{P} 2_{1} / \mathrm{n}$ | $\mathrm{P} 2_{1} / \mathrm{n}$ |
| $13.1529(8)$ | $15.5689(8)$ |
| $50.083(3)$ | $25.4115(13)$ |
| $13.8499(9)$ | $19.2739(10)$ |
| 90 | 90 |
| $97.620(1)$ | $96.108(1)$ |
| 90 | 90 |
| $9042.8(10)$ | $7582.0(7)$ |
| 4 | 4 |
| 1.695 | 1.847 |
| 4.875 | 5.838 |
| 4524 | 4056 |
| $1.54-25.00$ | $1.54-25.00$ |
| 69176 | 56999 |
| 15937 | 13341 |
| 0.0475 | 0.0573 |
| $R 1=0.0770, w R 2=0.1498$ | $\mathrm{R} 1=0.0616, \mathrm{wR2}=0.1465$ |
| $\mathrm{R} 1=0.0868, \mathrm{wR2}=0.1534$ | $\mathrm{R} 1=0.0786, \mathrm{wR2}=0.1543$ |
| 1.290 | 1.160 |

1. A. Arias, J. Forniés, C. Fortuño, A. Martín, P. Mastrorilli, V. Gallo, M. Latronico and S. Todisco, Eur. J. Inorg. Chem., 2014, 1679-1693.
2. P. Mastrorilli, Eur. J. Inorg. Chem., 2008, 4835-4850 and the references therein.
3. R. Bender, C. Okio, R. Welter and P. Braunstein, Dalton Trans., 2009, 4901-4907.
4. C. Cavazza, F. Fabrizi de Biani, T. Funaioli, P. Leoni, F. Marchetti, L. Marchetti and P. Zanello, Inorg. Chem., 2009,48, 1385-1397.
5. V. Gallo, M. Latronico, P. Mastrorilli, C. F. Nobile, G. P. Suranna, G. Ciccarella and U. Englert, Eur. J. Inorg. Chem., 2005, 4607-4616.
6. M. Latronico, F. Polini, V. Gallo, P. Mastrorilli, B. CalmushiCula, U. Englert, N. Re, T. Repo and M. Raisanen, Inorg. Chem., 2008, 47, 9779-9796.
7. C. Archambault, R. Bender, P. Braunstein and Y. Dusausoy, J. Chem. Soc. Dalton Trans., 2002, 4084-4090
8. A. Albinati, F. Balzanot, F. Fabrizi de Biani, P. Leoni, G. Manca, L. Marchetti, S. Rizzato and U. G. Barreta, Inorg. Chem., 2010, 49, 3714-3720.
9. V. Gallo, M. Latronico, P. Mastrorilli, C. F. Nobile, F. Polini, N. Re and U. Englert, Inorg. Chem., 2008,47, 4785-4795.
10. J. Forniés, C. Fortuño, S. Ibáñez and A. Martín, Inorg. Chem., 2006, 45, 4850-4858.
11. I. Ara, J. Forniés, C. Fortuño, S. Ibáñez, A. Martín, P. Mastrorilli and V. Gallo, Inorg. Chem., 2008, 47, 90699080.
12. A. Arias, J. Forniés, C. Fortuño, S. Ibáñez, A. Martín, P. Mastrorilli, V. Gallo and S. Todisco, Inorg. Chem., 2013, 52, 11398-11408.
13. E. Alonso, J. M. Casas, F. A. Cotton, X. Feng, J. Forniés, C. Fortuño and M. Tomás, Inorg. Chem., 1999, 38, 50345040.
14. I. Ara, N. Chaouche, J. Forniés, C. Fortuño, A. Kribii and A. C. Tsipis, Organometallics, 2006, 25, 1084-1091.
15. L. R. Falvello, J. Forniés, C. Fortuño, F. Durán and A. Martín, Organometallics, 2002, 21, 2226-2234.
16. E. Alonso, J. Forniés, C. Fortuño, A. Martín and A. G. Orpen, Organometallics, 2003, 22, 5011-5019.
17. J. R. Berenguer, N. Chaouche, J. Forniés, C. Fortuño and A. Martín, New J. Chem., 2006, 30, 473-478.
18. J. Forniés, C. Fortuño, R. Gil and A. Martín, Inorg. Chem., 2005, 44, 9534-9541.
19. J. Forniés, C. Fortuño, S. Ibáñez, A. Martín, A. C. Tsipis and C. A. Tsipis, Angew. Chem., Int. Ed., 2005, 44, 2407-2410.
20. J. Forniés, C. Fortuño, S. Ibáñez, A. Martín, P. Romero, P. Mastrorilli and V. Gallo, Inorg. Chem., 2011, 50, 285-298.
21. L. R. Falvello, J. Forniés, C. Fortuño and F. Martínez, Inorg. Chem., 1994, 33, 6242-6246.
22. E. Alonso, J. Forniés, C. Fortuño, A. Martín and A. G. Orpen, Organometallics, 2000, 19, 2690-2697.
23. E. Alonso, J. Forniés, C. Fortuño, A. Martín and A. G. Orpen, Organometallics, 2003, 22, 2723-2728.
24. N. Chaouche, J. Forniés, C. Fortuño, A. Kribii and A. Martín, Journal of Organometallics Chemistry, 2007, 692, 1168-1172.
25. L. R. Falvello, J. Forniés, C. Fortuño, A. Martín and A. P. Martínez-Sariñena, Organometallics, 1997, 16, 58495856.
26. E. Alonso, J. Forniés, C. Fortuño, A. Martín and A. G. Orpen, Chem. Commun., 1996, 231-232.
27. N. Chaouche, J. Forniés, C. Fortuño, A. Kribii, A. Martín, P. Karipidis, A. C. Tsipis and C. A. Tsipis, Organometallics, 2004, 23, 1797-1810.
28. A. Arias, J. Forniés, C. Fortuño, A. Martín, M. Latronico, P. Mastrorilli, S. Todisco and V. Gallo, Inorg. Chem., 2012, 51, 12682-12696.
29. A. Arias, J. Forniés, C. Fortuño, A. Martín, P. Mastrorilli, S. Todisco, M. Latronico and V. Gallo, Inorg. Chem., 2013, 52, 5493-5506.
30. M. Latronico, S. Sánchez, A. Rizzuti, V. Gallo, F. Polini, E. Lalinde and P. Mastrorilli, Dalton Trans., 2013, 42, 25022511.
31. S. Arifhodzic-Radojevic, A. D. Burrows, N. Choi, M. McParthlin, D. M. P. Mingos, S. V. Tarlton and R. Vilar, J. Chem. Soc., Dalton Trans, 1999, 3981-3988.
32. J. Forniés, C. Fortuño, S. Ibáñez, A. Martín, P. Mastrorilli and V. Gallo, Inorg. Chem., 2011, 50, 10798-10809.
33. R. Usón, J. Forniés, F. Martínez, M. Tomás and I. Reoyo, Organometallics, 1983, 2, 1386-1390.
34. R. Usón, J. Forniés, M. Tomás and R. Fandos, Organomet. Chem., 1984, 263, 253-260.
35. J. Vicente, M. T. Chicote, I. Saura-Llamas and M. C. Lagunas, J. Chem. Soc. Chem Commun, 1992, 915-916.
36. J. Forniés, F. Martínez, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 1995, 495, 185-194.
37. J. Vicente, M. T. Chicote, M. D. Abrisqueta, M. C. Ramírez de Arellano, P. G. Jones, M. G. Humphrey, M. P. Cifuentes, M. Samoc and B. Luther-Davies, Organometallics, 2000, 19, 2968.
38. J. Gil-Rubio, V. Camara, D. Bautista and J. Vicente, Organometallics, 2012, 31, 5414.
39. 
40. 
41. E. H. Wong, L. Prasad, E. J. Gabe and F. C. Bradley, J. Organomet. Chem., 1982, 236, 321-331.
F. C. Bradley, E. H. Wong, E. J. Gabe, F. L. Lee and Y. Lepage, Polyhedron, 1987, 6, 1103-1110.
S. Pavlik, K. Mereiter, M. Puchberger and K. Krichner, Organometallics, 2005, 24, 3561-3575.
42. D. J. Irvine, D. J. Cole-Hamilton, J. Barnes and P. K. G. Hodgson, Polyhedron, 1989, 8, 1575-1577.
D. J. Irvine, C. Glidewell, D. J. Cole-Hamilton, J. Barnes and A. Howie, J. Chem. Soc., Dalton Trans, 1991, 1765-1772.
J. Zhu, J.-X. Dai and Q.-F. Zhang, Acta Crytallogr, Sect E, 2007, 63, o363-o364.
43. R. Usón and J. Forniés, Adv. Organomet. Chem., 1988, 28, 219-297 and references given therein.
44. V. Riera, M. A. Ruiz, F. Villafañe, C. Bois and Y. Jeannin, Organometallics, 1993, 12, 124.
45. J. Vicente, M. T. Chicote and P. G. Jones, Inorg. Chem., 1993, 32, 4960.
L. R. Falvello, J. Forniés, J. Gómez, E. Lalinde, A. Martín, M. T. Moreno and J. Sacristán, Chem. Eur. J., 1999, 5, 474491.

SAINT version 5.0 Bruker Analytical X-raySystems, Madison, WI, 1998.
65. G. M. Scheldrick, 1996, SADABS empirical absorption program ed.; University of Gottingen: Germany.
A. L. Spek, Acta Crystallogr, 2015, C71, 9-18.
G. M. Scheldrick, Acta Crytallogr, Sect A, 2008, 64, 112122.

# Polynuclear Platinum Phosphanido/Phosphinito Complexes: Formation of P-O and P-O-P Bonds through Reductive Coupling Processes 

Irene Ara, ${ }^{\mathrm{a}}$ Juan Forniés, ${ }^{\mathrm{a}, *}$ Susana Ibáñez, ${ }^{\mathrm{a}}$ Piero Mastrorilli, ${ }^{\mathrm{b},{ }^{\mathrm{c}} *}$ Stefano Todisco, ${ }^{\mathrm{b}}$ and Vito Gallo ${ }^{\mathrm{b}}$

Table of contents

Reductive $\mathrm{PPh}_{2}^{-} / \mathrm{OH}^{-}$coupling processes allow the preparation of tri- or hexanuclear $\mathrm{Pt}(\mathrm{II})$ complexes with $\mathrm{PPh}_{2}{ }^{-}$and $\mathrm{PPh}_{2} \mathrm{O}^{-}$bridging ligands. By creating unsaturation on the metal skeleton of complexes $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \operatorname{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \operatorname{Pt}(\mu-\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)\right]$ or $\left[\mathrm{NBu}_{4}\right]\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}(\mathrm{acac})\right]$ a new $\mathrm{PPh}_{2}{ }^{-} / \mathrm{OH}^{-}$reductive coupling occurs, resulting in the trinuclear mixed oxidation state $\mathrm{Pt}(\mathrm{II}), \mathrm{Pt}(\mathrm{I}), \mathrm{Pt}(\mathrm{I})$ complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{PPh}_{2} \mathrm{OPPh}_{2}\right) \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)\right]$ featuring two $\mathrm{Pt}-$ Pt bonds.



[^0]:    a. Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis

    Homogénea, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain.
    ${ }^{\text {b. }}$ Dipartimento di Ingegneria Civile, Ambientale del Territorio, Edile e di Chimica DICATECh del Politecnico di Bari, via Orabona 4, I-70125 Bari, Italy.
    c. Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organometallici (ICCOM-CNR), Via Orabona 4, 70125 Bari, Italy.

    + Polynuclear Homo- or Heterometallic Palladium(II)-Platinum(II)
    Pentafluorophenyl Complexes Containing Bridging Diphenylphosphido Ligands. 34. For part 33 see reference 1.
    For crystallographic data in CIF see DOI: 10.1039/x0xx00000x

