This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Tandem Hydrogenation and Condensation of Fluorinated α,β-Unsaturated Ketones With Primary Amines, Catalyzed by Nickel

Nahury Castellanos-Blanco, Marcos Flores-Alamo and Juventino J. García*

Facultad de Química, Universidad Nacional Autónoma de México, Circuito Interior, Ciudad Universitaria, Mexico City 04510, Mexico.

juvent@unam.mx

Keywords: α,β-unsaturated ketones / Fluorinated/ primary amines / nickel / transfer hydrogenation / condensation / tandem.

ABSTRACT

A simple homogeneous catalytic system based on nickel phosphine complexes has been developed for the transfer hydrogenation and condensation of α,β-unsaturated ketones to yield saturated ones and saturated imines using primary amines as hydrogen donors. Thus, a wide range of fluorinated 1,5-diaryl-1,4-pentadiene-3-ones were allowed to react with substituted benzylamines in the presence of the [(dippe)Ni(µ-H)]₂ (dippe = 1,2-bis-(diisopropylphosphino)-ethane) using ethanol as solvent at 180 ºC to give the corresponding saturated carbonyl compounds, here hydrogenation of the C=C bond was preferred over the C=O bond. In the same reaction conditions but using an excess of benzylamine a tandem process is then favoured, starting also with the reduction of the C=C bond followed by a nucleophilic addition of the primary amine to yield valuable saturated imines with good to excellent yields (62 % - 91 %).
INTRODUCTION

The transfer hydrogenation of \(\alpha,\beta\)-enones is an important chemical transformation since these enones can be prepared by simple procedures\(^1\) and the corresponding products from hydrogenation, such as saturated ketones, are of importance in the manufacture of value added chemicals for pharmaceuticals and fragrance industry.\(^2\) The selective reduction of a carbonyl group in \(\alpha,\beta\)-unsaturated compounds has been reported.\(^3\) However, the transfer hydrogenation of the C=C bond in enones is relatively scarce.\(^4\) The \(\alpha,\beta\)-unsaturated ketones are widely used as substrates for a number of reactions, such as hydrogenation,\(^5\) conjugate addition,\(^6\) alkylation,\(^7\) boration,\(^8\) and epoxidation.\(^9\) Specifically, 1,5-diaryl-1,4-pentadiene-3-ones and their analogs can be applied in biochemistry since these compounds have a conjugate system that is expected to be easily oxidized. Their general synthesis essentially involve an aldol condensation of the appropriate aromatic aldehyde with acetone in an alkaline medium at room temperature.\(^1\)^\(^{a}\) Accordingly, 1,5-diaryl-1,4-pentadiene-3-ones are easily available either by isolation from natural products or by methods of classical organic synthesis.\(^1\)^\(^{a}\)-\(^{e}\) Transfer hydrogenation of \(\alpha,\beta\)-unsaturated ketones has been widely studied with a variety of different reducing agents. For example, the use of silanes,\(^10\) alcohols,\(^11\) water,\(^12\) NaBH\(_4\),\(^13\) and Hantzsch esters\(^14\) can promote reduction of \(\alpha,\beta\)-unsaturated carbonyl compounds. However, although amines are one of the most versatile and inexpensive reagents in organic synthesis, relatively little attention has been paid to these compounds as hydrogen transfer reagents, and very few examples using amines in this type of reaction have been reported.\(^15\)-\(^{16}\) In 2011, Nakajima and co-workers demonstrated that the combination of bulky tertiary amines and trichlorosilyl triflate reduced \(\alpha,\beta\)-unsaturated ketones to yield the corresponding saturated ketones in good yields.\(^15\)^\(^{a}\) However, the conversion of 1,5-diaryl-1,4-pentadiene-3-ones substrates only provided partially reduced products in good
yields. Some other hydrogen transfer reagents containing N-H groups such as lithium amide, imidazoline, and thiazoline have been investigated in similar reduction reactions. On the other hand, the conjugate reduction of α,β-unsaturated ketones using tosylhydrazine as a hydrogen source has also been investigated. More recently, Chen et al. developed a reduction of chalcones to dihydrochalcones using tosylhydrazine as a hydrogen source. This method does not require the use of transition metal; however, stoichiometric amounts of base (K₂CO₃) were used. Normally, the reaction between amines with α,β-unsaturated ketones resulted in α,β-unsaturated imines (1,2-addition of an amine to the corresponding carbonyl compound) or the competitive 1,4-addition product (Michael Addition). Despite numerous studies on that chemistry, the reduction reaction of such enones using amines as hydrogen source has been scarcely studied. We envisaged the transfer hydrogenation from amines to α,β-enones as a feasible method of hydrogenation to yield saturated ketones and then with the use of additional amounts of amine to produce the corresponding saturated imines. This tandem process requires of easily available starting materials and the produced saturated imines may be useful in the synthesis of anticancer and anti-inflammatory drugs, as well as in the preparation of building blocks for not naturally occurring α,β-amino acids.

Transition metal catalyzed transfer hydrogenation of α,β-unsaturated ketones has attracted attention, and several reports have documented the use of organometallic complexes containing metals such as cobalt, copper, iridium, palladium, rhodium, ruthenium, and nickel as catalysts in this type of reaction. Some of them present good regio-selectivity; for instance, palladium and rhodium were selective for the reduction of the C=C bonds of enones to yield saturated carbonyl compounds, and metals such as cooper and cobalt are particularly selective for carbonyl reduction (1,2-addition) to give allylic alcohols. Recently, we reported the
synthesis and structure of the nickel complexes \([\{(\text{dippe})\text{Ni}\}n(\eta^2-C\alpha,C\beta\text{-enone})]\) (dippe = 1,2-bis(di-isopropylphosphino)-ethane); \(n = 1,2\); enone:1,5-diaryl-1,4-pentadiene-3-ones using complex \(((\text{dippe})\text{Ni}(\mu-H))_2\) with all of them containing symmetrical dienones, which were found to be an effective catalyst for the transfer hydrogenation and alkylation of \(\alpha,\beta\)-unsaturated ketones that allow the selective reduction of \(\text{C}=\text{C}\) bonds and methanol which act as hydrogen donor and alkylating agent.\(^7a\) Furthermore, our group recently disclosed the semihydrogenation and hydroamination of diphenylacetylene and 2-ethynylaniline using primary amines and aromatic N-heterocycles as hydrogen sources catalyzed by \(((\text{dippe})\text{Ni}(\mu-H))_2\).\(^{16b}\) These findings prompted us to assess the activity of primary amines in the transfer hydrogenation of \(\alpha,\beta\)-unsaturated ketones using a nickel catalyst to achieve this transformation. Herein, we report the reactivity of fluorinated 1,5-diaryl-1,4-pentadiene-3-ones with \(((\text{dippe})\text{Ni}(\mu-H))_2\), which gives compounds of the type \([(\text{P-P})\text{Ni}\}n(\eta^2-C\alpha,C\beta\text{-enone})]\) (P-P = bidentate phosphine ligand), and the catalytic activity of such compounds in the hydrogenation and subsequent condensation of \(\alpha,\beta\)-unsaturated ketones using primary amines as hydrogen donors. A variety of substituents in the ortho and para position for the aryl ring were used to investigate the influence of steric and electronic effects in this tandem process.

2. RESULTS AND DISCUSSION

2.1. Reactivity of Symmetrical Enones with \(((\text{dippe})\text{Ni}(\mu-H))_2\)

The reactivity of \(((\text{dippe})\text{Ni}(\mu-H))_2\) (dippe = 1,2-bis(diisopropylphosphino)ethane) \((2)\) in the presence of symmetrical enones was previously explored in our group (vide supra).\(^7a\) In order to extend the scope of these results, particularly using aryl rings with ortho-CF\(_3\) and para-F, i.e., to assess the reactivity of \((2)\) in the presence of \(\alpha,\beta\)-unsaturated enones containing electron...
withdrawing groups in the aryl ring. In all cases, the reaction at room temperature of the nickel dimer with fluoro-enones (1a, C_{10}H_{12}F_6O = 1,5-bis (2-(trifluoromethyl) phenyl) penta-1,4-dien-3-one and 1b, C_{17}H_{12}F_2O = 1,5-bis(4-fluorophenyl)-penta-1,4-dien-3-one) in THF-d_8 was fast and exhibited a color change from wine red to brown along with evolution of H_2 (Scheme 1). The isolated products contain two \(\eta^2 \)-coordinated (dippe)Ni(0) moieties for each ligand to the C\(_\alpha \),C\(_\beta \)- at the enone that were similar to those previously reported with nickel and palladium.\(^7a,32\)

![Scheme 1. Reactivity 1a and 1b with 2.](image)

As depicted in Scheme 1, dinuclear complexes 2a-2b were obtained as the main products on using 1 equiv of enone and 1 equiv of 2. Nickel complexes 2a-2b were fully characterized by NMR, X-ray crystallography, and EI\(^+\)-MS (see the Experimental Section). Complexes 2a-2b typically display two broad doublet of doublets between 74-68 ppm with P-P coupling constants in the range of 51-57 Hz in their \(^{31}\)P\{\(^1\)H\}NMR spectra. The \(^2J_{P,P} \) value is indicative of P bound to a Ni(0) center and is in agreement with a \(\eta^2 \)-coordinated -C\(_\alpha \),C\(_\beta \)-enone.\(^7a\) In the \(^{13}\)CNMR spectrum, the corresponding signals for the coordinated carbons C\(_\alpha \),C\(_\beta \) in 2a-2b were assigned in the range of 60-45 ppm (the corresponding signals for the free ligand 1a-1b were observed as singlets in the region of \(\delta \) 142-130) with \(^2J_{C\beta,P} = 15 \) Hz and \(^2J_{C\alpha,P} = 15 \) Hz. The carbonyl signal in both compounds 2a-2b are shifted to low field relative to the signals for the free enones 1a-1b
δ 189-188) and showed singlets in the range of 194 to 192 ppm. The 1H NMR spectrum for the dinuclear complexes 2a-2b showed the signals for the η^2-C$_\alpha$, C$_\beta$ olefinic protons shifted to high field in the range of 4.4 - 4.2 ppm, while the olefinic protons of free enones typically resonate between 8.1 and 7.0 ppm.

A thermolysis consisting of increasing the temperature from 25 to 100 °C for 7 days and monitoring complex 2a in THF-d_8 shows the signals assigned to the original binuclear complex and a singlet assigned to [(dippe)$_2$Ni], δ 51.9, and light formation of metallic nickel (Scheme 2). Compound 2a was also characterized in the solid state using single-crystal X-ray crystallography. The ORTEP representation of complex 2a (Figure 1) confirmed the double nickel coordination to the enone moiety in a η^2-C$_\alpha$,C$_\beta$ way. The C-C bond length of the olefin in the unsaturated ketone is enlarged by 0.115 Å upon coordination in compound 2a (1.445 Å) relative to the free ligand (1.330 Å). The C(15)-C(16) and C(18)-C(19) bond distances and the C(15)-Ni-C(16) and C(18)-Ni-C(19) bond angles of the 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one ligand are similar to those observed previously in the [(dippe)$_2$Ni(η^2-(C$_\alpha$,C$_\beta$-DBA))] complex. The two metal moieties [(dippe)Ni(0)] are arranged in a mutually trans position with respect to the plane of ligand; each nickel center has a slightly distorted trigonal-planar geometry. An ORTEP representation of compound 2b is included in the Supporting Information (See Figure S19). The planarity of the η^2-C$_\alpha$,C$_\beta$-1,5-bis (2-(trifluoromethyl) phenyl) penta-1,4-dien-3-one ligand is significantly affected by the coordination to nickel(0) atoms. In the supramolecular network, the intermolecular contacts of the van der Waals type F···H–C with R$_2$ 1(6) motif for C13–F(3)···H(46B)–C46–H(46A)···F(2), D_1 1(7) motif for C3–H3···F(1) and D_1 1(10) H(25B)···F(5)–C14 mainly lead to infinite chains aligned with a axis.
Figure 1. ORTEP drawing of 2a, $[\{(\text{dippe})\text{Ni}\}_{2}(\eta^2-C_\alpha \ C_\beta -C_{19}H_{12}F_6O)]$, showing 50% probability ellipsoids. Selected bond distances (Å): C(19)-C(18) 1.445(3), C(18)-C(17) 1.475(3), C(17)-C(16) 1.477(3), C(16)-C(15) 1.437(3), C(15)-Ni(2) 1.9860(19), Ni(2)-P(3) 2.1554(6), Ni(1)-C(19) 1.9933(19) Ni(1)-P(2) 2.1544(6). Selected bond angles (deg): C(16)-Ni(2)-P(4) 112.08(6), C(16)-Ni(2)-C(15) 42.54(8), P(4)-Ni(2)-P(3) 91.96(2), C(15)-Ni(2)-P(3) 112.91(6), C(19)-Ni(1)-P(2) 117.02(6), C(19)-Ni(1)-C(18) 42.75(8), C(18)-Ni(1)-P(1) 108.93(6), P(2)-Ni(1)-P(1) 91.44(2).

On the other hand, the reaction of complex 2 with fluorinated enones 1a-1b in a 0.5:1 ratio dimer-to-enone at room temperature (RT) resulted in the formation of mononuclear complexes 3a-3b. However, the dinuclear complexes 2a-2b were still observed at RT. The use of Tol-d_8 instead of THF-d_8 allowed reaching a higher temperature to yield the mononuclear complexes 3a-3b heating at 130 °C for 15 hours (Scheme 2).
Scheme 2. Formation of mono- and binuclear [(dippe)Ni(η^2-Cα,Cβ-1,4-pentadiene-3-one)] complexes.

The 1H NMR spectra for the monometallic complexes 3a-3b displayed signals shifted to high field assigned to the two protons in the η^2-Cα=Cβ coordination and displayed two doublets in the region of 6.3 ppm and 5.5 ppm with $^2J_{HP}$ of 15 Hz. The 31P{1H} NMR spectra displayed two doublets located between $\delta = 75 - 68$ with P-P coupling constants of 39 Hz, which is consistent with two non-equivalent phosphorous coordinated to a Ni(0). Single crystals for 3a were obtained by cooling a Toluene-d_8 solution to -26 °C. The corresponding ORTEP diagram of the mononuclear complex 3a is shown in Figure 2.
Figure 2. ORTEP drawing of 3a, [(dippe)Ni(η²-Cα=Cβ−C10H12F6O)], showing 50% probability ellipsoids. Selected bond distances (Å): C(25)-C(24) 1.330(6), C(22)-C(21) 1.421(5), C(22)-Ni(1) 1.984(4), Ni(1)-P(1) 2.1743(14), C(21)-Ni(1) 2.027(4), Ni(1)-P(2) 2.1548(13). Selected bond angles (deg): C(22)-Ni(1)-P(1) 119.39(12), C(22)-Ni(1)-C(21) 41.48(16), C(21)-Ni(1)-P(2) 107.52(12), P(1)-Ni(1)-P(2) 91.72(5).

As expected, the structure confirms a lengthening of the η²-coordinated Cα=Cβ bond (1.421(5) Å) due to coordination to nickel compared with the free ligand Cα=Cβ bond (1.330(6) Å) and turns out to be intermediate between a typical C=C double bond (1.32 Å) and a single bond (1.54 Å).33

2.2. Catalytic Transfer Hydrogenation of Symmetrical Enones using Amines as Hydrogen Donors

Considering the potential formation of dinuclear 2a and mononuclear 3a compounds in the reaction of 1a with 2, the transfer hydrogenation process was initially investigated using a variety of aliphatic amines. Thus, the treatment of 1a with catalytic amount of 2 with an excess
of amine in toluene at 180 °C for 48 h yielded the reduction products 3 and 4. This and other
selected results are summarized in Table 1. Compound 3 was obtained in low yield (14 %, entry
2) with the use of n-butylamine. That yield was improved by using benzylamine (32 %, entry 4).
Additionally, with the use of benzylamine, a product derived from a dehydrogenation-
transamination process was also produced (SI section, Figure S23). The condensation
products 5-7 were also produced (entries 1-4). Generally, α,β-unsaturated imines are prepared by
1,2-addition of an amine to the analogous α,β-unsaturated carbonyl compound. It is noteworthy
that high amounts of saturated imine 7 were obtained (53 %, entry 4). The formation of saturated
imine 7 produced by this method has been relatively unexplored.
A complete conversion of the starting material with the use of cyclohexylamine and benzylamine
was achieved (entries 3-4) but only with moderate selectivity. Therefore, we decided to
investigate the effect of solvents and other reaction conditions in this tandem process and to
extend the scope to other α,β-unsaturated ketones.
Table 1. Reduction of 1a by [(dippe)Ni(µ-H)]₂ Using Amines

![Diagram showing the reduction of 1a by [(dippe)Ni(µ-H)]₂ using different amines.](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Amine</th>
<th>Conv 1a (%)</th>
<th>Yield (%)<sup>b</sup> 3</th>
<th>Yield (%)<sup>b</sup> 4</th>
<th>Yield (%)<sup>b</sup> 5</th>
<th>Yield (%)<sup>b</sup> 6</th>
<th>Yield (%)<sup>b</sup> 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>61</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>74</td>
<td>42</td>
<td>14</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>100</td>
<td>-</td>
<td>22</td>
<td>10</td>
<td>35</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>15</td>
<td>53</td>
</tr>
</tbody>
</table>

^a Reaction Conditions: 1a (0.15 mmol), Amine (1.5 mmol), 2 (1 mg, 1.55*10⁻³ mmol), toluene (3 mL), 180 °C, 48 h. ^b All yields were measured by GC-MS.

The effect of the solvent and amount of benzylamine were assessed; the main results for these experiments are summarized in Table 2. As shown, initial studies were carried out at 180 °C, 48 h, and using 1 mol % of catalytic precursor 2. All reactions produced the saturated imine 7 in low to high yields (5% to 80 %, entries 1-8) along with low yields of saturated ketone 4 (9 % to 32 %, entries 1-8). Toluene was again a useful solvent for the hydrogenation and condensation of...
enone 1a; however, we found that decreasing the amounts of benzylamine to 100 equivalents in Toluene produced a low yield of saturated products (entry 1). When the amounts of benzylamine were increased to 500 equivalents (entry 2), a better yield of saturated imine 7 was produced (68 %, entry 2). Note that the catalytic conversion and yield of saturated products are enhanced with a more polar solvent such as ethanol (entry 5) to produce 7 in a good yield (80 %, entry 5).

Nevertheless, the yield of saturated product 7 decreases dramatically when increasing the amount of amine (22 %, entry 6) probably due to coordination of this amine to nickel. Additionally, the use of alcohols as a hydrogen source for the reduction of α,β-unsaturated enones is well known where they are oxidized to the corresponding aldehydes. In these experiments, the crude was analyzed by ¹H NMR and GC-MS, acetaldehyde was not detected.

Thus, ethanol was chosen as the optimal solvent since the reaction in this solvent led to complete conversion in 48 h and exhibited an improved selectivity of 7 (80 %, entry 5). Other solvents, (e.g., THF, water, or neat benzylamine) proved to be less efficient in this reaction (entries 3, 4 and 8); under these conditions, the products 4-7 were obtained in low yields.
Table 2. Optimization of Reaction Conditions in Reduction and Condensation of Enone 1a with Benzylamine

\[
\text{R}_1 = \sigma-CF_3-C_6H_4
\]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Equivalents</th>
<th>Conv 1a</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amine</td>
<td>(%</td>
<td>4 6 7</td>
</tr>
<tr>
<td>1</td>
<td>Toluene</td>
<td>100</td>
<td>14</td>
<td>9 - 5</td>
</tr>
<tr>
<td>2</td>
<td>Toluene</td>
<td>500</td>
<td>100</td>
<td>11 21 68</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>500</td>
<td>100</td>
<td>- - 33</td>
</tr>
<tr>
<td>4</td>
<td>Water</td>
<td>500</td>
<td>94</td>
<td>25 - 16</td>
</tr>
<tr>
<td>5</td>
<td>Ethanol</td>
<td>500</td>
<td>100</td>
<td>14 6 80</td>
</tr>
<tr>
<td>6</td>
<td>Ethanol</td>
<td>1000</td>
<td>100</td>
<td>13 10 22</td>
</tr>
<tr>
<td>7</td>
<td>Toluene</td>
<td>1000</td>
<td>100</td>
<td>32 15 53</td>
</tr>
<tr>
<td>8</td>
<td>Neat</td>
<td>10000</td>
<td>100</td>
<td>- 8 29</td>
</tr>
</tbody>
</table>

\(\text{Conv 1a}^{d} \) Complete conversion of 1a is calculated by summing 4, 6, 7 and additional product 5 (\(\alpha,\beta\)-unsaturated imine).
We further investigated the formation of saturated products to understand the relative rates and selectivity of saturated ketone 4 vs. saturated imine 7 (Table 3). Simple reaction time monitoring proved to be useful for this purpose (Table 3, entries 1-3). Formation of the saturated ketone reached a maximum within 36 h (45%, entry 2); at this time, the saturated imine formation is low (17%, entry 2). At 48 h, the conversion of 1a was complete, but the yield of 4 was significantly reduced (14%, entry 3), while the yield of saturated imine 7 was increased to 80% (entry 3). Therefore, we propose that 1a was reduced first to produce 4 by benzylamine acting as hydrogen source, and subsequently the condensation of 4 was carried out to yield the saturated imine 7.

Table 3. Monitoring Saturated Products Formation: Effect of the Time Reaction

<table>
<thead>
<tr>
<th>Entry</th>
<th>Time (h)</th>
<th>Conv 1a (%)</th>
<th>Yield (%)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>24</td>
<td>97</td>
<td>15</td>
<td>37</td>
<td>19</td>
<td>5</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>100</td>
<td>-</td>
<td>45</td>
<td>26</td>
<td>12</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3<sup>c</sup></td>
<td>48</td>
<td>100</td>
<td>-</td>
<td>14</td>
<td>-</td>
<td>6</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

^a Reaction Conditions: 1a (0.15 mmol), Benzylamine (0.77 mmol), 2 (1 mg, 1.55*10⁻³ mmol), ethanol (3 mL), 180 °C. ^b All yields were measured by GC-MS. ^c Mercury-drop test using the same reaction conditions resulted in no inhibition.
With the optimized conditions at hand, we next assessed the use of other substituted \(\alpha,\beta \)-enones having a variety of different substituents. \(\alpha,\beta \)-Enones were prepared by the reported procedures\(^{1a-1c}\) and selected NMR and GC-MS for each substrate are available in the SI Section. The reactivity shown by these substrates in the transfer hydrogenation is summarized in Table 4. All of them achieve total conversion but with different selectivity. For instance, \(o \)-substituted derivatives exhibit a better yield in the transfer hydrogenation and condensation tandem processes to yield the saturated imine 7 with moderate to good yields (62 % - 91 %) (entries 1, 3, 5-8, Table 4). The products derived only from a transfer hydrogenation process to yield the saturated ketones were particularly favored having enones bearing the electro-donating group (1i and 1j) \(\text{CH}_3 \) and \(\text{OCH}_3 \) at the para position (Entries 9-10). Note that the reaction of DBA (1h) with benzylamine and catalytic amounts of \([(\text{dippe})\text{Ni}({\mu-H})]_2\) yield the corresponding saturated imine 7 in high yield 91 %.

Table 4. Substrate Scope for the Transfer Hydrogenation and Condensation of Enones \(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>(\text{R}_1)</th>
<th>Conv (1^c) (%)</th>
<th>Yield ((%)) (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>(o-CF_3)</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>(p-F)</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>(o-F)</td>
<td>100</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>p-CF₃</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td>o-CH₃</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>o-OCH₃</td>
<td>100</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td>o-Br</td>
<td>100</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>1h</td>
<td>H</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1i</td>
<td>p-CH₃</td>
<td>100</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>1j</td>
<td>p-OCH₃</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

a Reaction Conditions: 1a (0.15 mmol), Benzylamine (0.77 mmol), 2 (1 mg, 1.55*10⁻³ mmol), ethanol (3 mL), 180 °C, 48 h. *b* All yields were measured by GC-MS. *c* Complete conversion of 1(a-j) is calculated by summing 4, 7 and additional product 5 (α,β-unsaturated imine).

The effect of the ancillary ligand in the activity and selectivity of this tandem process was assessed (see Table 5). In general, the use of bidentated σ-donor ligands allowed to selectively producing 7 (entries 1-4); however, the steric hindrance of the terbutyl and cyclohexyl groups does not compete in terms of selectivity with isopropyl groups.

Interestingly, when the reaction was carried out without a catalytic precursor, the product 7 was produced in very poor yield and with low conversion of the starting material (entry 7). Thus, a tandem hydrogenation and condensation of α,β-enone 1h with benzylamine was successfully achieved with [(dippe)Ni(μ-H)]₂.
Table 5. Ancillary Ligand Screening a

![Chemical Structure]

<table>
<thead>
<tr>
<th>Entry</th>
<th>Catalytic Precursor</th>
<th>Ligand (P-P)</th>
<th>Conv 1h c (%)</th>
<th>Yield (%) b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[(dippe)Ni(µ-H)]$_2$</td>
<td>None</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>[(dcype)Ni(µ-H)]$_2$</td>
<td>None</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>[(dtbpe)Ni(µ-H)]$_2$</td>
<td>None</td>
<td>100</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>[(dippe)NiCl$_2$]</td>
<td>None</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>5</td>
<td>Ni (COD)$_2$</td>
<td>dppe</td>
<td>100</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Ni (COD)$_2$</td>
<td>dippe</td>
<td>100</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>None</td>
<td>None</td>
<td>51</td>
<td>-</td>
</tr>
</tbody>
</table>

a Reaction Conditions: 1a (0.15 mmol), Benzylamine (0.77 mmol), Cat. Prec. (1 mol %), Ligand (3 mol %), ethanol (3 mL), 180 °C, 48 h. b All yields were measured by GC-MS. c Complete conversion of 1h is calculated by summing 4, 7 and additional product 5 (α,β-unsaturated imine).

Since benzylamines turned out to be the useful reagents in the transfer hydrogenation (Table 1), we decided to use a variety of mono-substituted benzylamines including electron-donating and
electron-withdrawing groups using the optimized reaction conditions (500 equiv of amine, 100 equiv of 1a, 1 mol % of 2 in ethanol at 180 ºC). The main results are summarized on Table 6. As expected, benzylamine produced 7 in good yield (80 %, entry 1). Using ortho-substituted benzylamines (entries 2-5), the reaction afforded the desired products 4 and 7 with high yields (54 % to 86 %). Unfortunately, the use of para-substituted benzylamines (entries 6-8) gave poor product selectivity. A mechanistic proposal for this process is presented in the SI section.

Table 6. Scope of Amines in Transfer Hydrogenation and Condensation of 1a

<table>
<thead>
<tr>
<th>Entry</th>
<th>R₂</th>
<th>Conv 1a (%)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>C₆H₅</td>
<td>100</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>o-OCH₃-C₆H₄</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>o-CH₃-C₆H₄</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>o-CF₃-C₆H₄</td>
<td>100</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>o-F-C₆H₄</td>
<td>100</td>
<td>43</td>
</tr>
</tbody>
</table>
Reaction Conditions:

| Reaction Conditions: 1a (0.15 mmol), Benzylamines (0.77 mmol), 2 (1 mg, 1.55*10^-3 mmol), ethanol (3 mL), 180 °C, 48 h.
| |
|------------------|---|---|---|
| | | |
| 6 | p-CH₃-C₆H₄ | 100 | 13 | 14 |
| 7 | p-F-C₆H₄ | 100 | 55 | 19 |
| 8 | p-CF₃-C₆H₄ | 100 | 10 | 7 |

\(^a\) Reaction Conditions: 1a (0.15 mmol), Benzylamines (0.77 mmol), 2 (1 mg, 1.55*10^-3 mmol), ethanol (3 mL), 180 °C, 48 h. \(^b\) All yields were measured by GC-MS. \(^c\) Complete conversion of 1a is calculated by summing 4, 7 and additional product 5 (the corresponding \(\alpha,\beta\)-unsaturated imine).

2.3. Catalytic Proposal.

A mechanistic proposal for this tandem process is illustrated in Scheme 3, to explain the initial transfer hydrogenation of \(\alpha,\beta\)-Enones to the corresponding saturated ketones and subsequent condensation with primary benzylamines we propose an initial step reacting the corresponding dienones 1(a-j) with 2 to yield the complex A. Dinuclear complex A can be converted to active catalyst B by heating via the sequence showed in Scheme 2, followed by the oxidative addition of benzylamines (a-g) and hydride transfer to nickel complex B to give intermediate C. Then a hydride addition to the \(\beta\)-position produce species D. D undergo \(\beta\)-hydride elimination to produce imine formation (I) and enolization to produce E. It is known that, an amine, once oxidized to the imine by hydrogen transfer, reacts with another equivalent of the substrate amine obtaining a transamination product with liberation of ammonia.\(^34\) In the mechanism, one equivalent imine I or II. The resulting Ni-enolate E underwent hydride addition to \(\alpha\)-position in \(\alpha,\beta\)-unsaturated ketones and followed by a reductive elimination to give the
corresponding nickel-enone complex F. The secondary transfer hydrogenation occurs in the same way to initial steps C to E followed by a reductive elimination to give saturated ketone. The 1,2-addition of benzylamines to saturated ketones gave the corresponding saturated imines.

Scheme 3. Proposed Catalytic Cycle
3. CONCLUSION

We have demonstrated that [(dippe)Ni(µ-H)]_2 (2) was an effective catalytic precursor for the transfer hydrogenation of α,β-unsaturated ketones using benzyl- amines as hydrogen donors to afford saturated ketones in low to moderate yields. Furthermore, the 1,2-addition of benzylicamines to the produced saturated ketones allowed the formation of saturated imines in good to excellent yields in a tandem process. These features, along with the tolerance to a variety of ortho and para substituents in aromatic enones and benzylicamines, extends the scope of the current method to the synthesis of saturated imines.

4. EXPERIMENTAL SECTION

Unless otherwise noted, all manipulations were performed using standard Schlenk techniques in an inert-gas/vacuum double manifold or under an argon atmosphere (Praxair 99.998) in an MBraun glovebox (<1 ppm H_2O and O_2). All liquid reagents were purchased as reagent grade and were degassed before use. The α,β-unsaturated ketones 1h-1j were purchased from Aldrich and were stored in a glovebox for their further use. Compounds 1a-1g were prepared by an aldol condensation, following the method of Masuda et al.1a The nickel (I) complexes, [(P-P)Ni(µ-H)]_2 (P-P = chelating phosphine ligand), were prepared from a n-hexane slurry of [(P-P)NiCl_2]36a using Super-Hydride (LiHBEt_3), according to the reported procedure.36b The solvents were dried using standard techniques and stored in the glovebox before use. Deuterated solvents were purchased from Cambridge Isotope Laboratories and were stored under 4 Å molecular sieves for 24 h before use. NMR spectra were recorded at room temperature on a 300 MHz Varian Unity spectrometer unless otherwise noted. 1H NMR spectra (δ parts per million) are reported relative
to the residual protio-solvent. 13C{1H} spectra give the characteristic carbon signal of each solvent. 31P{1H} NMR chemical shifts (δ parts per million) are reported relatively to external 85% H$_3$PO$_4$. 19F NMR chemical shifts (δ parts per million) are reported relatively to external trifluoroacetic acid. Coupling constants (J values) are given in Hz. GC-MS determinations were performed using an Agilent Technologies G3171A equipped with a column: 5 % phenylmethylsilicone, 30 m * .25 mm * .25 μm. 1H and 13C{1H} NMR spectra of the reduction products were obtained in CDCl$_3$. An Oxford Diffraction Gemini “A” diffractometer with CCD area detector ($\lambda_{MoK\alpha} = 0.71073 \text{ Å}$) was used for X-ray structure determinations. Catalytic experiments were carried out in a 100 mL stainless steel Parr, T315SS reactor. Elemental analyses (EAs) were also performed by USAI-UNAM using a PerkinElmer microanalyzer 2400. EAs of pure compounds showed variable inconsistencies due to their high oxygen sensitivity and were not reported; however, all of them display satisfactory MS-EI$^+$. Mass spectrometry determinations (MS-EI$^+$) of pure compounds were performed by USAI-UNAM using a Thermo-Electron DFS.

4.1. Preparation [{(dippe)Ni}$_2$(η2-C$_{ααα}$C$_{βββ}$-C$_{19}$H$_{12}$F$_6$O)] (2a): The reaction of C$_{19}$H$_{12}$F$_6$O = 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 1a (0.081 mmol, 0.030 g) with [(dippe)Ni(μ-H)]$_2$ 2 (0.081 mmol, 0.0521 g) in THF-d_8 (1mL) yielded dinuclear Ni(0) complex [{(dippe)Ni}$_2$(η2-C$_{ααα}$C$_{βββ}$-C$_{19}$H$_{12}$F$_6$O)] (2a). Immediate effervescence due to reductive elimination of H$_2$ was observed during mixing. The resulting solution was analyzed by NMR spectroscopy:

1H NMR (300 MHz, THF-d_8, r.t.): δ = 7.36 (d, J$_{H-H} = 9$ Hz, H(f), H(f'), aromatic), 7.22 (d, J$_{H-H} = 9$ Hz, H(c), H(c'), aromatic), 7.12 (t, J$_{H-H} = 9$ Hz, H(d), H(d'), aromatic), 6.87 (t, J$_{H-H} = 9$ Hz, H(e), H(e'), aromatic), 4.44 (m, J$_{H-P} = 6$ Hz, H(b), H(b'), CH-olefinic), 4.31 (m, J$_{H-P} = 6$ Hz, H(a), H(a'), CH-olefinic), 2.5-0.5 (m, iPr CH, CH$_2$, CH$_3$). 31P{1H} NMR (121.32 MHz, THF-d_8,
r.t.): δ = 74.0 (dd, J_{P,P} = 51 Hz, J_{C-P} = 7.27 Hz), 69.0 (dd, J_{P,P} = 51 Hz, J_{C-P} = 7.27 Hz).

13C (1H) NMR (75.36 MHz, THF-d_8, r.t.): δ = 193.4 (s, C(a), C=O), 150.4 (s, C(d), C(d’), C-aromatic), 132.5 (s, C(f), C(f’), CH-aromatic), 132.2 (s, C(g), C(g’), CH-aromatic), 131.3 (s, C(e), C(e’), CH-aromatic), 120.8 (t, J_{C-F} = 30.89 Hz, C(i), C(i’), C-aromatic), 150.4 (quadruplet, J_{C-F} = 5.27 Hz, C(h), C(h’), CH-aromatic), 115.76 (t, J_{C-F} = 274.3 Hz, C(j), C(j’), CF$_3$-aromatic), 62.4 (d, J_{C-P} = 15 Hz, C(c), C(c’), CH$_2$olefinic), 44.6 (d, J_{C-P} = 15 Hz, C(b), C(b’), CH-olefinic), 30.0 – 17.0 (m, iPr, CH, CH$_2$, CH$_3$).

19F NMR (282 MHz, THF-d_8, r.t.): δ = 360.2 (s, F(a), CF$_3$-aromatic) [MS-El$^+$, m/z (%) 1011 (15%)]. Suitable crystals for single-crystal X-ray studies for compound 2a were grown from a concentrate solution in THF-d_8 at -30 °C.

4.2. Preparation [{(dippe)Ni}_2(η2-C$_{17}$H$_{12}$F$_2$O)] (2b): Similar to the preparation of compound 2a (vide supra), the reaction between C$_{17}$H$_{12}$F$_2$O = 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one 1b (0.199 mmol, 0.054 g) and [(dippe)Ni(µ-H)]$_2$ 2 (0.199 mmol, 0.0128 g) in THF-d_8 (1mL) yielded dinuclear Ni(0) complex [{(dippe)Ni}_2(η2-C$_{17}$H$_{12}$F$_2$O)] (2b). Immediate effervescence due to reductive elimination of H$_2$ was observed during mixing. The resulting solution was analyzed by NMR spectroscopy: (300 MHz, THF-d_8, r.t.): δ = 7.10 (t, J$_{H-H}$ = 6 Hz, H(e), H(e’), aromatic), 6.75 (t, J$_{H-H}$ = 9 Hz, H(d), H(d’), aromatic), 4.41 (d, J$_{H-P}$ = 12 Hz, H(b), H(b’), CH-olefinic), 4.30 (d, J$_{H-P}$ = 15 Hz, H(a), H(a’), CH-olefinic), 2.4-0.1 (m, iPr CH, CH$_2$, CH$_3$).

31P (1H) NMR (121.32 MHz, THF-d_8, r.t.): δ = 72.6 (dd, J$_{P-P}$ = 57 Hz, J$_{C-P}$ = 8.49 Hz), 71.2 (dd, J$_{P-P}$ = 57 Hz, J$_{C-P}$ = 8.49 Hz). 13C (1H) NMR (75.36 MHz, THF-d_8, r.t.): δ = 190.56 (s, C(a), C=O), 146.46 (s, C(g), C-aromatic), 130.88 (s, C(d), C(d’), CH-aromatic), 126.22 (s, C(e), C(e’), CH-aromatic), 115.53 (s, C(f), C(f’), CH-aromatic), 60.66 (d, J$_{C-P}$ = 12.8 Hz, C(e), C(e’), CH-olefinic), 49.18 (d, J$_{C-P}$ = 20.34 Hz, C(b), C(b’), CH-olefinic), 30.0 – 15.0 (m, iPr,
CH, CH₂, CH₃). ¹⁹F NMR (282 MHz, THF-d₈, r.t.): δ = -124.28 (s, F(a), F-aromatic) [MS-EI⁺, m/z (%) 911 (10%)]. Slow evaporation of THF-d₈ at -26 °C in the drybox allowed the crystallization of the pure product.

4.3. Preparation [(dippe)Ni(η²-C₆H₁₂F₆O)] (3a): The reaction of C₁₉H₁₂F₆O = 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 1a (0.081 mmol, 0.030 g) with [(dippe)Ni(μ-H)]₂ 2 (0.0405 mmol, 0.0261 g) in THF-d₈ (1mL) yielded mononuclear Ni(0) complex [(dippe)Ni(η²-C₆H₁₂F₆O)] (2b). Immediate effervescence due to reductive elimination of H₂ was observed during mixing. The resulting solution was analyzed by NMR spectroscopy: (300 MHz, THF-d₈, r.t.): δ = 7.65 (d, Jₗ-H = 6 Hz, H(f), H(f'), aromatic), 7.57 (d, Jₗ-H = 6 Hz, H(c), H(c'), aromatic), 7.42 (t, Jₗ-H = 9 Hz, H(d), H(d'), aromatic), 7.26 (t, Jₗ-H = 9 Hz, H(e), H(e'), aromatic), 6.13 (d, Jₗ-P = 15 Hz, H(b), H(b'), CH-olefinic), 5.71 (d, Jₗ-P = 12 Hz, H(a), H(a'), CH-olefinic), 2.5-0.1 (m, iPr CH, CH₂, CH₃). ³¹P{¹H} NMR (121.32 MHz, Tol-d₈, r.t.): δ = 75.0 (d, Jₗ-P = 39 Hz), 73.5 (d, Jₗ-P = 39 Hz). [MS-EI⁺, m/z (%) 690 (10%)]. Crystals of 3a were obtained from Tol-d₈ at -26 °C in the drybox and allowed the crystallization of the pure product.

4.4. Preparation [(dippe)Ni(η²-C₆H₁₂F₆O)] (3b). Similar to the preparation of compound 2b (vide supra), the reaction between C₁₇H₁₂F₂O = 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one 1b (0.199 mmol, 0.054 g) and [(dippe)Ni(μ-H)]₂ 2 (0.199 mmol, 0.0128 g) in THF-d₈ (1mL) yielded mononuclear Ni(0) complex [(dippe)Ni(η²-C₆H₁₂F₂O)] (3b). Immediate effervescence due to reductive elimination of H₂ was observed during mixing. The resulting solution was analyzed by NMR spectroscopy: (300 MHz, THF-d₈, r.t.): δ = 7.41 (t, Jₗ-H = 6 Hz, H(e), H(e'), aromatic), 6.96 (t, Jₗ-H = 9 Hz, H(d), H(d'), aromatic), 5.91 (d, Jₗ-P = 12 Hz, H(b),
H(b’), CH-olefinic), 5.70 (d, J_{H-P} = 15 Hz, H(a), H(a’), CH-olefinic), 2.3-0.1 (m, iPr CH, CH₂, CH₃). 31P1H NMR (121.32 MHz, THF-d₈, r.t.): δ = 76.2 (d, J_{P-P} = 41 Hz), 73.5 (d, J_{P-P} = 41 Hz). [MS-El, m/z (%)]

4.5. Preparation 1,5-bis(2-(trifluoromethyl)pentan-3-one. The reaction of C₁₉H₁₂F₆O = 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 1a (0.15 mmol, 0.057 g), C₇H₉N = benzyamine (0.77 mmol, 0.0 g) and [(dippe)Ni(μ-H)]₂ (0.0015 mmol, 0.001 g) in ethanol, (0.3 mL), was prepared in the drybox. The resulting mixture (yellow solution) was stirred at 180 °C for 2 days (Entry 5, Table 2). The product (yellow oil) was purified in silica gel TLC (10% Hexane in THF) to give 1,5-bis(2-(trifluoromethyl)pentan-3-one 4. 1H NMR (300 MHz, CDCl₃): δ = 7.51 (d, J_{H-H} = 9 Hz, H(f), H(f’), aromatics), 7.36 (t, J_{H-H} = 9 Hz, H(d), H(d’), aromatic), 7.20 - 7.14 (m, J_{H-H} = 9 Hz, H(e), H(e’), aromatic), 2.99 (t, J_{H-H} = 9 Hz, H(b), H(b’), CH-olefinic), 2.62 (t, J_{H-H} = 9 Hz, H(a), H(a’), CH-olefinic). 13C1H NMR (75.36 MHz, THF-d₈, r.t.): δ = 208.1 (s, C(a), 13C=O), 139.98 (s, C(d), C-aromatic), 132.19 (s, C(f), C(f’), CH-aromatic), 131.42 (s, C(e), C(e’), C-aromatic), 128.54 (t, J_{C-F} = 29.4 Hz C(i), C(i’), C-aromatic), 126.60 (s, C(g), C(g’), CH-aromatic), 126.40 (quadruplet, J_{C-F} = 5.27 Hz C(h), C(h’), CH-aromatic), 122.98 (t, J_{C-F} = 273.5 Hz C(j), C(j’), CF₃-aromatic), 44.66 (s, C(b), C(b’), CH-pentan-3-one), 26.91 (s, C(a), C(a’), CH-pentan-3-one). 19F NMR (282 MHz, THF-d₈, r.t.): δ = -59.7 (s, F(a), CF₃-aromatic).

4.6. Catalytic Transfer Hydrogenation. All reactions were made in a 150 mL Schlenk flask fitted with a Rotaflo valve, typically charged with [(dippe)Ni(μ-H)]₂ (1 mg, 1.55*10⁻³ mmol), and the corresponding α,β-unsaturated ketone: C₁₉H₁₂F₆O = 1,5-bis(2-(trifluoromethyl)phenyl)-penta-1,4-dien-3-one 1a (57.35 mg, 0.155 mmol), Benzyamine (a) (82.5 mg, 0.77 mmol),
dissolved in ethanol (3 mL). The resulting mixtures were heated with vigorous stirring at 180 °C and durations indicated in the Table 3. After that duration, the Schlenk flask was opened in a well-vented hood prior to workup. Orange or yellow colored solutions were formed. These were filtered over Celite and then analyzed by CG-MS.

4.7. Mercury Drop Test. Following the procedure described in section 2.2, Table 3, entry 3, the same reaction was prepared, and one drop of elemental Hg was added to the reaction mixture. At the end of each run, the corresponding solution was filtered over Celite and analyzed by CG-MS.

4.8. X-ray Structure Determination. The crystals for compounds 2a-2b and 3a were first cryoprotected using Paratone-N and mounted on glass fibers; then, the crystals were immediately cooled at 130 K using Cryojet cryostream (Oxford Cryosystems device). Diffraction data were collected on an Oxford Diffraction Gemini diffractometer with a CCD-Atlas area detector using a radiation source graphite monochromator, $\lambda_{Mo\ K\alpha} = 0.71073$ Å. CrysAlisPro and CrysAlis RED software packages were used for data collection and data integration. The double pass method of scanning was used to exclude any noise. The collected frames were integrated by using an orientation matrix determined by using analytical numeric absorption correction using a multifaceted crystal model based on expressions upon the Laue symmetry using equivalent reflections.

Structure solution and refinement were carried out with the program(s) SHELXS-2013 and SHELXL-2013; for molecular graphics, the program ORTEP-3 for Windows was used, and to prepare material for publication, the software WinGX was used. Full-matrix least-squares refinement was carried out by minimizing $(F_o^2 - F_c^2)^2$. All non-hydrogen atoms were refined anisotropically. H positions were refined as riding on their parent atoms with C-H = 0.95-1.00 Å.
and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic, methylene and methyne groups, and $1.5U_{eq}(C)$ for methyl group. Crystal data and experimental details of the structure determination are listed in the Supporting Information (see Table S1 to Table S9 at SI section).

The crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1407778-1407780. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: (+44) 1223-336-033, e-mail: deposit@ccdc.cam.ac.uk).

ASSOCIATED CONTENT

Supporting Information available. Includes complete experimental procedures, ORTEP drawings, NMR spectra, GC-MS determinations of all products and a mechanistic proposal.

AUTHOR INFORMATION

Corresponding Author

E-mail: juvent@unam.mx

ACKNOWLEDGMENTS

We thank CONACyT (0178265) and PAPIIT-DGAPA-UNAM (IN-201010) for their financial support to this work. N.C.-B. thanks CONACyT for a graduate studies grant. Also, we thank Dr. Alma Arévalo for her technical support.
REFERENCES

3. For typical hydrogenations of α,β-unsaturated carbonyl compounds to allylic alcohols:

5. (a) D. Monguchi, C. Beemelmanns, D. Hashizume, Y. Hamashima and M. Sodeoka, *J.

17. (a) K. Takeda, Y. Ohnishi and T. Koizumi, Org. Lett., 1999, 1, 237; (b) M. Majewski and

22. For typical condensation of amines with saturated carbonyl compounds to obtain imines

Tandem Hydrogenation and condensation of Fluorinated α,β-Unsaturated Ketones
With Primary Amines, Catalyzed by Nickel

\[
\begin{align*}
\text{R}_1 \quad \text{R}_1 + \text{R}_2 \quad \text{H}_2 \quad &\rightarrow \quad \text{R}_1 \quad \text{R}_1 + \text{R}_2 \quad \text{H}_2 \\
\text{1 mol %} \quad \text{[Rh}(\text{dpb})\text{Cl}]_2 \quad \text{3 atm, 100°C, EtOH} &\rightarrow \quad \text{R}_1 \quad \text{H}_2 \quad \text{R}_1 + \text{R}_2 \quad \text{H}_2 \\
\text{R}_1, \text{R}_2 \text{ mono-substituted phenyl} &\rightarrow \quad \text{saturated ketones} \quad \text{saturatedamines}
\end{align*}
\]