Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

38x19mm (300 x 300 DPI)

Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Toshinobu Korenaga,* Ryo Sasaki and Kazuaki Shimada

Highly electron-poor SPhos ligands bearing either 2,6-bis(trifluoromethyl)-4-pyridyl (BFPy) or 3,5-(CF₃)₂C₆H₃ groups were synthesised. The former ligand highly accelerated the Pd-catalysed direct arylation of 2-propylthiophene, 2-methylthiophene or benzo[*b*]thiophene with only 1 mol% of the catalyst. This high catalytic activity can be attributed to a combination of electronic properties and the secondary Pd–arene interaction of BFPySPhos. The secondary interactions of SPhos, PhSPhos and BFPySPhos were optimised at the oniom(mp2/lanl2dz:b3lyp/lanl2dz) level and were further evaluated using the NBO method by DFT at the M06-2X/6-31G(d) level with LandL2DZ + ECP. The deletion energy analysis showed that the transfer of electrons from Pd to aromatic ring is the dominating factor for the secondary Pd–arene interaction of SPhos-Pd⁰ complexes. Although an electron-poor BFPySPhos does not particularly favour this type of interaction, this interaction is still substantial enough to sufficiently stabilise the BFPySPhos-Pd complex.

similar to a Pd/PPh₃ catalyst. In this case, a small amount of

Pd-black was visually confirmed, which indicated that the P(BFPy)₃-Pd complex had decomposed. Therefore, we

hypothesised that the active species of $P(BFPy)_3-Pd^0$ was

partially decomposed due to the weak electron-donating

ability of P(BFPy)₃. This decomposition occurred when an

intermolecular reaction with a relatively low reaction rate was

conducted in a highly polar solvent at a high reaction

temperature. To overcome the critical weak coordination

ability of the electron-poor phosphine, we focussed on

Buchwald-type ligands such as the biaryl-phosphine unit.⁶ The

excellent Buchwald-type ligand system was a tremendous

breakthrough for Pd-catalysed C-C coupling and C-N coupling

reactions.' When the phosphorous atom of the Buchwald-type

ligands coordinates with Pd⁰, the lower aromatic ring of these

ligands can also interact with Pd⁰ (Fig. 1).⁸ This secondary Pd–

arene interaction stabilises the metal-ligand complex.

Therefore, if the strong electron-withdrawing BFPy groups are

introduced in Buchwald-type ligands, the Pd⁰-(BFPy phosphine)

species would be stable even in a highly polar solvent at a high

reaction temperature. Herein, we synthesised a novel SPhos

Introduction

Tertiary phosphine ligands are one of the most commonly used supporting ligands due to the ability of phosphines to control the catalytic activity and stereoselectivity of a metalligand complex catalyst.¹ Although triphenylphosphine (PPh₃) and other electron-rich phosphines are the most commonly employed phosphine ligands, the use of an electron-poor phosphine ligand can also provide a good ligand acceleration effect for the metal-ligand complex catalyst in some cases.² Using this concept, we developed a novel, highly electrondeficient ligand with fluoro-functional groups as the achiral or chiral supporting ligand.³ This ligand exhibited an excellent acceleration effect for certain catalytic C-C bond formation reactions.⁴ Among our developed ligands, the highly electronpoor triarylphosphine with 2,6-bis(trifluoromethyl)-4-pyridyl (BFPy) groups {P(BFPy)₃} provides a better acceleration effect than commercially available highly electron-poor $P(C_6F_5)_3$. Furthermore, we recently reported that the P(BFPy)₃ ligand accelerated intramolecular direct arylation.⁵ This acceleration effect was attributed to the high electron-poor nature of the P(BFPy)₃ ligand, which was validated by density functional theory (DFT) calculations using the natural bond orbital (NBO) method.⁵ However, when intermolecular direct arylation was conducted using $P(BFPy)_3$, the catalytic activity of Pd was

Department of Chemistry and Bioengineering, Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan.

J. Name., 2013, 00, 1-3 | 1

E-mail: korenaga@iwate-u.ac.jp

⁺ Electronic Supplementary Information (ESI) available: ¹H NMR, ¹³C NMR, ¹⁹F NMR and ³¹P NMR spectrum, Cartesian coordinates. See DOI: 10.1039/x0xx00000x

Journal Name

Fig. 1 Schematic view of the secondary Pd-arene Interaction of Buchwald-type ligand.

Results and discussion

ARTICLE

Synthesis of highly electron-poor SPhos ligands

We first attempted to synthesise the SPhos^{8c} ligand bearing BFPy groups (BFPySPhos, **1a**). Although many Buchwald-type biaryl-phosphine ligands have been reported,⁶ the majority of ligands have Cy, Ph or other electron-donating groups on the phosphorous atom. In the synthesis of few Buchwald-type biaryl-phosphine ligands with fluoro-functionalised aryl groups (Ar^F) on the phosphorous atom,⁹ an (Ar^F)₂P–Cl species had been used. Since (BFPy)₂P–Cl could not be obtained in its purified form, we chose to use phosphine 2^{10} as a synthetic intermediate (Scheme 1). The chlorination of **2** with triphosgene produced dichlorophosphine **3**. BFPyMgBr·LiCl was added to the reaction solution without any further purification of **3** to produce **1a** with a 45% yield. Novel ligand **1b**, which bears the 3,5-bis(tirfluoromethyl)phenyl groups, was also synthesised in a similar manner.

Pd-catralysed direct arylation using 1a and 1b

Novel electron-poor SPhos ligands 1a and 1b were applied to direct arylation through a concerted metalationdeprotonation (CMD) process.¹¹ Since the catalyst for a direct arylation of Ar-H with Ar'-X exhibits a substrate specificity, it is necessary to find a suitable catalyst for the reaction of each substrate. The reactivity of the Ar-H component of the direct arylation reaction is usually the major determining factor.¹² For instance, 2-alkylthiophene or benzo[b]thiophene were less reactive substrates.^{12,13} In the reactions using Pd/phosphine catalyst, Ozawa et al. have studied direct arylation of 2methyl-thiophene.¹⁴ Among them, the [Pd(2,6- $Me_2C_6H_3)(OAc)\{P(2-MeOC_6H_4)_3\}$ catalyst was effective for the direct arylation of 2-methyl-thiophene with Ph–Br.^{14d} The reaction was performed in the presence of 1 mol% of Pd catalyst at 100 °C for 12 h to produce an 89% yield of the coupled product. Meanwhile, Fagnou et al. reported that an electron-poor SPhos ligand bearing 4-CF₃-C₆H₄ groups accelerated the direct arylation of benzothiophene or 2propylthiophene with Ar-I in the presence of a 5 mol% Pd

catalyst at 100 °C for 16 h to produce coupled products with a 78% or 89% yield, respectively.^{9b} In this study, we investigated the direct arylation of 2-propylthiophene to estimate the acceleration effect of the highly electron-poor SPhos **1**. The reactions of 2-propylthiophene with $4\text{-}CF_3\text{-}C_6\text{H}_4\text{-}Br$ were performed in the presence of 1 mol% Pd(OAc)₂/2 mol% phosphine ligand, which were either SPhos analogues or PR₃, with PivOH and K₂CO₃ in *N*,*N*-dimethylacetamide (DMA) at 100 °C for 3 h (Table 1). The extremely electron-poor **1a** was proven to be the most efficient ligand, and the **1a**-ligated Pd catalyst provided the desired product with a 90% yield (entry 1).

Table 1 Pd-catalyzed direct arylation of 2-propylthiophene

Entry	Ligand	v ^{co} (cm ⁻¹) ^b	Yield (%) ^{c}
1	BFPySPhos (1a)	2001	90
2	{3,5-(CF ₃) ₂ -C ₆ H ₃ }SPhos (1b)	1991	62
3	(4-CF ₃ -C ₆ H ₄)SPhos (1c)	1985	63
4	PhSPhos (1d)	1979	34
5	SPhos (1e)	1959	3
6	P(BFPy)₃ (4a)	2017	79
7	P{3,5-(CF ₃) ₂ -C ₆ H ₃ } ₃ (4b)	2000	75
8	P(4-CF ₃ -C ₆ H ₄) ₃ (4c)	1992	74
9	PPh₃ (4d)	1978	7
10	PCv₂ (4e)	1943	<1

^{*a*} The reactions of 2-propylthiophene (0.39 mmol) with 4-bromobenzotrifluoride (0.32 mmol) were performed in the presence of Pd(OAc)₂ (3.2 µmol) / ligand (6.4 µmol) with K₂CO₃ (0.48 mmol) and PivOH (0.096 mmol) at 100 °C for 3 h. ^{*b*} The v^{co} values of *trans*-[RhCl(phosphine)₂(CO)] in CH₂Cl₂. ^{*c*} Isolated yield.

Direct arylations of a few thiophene derivatives with aryl bromides were performed under the optimized conditions in the presence of $Pd(OAc)_2/1a$ (Table 2). 4-Bromotoluene was relatively less reactive because electron-poor 1a had a disadvantage for oxidative addition (entry 2). The direct arylation of 2-methylthiophene or benzo[*b*]thiophene, which were less reactive substrates,¹² also proceeded in the presence of Pd(OAc)_2/1a (entry 3, 4).

 Table 2 Pd-catalysed direct arylation of thiophene derivatives^a

Entry	Substrate	Ar	Temp. (°C)	Yield (%) ^b
1	2-propylthiophene	C ₆ H₅	100	89
2	2-propylthiophene	$4-CH_3-C_6H_4$	120	81
3	2-methylthiophene	$4-CF_3-C_6H_4$	100	90
4 ^{<i>c</i>}	benzo[b]thiophene	$4-CF_3-C_6H_4$	95	87
^a For 3 ا	n. ^b Isolated yield. ^c For 5	h.		

This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 20xx

It has been previously reported that the electron-poor ligand accelerated either the CMD process⁵ or the reductive elimination step^{14c} in certain direct arylation reactions. To obtain the mechanistic information, the kinetic isotope effect was measured by comparing the initial rate for the direct arylation of 2-propylthiophene with 2-propylthiophene-*d* in competing experiments (Scheme 2). A pronounced kinetic isotope effect of 7.4 was obtained, which implies that the CMD process that involves a cleavage of the C–H bond was the rate determining step.

In our previous theoretical studies of Pd-catalysed intramolecular direct arylation, the extremely electron-poor P(BFPy)₃ (4a) accelerated the CMD process by stabilising the Pd^{II}•••aromatic interaction to lower the energy levels of the CMD transition states.⁵ In fact, the yields of the coupled product tend to increase with an increasingly electrondeficiency of the ligands, which were measured using the v^{co} values of trans-[RhCl(phosphine)₂(CO)] 3c,5,15 (Table 1). However, the more efficient ligand 1a was more electron-rich than 4a. Although Pd-black was never observed throughout the course of the reaction with 1a, a trace amount of Pd-black was confirmed in the reaction with 4a. Therefore, we hypothesised that the Pd/1a catalyst was seemingly more active than the Pd/4a catalyst due to the additional stabilisation from the secondary Pd-arene interactions in Pd/1a. In contrast, the Pd/4a catalyst partially decomposed during the catalytic reaction. We were thus prompted to theoretically examine the secondary Pd^{0} -arene interaction of the **1a**-Pd complex in greater detail.

Theoretical calculations of Pd-arene interaction

The secondary Pd⁰-arene interaction in SPhos (**1e**) had been studied using X-ray crystallography^{8b,8c} and computational chemistry.^{8c,16} The X-ray crystal structure of **1e**-Pd(dba) (dba = dibenzylideneacetone) shows a η^1 Pd-C(ipso) interaction with a distance of 2.374(3) Å.^{8c} Buchwald *et al.* optimised the complex at the B3LYP/3-21G* level to give a Pd-C(ipso) distance of 2.378 Å.^{8c} In contrast, the **1e**-Pd complex without a dba ligand that is optimised using the B3LYP method with 6-

ARTICLE

Page 4 of 10

31G/6-31G(d)/LANL2DZ + ECP gives a η^1 Pd–arene interaction with the *ortho* carbon {C(ortho)} as the lowest energy structure.^{16a} To perform a unified analysis, we first reestimated the **1e**-Pd(dba) complex using the DFT method (B3LYP or M06-2X) with 6-31G(d) for C, H, O and P and LandL2DZ + ECP for the Pd basis sets. These methods resulted in a significantly longer Pd-C(ipso) distance than the original calculated distance of 2.378 Å. When the complex was calculated at the oniom(mp2/lanl2dz:b3lyp/lanl2dz) level, whose high level layer is the atoms being related to the interaction with Pd, the Pd-C(ipso) distance of the resulting structure was 2.388 Å, which was similar to the distance obtained from X-ray crystallography. Therefore, we chose this particular calculation level for the optimisation of the **1a**-Pd complex.

To estimate the bond dissociation energies between Pd and phosphine, the 1-Pd complexes with or without dba and the 4-Pd complexes (R = a: BFPy, d: Ph, e: Cy) were calculated using the oniom method (Figure of Table 3). The resulting optimised structures of the 1-Pd(dba) and 1-Pd complexes were structurally similar to the reported Pd complexes of 1e (Fig. 2). These are observed with a secondary Pd^{0} -arene interaction at C(ipso) in the 1-Pd(dba) series and at C(ortho) in the 1-Pd series. The bond dissociation energies (ΔH , ΔG) of **4**-Pd show that the extent of the Pd-phosphorous bonding is proportional to the electron-donating ability of **4** (Table 3). The ΔH and ΔG values in either the 1-Pd(dba) or the 1-Pd series are both larger than those in the 4-Pd series. These results show that the secondary Pd⁰-arene interaction appears to stabilise the Pdphosphine complexes despite the fact that 1e has a smaller electron-donating ability than 4e. The ordering of the ΔH and ΔG values of the complexes in all the series shows that Cy > Ph > BFPy, which matches with the ordering of the compounds based on the electron-donating ability of the phosphines. A comparison of the ΔH values in **4**-Pd and **1**-Pd gives the following values: $\Delta\Delta H = 8.5$ (Cy), 9.1 (Ph) and 6.0 kcal/mol (BFPy). Although 1a has a better electron-donating ability than **4a**, the comparisons of the incremental increase of $\Delta\Delta H$ give the smallest value. This indicates that the secondary Pd⁰-arene interaction of 1a is weaker than 1d and 1e. In fact, the distance between Pd and C(ortho) in 1-Pd complex lengthens with an increase in the electron-withdrawing ability of the R group on the phosphorous of 1: 2.286 (BFPy) > 2.220 (Ph) > 2.203 (Cy) Å (Fig. 2).

ARTICLE

Fig. 2 Optimised structures of 1-Pd(dba) and 1-Pd complexes by oniom(mp2/lanl2dz:b3lyp/lanl2dz).

Table 3 The bond-dissociation energies (Δ H, Δ G) of 1-Pd, 1-Pd(dba) and 4-Pd^a

	BFPy (a)	Ph (d)	Cy (e)
(A) 4 -Pd			
∆H (kcal/mol)	23.7	25.2	28.7
ΔG (kcal/mol)	15.0	16.6	20.4
(B) 1 -Pd			
∆H (kcal/mol)	29.7	34.3	37.2
ΔG (kcal/mol)	22.4	24.6	27.0
(C) 1 -Pd(dba)			
∆H (kcal/mol)	40.8	43.3	45.9
ΔG (kcal/mol)	25.4	28.7	31.0

^{*a*} Optimization of structures and dissociation energies were calculated at the oniom(mp2/lanl2dz:b3lyp/ lanl2dz) level.

kcal/mol of second-order perturbation energy was observed for all relevant Pd⁰-ligand interactions. In all the **1**-Pd complexes, the following interactions were found: 1) P \rightarrow Pd interaction of Lp_P \rightarrow Lp^{*}_{Pd}; 2) Pd \rightarrow Ar interaction of Lp_{Pd} \rightarrow π^{*}_{Ar} and 3) Ar \rightarrow Pd interactions a) $\sigma_{Ar1}\rightarrow$ Lp^{*}_{Pd}, b) $\sigma_{Ar2}\rightarrow$ Lp^{*}_{Pd}, c) $\sigma_{Ar3}\rightarrow$ Lp^{*}_{Pd} and d) $\pi_{Ar}\rightarrow$ Lp^{*}_{Pd} (Fig. 3). In all the **1**-Pd(dba) complexes, the following interactions were found: 1) P \rightarrow Pd interaction of Lp_P \rightarrow Lp^{*}_{Pd}; 2) Pd \rightarrow Ar interactions of a) Lp_{Pd1} \rightarrow π^{*}_{Ar}, b) Lp_{Pd2} \rightarrow π^{*}_{Ar} and c) Lp_{Pd3} \rightarrow π^{*}_{Ar}; 3) Ar \rightarrow Pd interactions of a) $\sigma_{Ar1}\rightarrow$ Lp^{*}_{Pd}, b) $\sigma_{Ar2}\rightarrow$ Lp^{*}_{Pd}, c) $\sigma_{Ar3}\rightarrow$ Lp^{*}_{Pd}, d) $\pi_{Ar}\rightarrow$ Lp^{*}_{Pd}; 4) Pd \rightarrow dba interaction of Lp_{Pd} \rightarrow π^{*}_{dba} and 5) dba \rightarrow Pd interactions of 1) $\sigma_{dba}\rightarrow$ Lp^{*}_{Pd}, 2) $\pi_{dba}\rightarrow$ Lp^{*}_{Pd} (Fig. 4).

To conduct an energetic analysis of the listed interactions from 1) to 5), the deletion energies were calculated by combining the second-order perturbative estimates from each of these interactions (Table 4). The $P \rightarrow Pd$ interactions of the 1-Pd(dba) (33.6-38.0 kcal/mol) or the 1-Pd complexes (32.0-38.1 kcal/mol) are relatively small and have a narrow range relative to the 4-Pd complexes (39.2-54.0 kcal/mol). In the cases of the 1-Pd(dba) complexes, the 4) Pd \rightarrow dba interaction (44.6-51.9 kcal/mol) is the strongest interaction¹⁷ over the 1) $P \rightarrow Pd$ interaction (33.6–38.0 kcal/mol). The 2) $Pd \rightarrow Ar$ and 3) Ar \rightarrow Pd interactions are only relevant to a secondary Pd⁰arene interaction. The 3) Ar \rightarrow Pd interaction (12.4–12.7 kcal/mol) is stronger than the 2) Pd \rightarrow Ar interaction (5.1–6.1 kcal/mol), which shows that the transfer of electrons from the aromatic ring to Pd is the dominant contributor towards the secondary Pd^{0} -arene interaction in **1**-Pd(dba) complexes. The 3) Ar \rightarrow Pd interaction is relatively weak, and no marked differences are found for the substituent on the P atom (12.7 kcal/mol for BFPy vs. 12.4 kcal/mol for Ph vs. 12.5 kcal/mol for Cy). This is probably due to the dominance of the electron exchange between Pd and dba, 4) Pd \rightarrow dba and 5) dba \rightarrow Pd interactions. Next, we considered the 1-Pd complexes, which

To further obtain information, we analysed the Pd^{0} -arene interaction using NBO methods at the M06-2X level with the basis sets of 6-31G(d) for C, H, O, F and P and LandL2DZ + ECP for Pd. Numerous orbital interactions show that over 1.0

Journal Name

were the active species of the direct arylation reaction. In these cases, the secondary Pd⁰-arene interactions are relatively strong. Note that the 2) Pd \rightarrow Ar interactions (15.3– 25.0 kcal/mol) are stronger than the 3) Ar \rightarrow Pd interaction (14.6-18.3 kcal/mol), which indicates that the transfer of electrons from Pd to the aromatic ring is dominant in the secondary Pd⁰-arene interaction in **1**-Pd complexes. These results run contrary to our expectations because it had been previously reported that the electron density at the metal centre increases due to palladium-arene interactions.^{6b} Due to the transfer of electrons from Pd to the aromatic ring, the electron-donating 1e provides the most favourable (25.0 kcal/mol) interaction, and the electron-poor 1a provides the most unfavourable interaction (15.3 kcal/mol). This is observed because the electron density of Pd in 1-Pd is increased by the electron-donating 1e, and the electron density of Pd in 1-Pd is less increased by the electron-poor 1a. In the latter case, the strength of interaction 2) is similar to the 3) Ar \rightarrow Pd interaction (14.6 kcal/mol). However, both interaction energies are larger than those in 1-Pd(dba) complexes. Therefore, the secondary interaction can assist in sufficiently stabilising the active Pd⁰ species even though **1a**-Pd has the weakest secondary Pd⁰–arene interaction.

	BFPy (a)	Ph (d)	Cy (e)
(A) 4 -Pd			
1) P→Pd	39.2 ^b	47.1 ^b	54.0 ^b
(B) 1 -Pd			
1) P→Pd	32.0 ^b	34.9 ^b	38.1 ^b
2) Pd→Ar	15.3 ^c	23.1 ^c	25.0 ^c
3) Ar→Pd	14.6 ^d	17.7 ^d	18.3 ^d
(C) 1 -Pd(dba)			
1) P→Pd	33.6 ^b	35.9 ^b	38.0 ^b
2) Pd→Ar	6.0 ^e	6.1 ^e	5.1 ^e
3) Ar→Pd	12.7 ^d	12.4 ^d	12.5 ^d
4) Pd→dba	44.6 ^f	51.0 ^f	51.9 ^f
5) dba→Pd	24.5 ^g	25.5 ^g	25.5 ^g

^{*a*} Deletion energies (kcal/mol) were calculated at the M06-2X/6-31G(d) with LandL2DZ + ECP. ^{*b*} Deletion energy of Lp_P→Lp^{*}_{Pd} interaction. ^{*c*} Deletion energy of Lp_{Pd}→ π^*_{Ar} interaction. ^{*d*} Deletion energy of interactions: σ_{Ar1} →Lp^{*}_{Pd}, σ_{Ar2} →Lp^{*}_{Ar2}, σ_{Ar2}

Fig. 3 Schematic presentation of orbital interactions showing over 1.0 kcal/mol of 2ndorder perturbation energy by NBO analysis at the M06-2X/6-31G(d) with LANL2DZ+ECP for interaction between Pd and phosphine in **1a**-Pd. ARTICLE

Fig. 4 Schematic presentation of orbital interactions showing over 1.0 kcal/mol of 2ndorder perturbation energy by NBO analysis at the M06-2X/6-31G(d) with LANL2DZ+ECP for interaction between Pd and phosphine or dba in **1a**-Pd(dba).

Conclusions

We synthesised novel, highly electron-poor Buchwald-type phosphines BFPySphos (**1a**), which accelerated the direct arylation of 2-propylthiophene in comparison to the known Buchwald-type ligands PhSPhos (**1d**) and SPhos (**1e**) or PR₃ (**4**). Although the catalytic activity for the direct arylation of 2-propylthiophene tends to increase with the electron-poor ability of ligands, the stability of the catalyst is also essential. Investigations on the secondary Pd⁰–arene interaction of **1**-Pd using the NBO method clarified that a) the electron transfer from Pd to Ar is the dominant contributor towards the interaction, b) the secondary interaction of electron-poor **1a** is weak compared to PhSPhos (**1d**) and SPhos (**1e**) and c) this interaction in **1a** still has the capacity to sufficiently stabilise the active species of Pd⁰.

Experimental

General information

All catalytic reactions were carried out under an argon atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All solvents were purchased as dehydrated grade from Kanto Chemical Co. and then were stored in Schlenk tubes under an argon atmosphere. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise noted. Preparative column chromatography was carried out by using silica gel (Kanto Chemical Co. 60N, 63-210 µm). ¹H NMR and ¹³C NMR spectra were measured at 400 MHz and 100 MHz, respectively, and chemical shifts are given relative to tetramethylsilane (TMS). ³¹P NMR spectra were measured at 162 MHz, and chemical shifts are given relative to 85% H₃PO₄. ¹⁹F NMR spectra were measured at 376 MHz, and chemical shifts are given relative to CCl_3F using C_6F_6 as secondary reference (-162.9 ppm).

2-Bis[2,6-bis(trifluoromethyl)-4-pyridyl]phosphino-2',6'dimethoxybiphenyl [BFPySPhos (1a)]

(2',6'-Dimethoxybiphenyl-2-yl)phosphine (2) (443.2 mg, 1.80 mmol) in a dried 50 mL Schlenk flask with argon was added triphosgene (587.5 mg, 1.98 mmol) and THF (17 mL). The reaction mixture was stirred at 50 °C overnight and subsequently cooled to room temperature. Concentration under vacuum gave the crude 2-dichlorophosphino-2',6'-dimethoxybiphenyl (3).

A dried 100 mL three-necked round-bottomed flask was flashed with argon and charged with magnesium (328.2 mg, 13.5 mmol), LiCl (286.1, 6.75 mmol) and Et₂O (16.5 mL). A solution of DIBAL in hexane (1.0 M, 85 μ L, 0.085 mmol) was added and stirred for 15 min. Then 4-bromo-2,6-bis(trifluoromethyl)pyridine (1.59 g, 5.40 mmol) was added and reaction mixture was stirred for 90 min. After addition of a solution of crude **3** in THF (3 mL) at 0 °C, the mixture was stirred for 4 h at room temperature and then sat. NH₄Cl aq. was added. After extraction with EtOAc, and treated in a usual manner to give a crude product. The resulting solid was

purified by silica gel chromatography (hexane / EtOAc = 7 / 1) to give 555.4 mg of 1a (46% yield) as a white solid. M.p. 143-144 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.70 - 7.58 (m, 5H), 7.48 – 7.32 (m, 3H), 7.04 - 7.00 (m, 1H), 6.60 (d, J = 8.4 Hz, 2H), 3.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 157.7, 152.5 (d, J_P = 26.2 Hz), 148.8 (dq, J_F = 35.7 Hz, J_P = 4.3 Hz), 143.2(d, J_P = 37.5 Hz), 133.9 (d, J_P = 1.1 Hz), 132.5 (d, J_P = 7.6 Hz), 132.0, 131.3 (d, J_P = 2.1 Hz), 130.6, 129.1, 126.1(d, $J_P = 17.6$ Hz), 120.8 (g, $J_F = 273.4$ Hz), 117.8 (d, J_{P} = 8.6 Hz), 103.9, 55.6. ¹⁹F NMR (376 MHz, CDCl₃): δ -69.1 (s). ³¹P NMR (162 MHz, CDCl₃): δ -9.1 (s). IR (KBr): 2962, 2938, 2839, 1592, 1474, 1246, 1133, 764 cm⁻¹. HRMS (CI) m/z calcd for $C_{28}H_{17}F_{12}N_2O_2P$ ([M+H]⁺): 673.0914, found : 673.0930.

2-Bis[3,5-bis(trifluoromethyl)phenyl]phosphino-2',6'dimethoxybiphenyl [{3,5-(CF₃)₂-C₆H₃}SPhos (1b)]

The phosphine 1b was obtained from 2 (240.3 mg, 0.976mmol) with triphosgene (317.5 mg, 1.07 mmol), and then 3,5-bis(trifluoromethyl)bromobenzene (500µL, 2.93 mmol) with magnesium (177.9 mg, 7.32 mmol) by the procedure described for **1a** (65% yield as a white solid). M.p. 116 °C, ¹H NMR (400 MHz, CDCl₃): δ 7.82 (s, 2H), 7.62 (d, J = 6.0 Hz, 4H), 7.51 (dt, J = 7.6, 0.6 Hz, 1H), 7.40 - 7.26 (m, 3H), 7.07 - 7.02 (m, 1H), 6.56 (d, J = 8.4 Hz, 2H), 3.56 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 157.6, 142.1 (d, J_P = 35.6 Hz), 140.8 (d, J_P = 20.1 Hz), 134.1 (d, J_P = 6.1 Hz), 133.3 - 132.7 (m), 131.7 (dq, J_F = 33.0 Hz, J_P = 5.8 Hz), 131.7 (d, J_P = 6.7 Hz), 130.6, 130.0, 128.3, 123.1 (q, J_F = 271.3 Hz), 122.7 - 122.5 (m), 118.0 (d, J_P = 8.2 Hz), 103.5, 55.4. ¹⁹F NMR (376 MHz,CDCl₃): δ -64.2 (s). ³¹P NMR (162 MHz, CDCl₃): δ -9.2 (s). IR (KBr): 2976, 2844, 1591, 1468, 1359, 1109, 1035, 773 cm^{-1} . HRMS (CI) m/z calcd for $C_{30}H_{20}F_{12}O_2P([M+H]^+): 671.1009, found : 671.1018.$

trans-[RhCl(1a)₂CO]

A 20 mL Schlenk flask was flushed with argon and charged with **1a** (50.0 mg, 74.4 μmol), [RhCl(CO)₂]₂ (8.0 mg, 20.6 μmol), and dichloromethane (1.0 mL). The solution was stirred at room temperature for 1 h. The solution was filtrated, and concentrated under reduced pressure to give trans-[RhCl(1a)₂CO] as a yellow solid. ³¹P NMR (162 MHz, CDCl₃): δ 29.1 (d, J = 137.8 Hz). IR (CH₂Cl₂): 2972, 2956, 2835, 2001, 1591, 1474, 1242, 1127, 780, 750 cm⁻¹.

trans-[RhCl(1b)2CO]

Synthesis of trans-[RhCl(1b)₂CO] were conducted by the procedure described for trans-[RhCl(1a)₂CO] using 1b (50.0 mg, 74.6 µmol) and [RhCl(CO)₂]₂ (8.3 mg, 21.3 µmol). A yellow solid. ³¹P NMR (162 MHz, CDCl₃): δ 30.3 (d, J = 134.8 Hz). IR (CH2Cl2): 2972, 2841, 1991, 1599, 1474, 1354, 1112, 1097, 854, 596 cm^{-1} .

trans-[RhCl(1c)₂CO]

Synthesis of trans-[RhCl(1c)₂CO] were conducted by the procedure described for trans-[RhCl(1a)₂CO] using 1c (30.0 mg, 56.1 μmol) and [RhCl(CO)₂]₂ (5.5 mg, 14.1 μmol). A yellow solid. ³¹P NMR (162 MHz, CDCl₃): δ 30.5 (d, J = 132.9 Hz). IR Page 8 of 10

(CH₂Cl₂): 3061, 2985, 2295, 1985, .01446, 1253, 1113, 788, 691 cm⁻¹.

trans-[RhCl(1d)₂CO]

Synthesis of trans-[RhCl(1d)₂CO] were conducted by the procedure described for trans-[RhCl(1a)₂CO] using 1d (50.0 mg, 125.4 $\mu mol)$ and $[RhCl(CO)_2]_2$ (13.7 mg, 35.2 $\mu mol).$ A yellow solid. ³¹P NMR (162 MHz, CDCl₃): δ 29.1 (d, J = 130.8 Hz). IR (CH₂Cl₂): 2992, 2936, 2837, 1979, 1591, 1462, 1254, 1113, 787, 686 cm^{-1} .

trans-[RhCl(1e)₂CO]

Synthesis of trans-[RhCl(1e)₂CO] were conducted by the procedure described for trans-[RhCl(1a)₂CO] using 1e (50.0 mg, 121.8 $\mu mol)$ and $[RhCl(CO)_2]_2$ (12.1 mg, 31.1 $\mu mol).$ A yellow solid. ³¹P NMR (162 MHz, CDCl₃): δ 49.6 (d, J = 124.0 Hz). IR (CH₂Cl₂): 2974, 2938, 2853, 1959, 1589, 1429, 1251, 1113, 794, 743 cm⁻¹.

General Procedure for the direct arylation of 2propylthiophene

A 10 mL Schlenk flask was flushed with argon and charged with K₂CO₃ (1.5 equiv), PivOH (30 mol%) and DMA (0.3 M). The mixture was stirred at room temperature for 30 min, and then Pd(OAc)₂ (1 mol%), ligand (2 mol%), 2-propylthiophene (1.2 equiv) and arylbromide (1.0 equiv) were added. The resulting mixture was stirred at 100 °C for 3 h. The reaction mixture was then poured into water and extracted with EtOAc. The organic layer were dried over Na2SO4 and concentrated under reduced pressure. The crude material was purified by silica gel column chromatography with hexane to afford the corresponding product.

Pd/1a-catalyzed direct arylation of 2-propylthiophene with 4bromobenzotrifluoride

The direct arylation of 2-propylthiophene (50 µL, 0.39 mmol) with 4-bromobenzotrifluoride (45 μ L, 0.32mmol) were conducted using Pd(OAc)₂ (0.72 mg, 3.21 μ mol), 1a (4.32 mg, 6.42 μmol), K₂CO₃ (66.63 mg, 0.48 mmol), PivOH (9.85 mg, 0.096 mmol) and DMA (1.1 mL) by the general procedure to give 2-propyl-5-{4-(trifluoromethyl)phenyl}thiophene¹⁸ as a white solid (77.74 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 3.6 Hz, 1H), 6.78 (d, J = 3.6 Hz, 1H), 2.81 (t, J = 7.5 Hz, 2H), 1.74 (sext, J = 7.4 Hz, 2H), 1.01 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 147.3, 140.0, 138.2, 128.9 (d, J = 32.3 Hz), 127.8, 125.9 (q, J = 3.8 Hz), 125.6, 125.5, 124.3, 32.4, 25.0, 13.8. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.6 (s).

2-Phenyl-5-propylthiophene¹⁹

The direct arylation of 2-propylthiophene (52 µL, 0.40 mmol) with bromobenezene (52 µL, 0.33mmol) were conducted using Pd(OAc)₂ (0.75 mg, 3.34 µmol), 1a (4.49 mg, 6.68 µmol), K₂CO₃ (69.24 mg, 0.50 mmol), PivOH (10.23 mg, 0.10 mmol) and DMA (1.1 mL) by the general procedure to give 2-phenyl-5-propylthiophene as a colorless oil (59.93 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 7.4 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.24 (d, J = 8.2 Hz, 1H),

ARTICLE

7.12 (d, J = 3.5 Hz, 1H), 6.74 (d, J = 3.5 Hz, 1H), 2.80 (t, J = 7.5 Hz, 2H), 1.73 (sext, J = 7.4 Hz, 2H), 1.00 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.6, 141.8, 134.9, 128.9, 127.1, 125.6, 125.6, 125.2, 122.8, 32.4, 25.0, 13.8.

2-(4-Methylphenyl)-5-propylthiophene¹⁸

The direct arylation of 2-propylthiophene (50 µL, 0.39 mmol) with 4-bromotoluene (54.97 mg, 0.32mmol) were conducted using Pd(OAc)₂ (0.72 mg, 3.21 µmol), **1a** (4.32 mg, 6.42 µmol), K_2CO_3 (66.63 mg, 0.48 mmol), PivOH (9.85 mg, 0.096 mmol) and DMA (1.1 mL) by the general procedure to give 2-(4-methylphenyl)-5-propylthiophene as a colorless oil (56.53 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 3.6 Hz, 1H), 6.72 (d, *J* = 3.5 Hz, 1H), 2.78 (t, *J* = 7.7 Hz, 2H), 2.34 (s, 3H), 1.71 (sext, *J* = 7.5 Hz, 2H), 0.99 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.0, 142.0, 136.9, 132.1, 129.6, 125.5, 125.1, 122.2, 32.4, 25.0, 21.3, 13.9.

2-Methyl-5-{4-(trifluoromethyl)phenyl}thiophene²⁰

The direct arylation of 2-methylthiophene (37.5 μ L, 0.39 mmol) with 4-bromobenzotrifluoride (45 μ L, 0.32mmol) were conducted using Pd(OAc)₂ (0.72 mg, 3.21 μ mol), **1a** (4.32 mg, 6.42 μ mol), K₂CO₃ (66.63 mg, 0.48 mmol), PivOH (9.85 mg, 0.096 mmol) and DMA (1.1 mL) by the general procedure to give 2-methyl-5-{4-(trifluoromethyl)phenyl}thiophene as a white solid (69.84 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.65 – 7.56 (m, 4H), 7.20-7.18 (m, 1H), 6.77 - 6.75 (m, 1H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 141.3, 140.3, 138.2, 129.5 – 128.2 (m), 126.7, 126.0 (q, *J* = 3.8 Hz), 125.5, 124.5, 124.4 (q, *J* = 270.0 Hz), 15.7. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.6 (s).

2-{4-(Trifluoromethyl)phenyl}benzo[b]thiophene^{12b}

The direct arylation of 2-methylthiophene (37.5 µL, 0.39 mmol) with 4-bromobenzotrifluoride (45µL, 0.32mmol) were conducted using Pd(OAc)₂ (0.72 mg, 3.21 µmol), **1a** (4.32 mg, 6.42 µmol), K₂CO₃ (66.63 mg, 0.48 mmol), PivOH (9.85 mg, 0.096 mmol) and DMA (1.1 mL) by the general procedure to give 2-{4-(trifluoromethyl)phenyl}benzo[b]thiophene as a white solid (77.55 mg, 87% yield). ¹H NMR (400 MHz, CDCl₃): δ 7.87 – 7.79 (m, 4H), 7.67 (d, J = 8.2 Hz, 2H), 7.64 (s, 1H), 7.41 – 7.33 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 142.4, 140.5, 139.9, 137.9, 131- 129.0 (m), 126.8, 126.2 - 126.0 (m), 125.1, 125.0, 124.1 (g, J = 270.4 Hz), 124.1, 122.5, 121.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -63.8 (s).

Evaluation of Kinetic Isotope Effect

A 10 mL Schlenk flask was flushed with argon and charged with K_2CO_3 (66.63 mg, 0.48 mmol), PivOH (9.84 mg, 0.096 mmol) and DMA (1.1 mL). The mixture was stirred at room temperature for 30 min., and then Pd(OAc)₂ (0.72 mg, 3.21 µmol), **1a** (4.32 mg, 6.42 µmol), 4-bromobenzotrifluoride (4.5 µL, 0.032mmol) and the 1 : 1 mixture of 2-propylthiophene and 2-propylthiophene-*d* (42 µL, 3.21 mmol) were added. The resulting mixture was stirred at 100 °C for 20 min. The reaction mixture was then poured into water and extracted with Et₂O. The organic layer were dried over Na₂SO₄ and concentrated under reduced pressure. The KIE is calculated by ¹H NMR.

Computational methods

Journal Name

The geometries of the phosphines (1a, 1d, 1e, 4a, 4d and 4e) and their ligated Pd complexes (1-Pd, 1-Pd(dba), and 4-Pd) were fully optimized and characterized by frequency calculation by ONIOM method²¹ at the second order Møller-Plesset perturbation method (MP2)²² in the high-level layer and B3LYP (Becke's three parameter hybrid method^{23a} using the Lee-Yang-Parr correlation function^{23b}) density functional theory (DFT) in the low-level layer with the LANL2DZ basis set²⁴ using Gaussian 09 program.²⁵ The atom distribution in those two layers is as follows: high level layer is the atoms being related to the interaction with Pd, and the others are low level layer (the details are shown in ESI). Free energies and enthalpies (298.15 K, 1 atm) were computed for the gas phase. NBO calculations²⁶ were performed at the M06-2X²⁷ with 6-31G(d)²⁴ and LANL2DZ with effective core potential (ECP) for Pd. For the NBO energetic analysis, NBO deletions were employed using \$DEL Keylist.²¹

Acknowledgements

The acknowledgements come at the end of an article after the conclusions and before the notes and references.

Notes and references

- 1 Phosphorus(III)Ligands in Homogeneous Catalysis: Design and Synthesis, ed. P. C. J. Kamer and P. W. N. M. van Leeuwen, Willey-VCH, Weinheim, Germany, 2012.
- 2 Review for fluorinated aryl phosphines: C. L. Pollock, G. C. Saunders, E. C. M. S. Smyth and V. I. Sorokin, J. Fluorine Chem., 2008, 129, 142.
- 3 (a) T. Korenaga, K. Osaki, R. Maenishi and T. Sakai, Org. Lett., 2009, **11**, 2325; (b) T. Korenaga, K. Abe, A. Ko, R. Maenishi and T. Sakai, Organometallics, 2010, **29**, 4025; (c) T. Korenaga, A. Ko, K. Uotani, Y. Tanaka and T. Sakai, Angew. Chem. Int. Ed., 2011, **50**, 10703.
- 4 (a) T. Korenaga, R. Maenishi, K. Hayashi and T. Sakai, *Adv. Synth. Catal.*, 2010, **352**, 3247. (b) T. Korenaga, K. Hayashi, Y. Akaki, R. Maenishi and T. Sakai, *Org. Lett.*, 2011, **13**, 2022; (c) T. Korenaga, A. Ko and K. Shimada, *J. Org. Chem.*, 2013, **78**, 9975.
- 5 T. Korenaga, N. Suzuki, M. Sueda and K. Shimada, J. Organomet. Chem., 2015, **780**, 63.
- Reviews: (a) D. S. Surry and S. L. Buchwald, *Chem. Sci.*, 2011,
 2, 27; (b) D. S. Surry and S. L. Buchwald, *Angew. Chem. Int. Ed.*, 2008, 47, 6338.
- 7 Recent examples: (a) P. Ruiz-Castillo, D. G. Blackmond and S. L. Buchwald, J. Am. Chem. Soc., 2015, 137, 3085; (b) J. W. B. Fyfe, E. Valverde, C. P. Seath, A. R. Kennedy, J. M. Redmond, N. A. Anderson and A. J. B. Watson, Chem. Eur. J., 2015, 21, (Ahead of Print); (c) J. U. Engelhart, B. D. Lindner, M. Schaffroth, D. Schrempp, O. Tverskoy and U. H. F. Bunz, Chem. Eur.J., 2015, 21, 8121; (d) G. Zhao, C. Chen, Y. Yue, Y. Yu and J. Peng, J. Org. Chem., 2015, 80, 2827; (e) A. W. Brown and J. P. A. Harrity, J. Org. Chem., 2015, 80, 2467; (f) F. Kügler, J. Ermert, P. Kaufholz and H. H. Coenen; Molecules, 2015, 20, 470; (g) A. Bruneau, M. Roche, M. Alami and S. Messaoudi, ACS Catal., 2015, 5, 1386; (h) Y. Y. See, T. T. Dang, A. Chen and A. M. Seayad, Eur. J. Org. Chem., 2014, 7405; (i) T. S. Dexheimer, A. S. Rosenthal, D. K. Luci, Q. Liang, M. A. Villamil, J. Chen, H. Sun, E. H. Kerns, A. Simeonov, A. Jadhav, Z. Zhuang and D. J. Maloney, J. Med. Chem., 2014, 57, 8099; (j) S. Borjian, D. M. E. Tom and M. C. Baird,

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Organometallics, 2014, 33, 3928; (k) A. Millet and O. Baudoin, Org. Lett., 2014, 16, 3998; (I) C. Gassner, R. Hesse, A. W. Schmidt and H.-J. Knölker, Org. Biomol. Chem., 2014, 12, 6490; (m) P. Wagner, M. Bollenbach, C. Doebelin, F. Bihel, J.-J. Bourguignon, C. Salomé and M. Schmitt, Green Chem., 2014, 16, 4170; (n) C. Schuster, C.Börger, K. K. Julich-Gruner, R. Hesse, A. Jäger, G. Kaufmann, A. W. Schmidt and H.-J. Knölker, Eur. J. Org. Chem. 2014, 4741; (o) R. Hesse, A. Jäger, A. W. Schmidt and H.-J. Knölker, Org. Biomol. Chem., 2014, 12, 3866; (p) R. Hesse, M. P. Krahl, A. Jäger, O. Kataeva, A. W. Schmidt and H.-J. Knölker, Eur. J. Org. Chem., 2014, 4014; (q) A. Maleckis and M. S. Sanford, Organometallics, 2014, 33, 2653; (r) K. Shimizu, Y. Minami, O. Goto, H. Ikehira and T. Hiyama, Chem. Lett., 2014, 43, 438; (s) M. A. Topchiy, A. F. Asachenko and M. S. Nechaev, Eur. J. Org. Chem. 2014, 3319; (t) L. Zhang, J. Panteleev and M. Lautens, J. Org. Chem., 2014, 79, 12159; (u) L. Zhang, M. Zheng, F. Zhao, Y. Zhai and H. Liu, ACS Comb. Sci., 2014, 16, 184; (v) M. Su, N. Hoshiya and S. L. Buchwald, Org. Lett., 2014, 16, 832; (w) K. Moriya and P. Knochel, Org. Lett., 2014, 16. 924.

- (a) J. Yin, M. P. Rainka, X.-X. Zhang and S. L. Buchwald, J. Am. 8 Chem. Soc., 2002, 124, 1162; (b) S. D. Walker, T. E. Barder, J. R. Martinelli and S. L. Buchwald, Angew. Chem. Int. Ed., 2004, 43, 1871; (c) T. E. Barder, S. D. Walker, J. R. Martinelli and S. L. Buchwald, J. Am. Chem. Soc., 2005, 127, 4685; (d) S. M. Reid, R. C. Boyle, J. T. Mague and M. J. Fink, J. Am. Chem. Soc., 2003, 125, 7816.
- Buchwald-type biaryl-phosphine ligands bearing fluoro-9 functionalized aryl groups on phosphorous: (a) L.-C. Campeau, M. Parisien, M. Leblanc and K. Fagnou, J. Am. Chem. Soc., 2004, 126, 9186; (b) O. René and K. Fagnou, Adv. Synth. Catal., 2010, 352, 2116; (c) J. D. Hicks, A. M. Hyde, A. M. Cuezva and S. L. Buchwald, J. Am. Chem. Soc., 2009, 131, 16720; (d) W. Wang, G. B. Hammond and B. Xu, J. Am. Chem. Soc., 2012, 134, 5697.
- 10 T. Saget, S. J. Lemouzy and N. Cramer, Angew. Chem. Int. Ed., 2012, **51**, 2238.
- 11 (a) L. Ackermann, Chem. Rev., 2011, 111, 1315; (b) D. Lapointe and K. Fagnou, Chem. Lett., 2010, 39, 1118.
- 12 (a) S. I. Gorelsky, D. Lapointe and K. Fagnou, J. Org. Chem., 2012, 77, 658; (b) D. Lapointe, T. Markiewicz, C. J. Whipp, A. Toderian and K. Fagnou, J. Org. Chem., 2011, 76, 749.
- 13 Y. Li, J. Wang, M. Huang, Z. Wang, Y. Wu and Y. Wu, J. Org. Chem., 2014, 79, 2890.
- 14 (a) M. Wakioka, Y. Nakamura, Q. Wang and F. Ozawa, Organometallics, 2012, 31, 4810; (b) M. Wakioka, Y. Nakamura, Y. Hihara, F. Ozawa and S. Sakaki, Organometallics, 2013, 32, 4423; (c) M. Wakioka, Y. Nakamura, Y. Hihara, F. Ozawa and S. Sakaki, Organometallics, 2014, 33, 6247; (d) M. Wakioka, Y. Nakamura, M. Montgomery and F. Ozawa, Organometallics, 2015, **34**, 198. 15 The v^{CO} values of *trans*-[RhCl(**4**)₂(CO)] were measured in
- CH₂Cl₂ at room temperature using IR spectrum.
- 16 (a) T. E. Barder, M. R. Biscoe and S. L. Buchwald, Organometallics, 2007, 26, 2183; (b) C. L. McMullin, N. Fey and J. N. Harvey, Dalton Trans., 2014, 43, 13545.
- 17 I. J. S. Fairlamb, Org. Biomol. Chem., 2008, 6, 3645.
- 18 B. Liégault, D. Lapointe, L. Caron, A. Vlassova and K. Fagnou; J. Org. Chem., 2009, 74, 1826.
- 19 J. S. Sorensen and N. A. Sorensen, Acta Chem. Scand., 1958, 12. 771.
- 20 B. Join, T. Yamamoto and K. Itami, Angew. Chem. Int. Ed., 2009, **48**, 3644.
- 21 S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct.: THEOCHEM, 1999, 462, 1.
- 22 C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618.

- 23 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 24 For Gaussian basis sets: (a) M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265; (b) W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab initio Molecular Orbital Theory; John Wiley: New York, 1986, and references cited therein.
- 25 M. J. Frisch, et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, 2010.
- 26 (a) F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, U.K., 2005; (b) D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO Version 5.9; Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2009.
- 27 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- 28 F. Weinhold, Discovering Chemistry With Natural Bond Orbitals; John Wiley: New Jersey, 2012.