This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Synthesis and unique reversible splitting of 14-membered cyclic aminomethylphosphines on to 7-membered heterocycles.

The novel type of 14-membered cyclic polyphosphines, namely 1,8-diaza-3,6,10,13-tetraphosphacyclotetradecanes 2_{4-4a}, have been synthesized by the condensation of 1,2-bis(phenylphosphino)ethane, formaldehyde and alkylamines (isopropylamine, ethylamine and cyclohexylamine) as a $RRRR/SSSS$-stereoisomer. The structure of macrocycle 2_{4a} was investigated by NMR-spectroscopy and X-ray crystal structure analysis. The unique reversible processes of macrocycles 2_{4-4a} splitting onto corresponding rac- (2_{4a}-$4b$) and meso- (2_{4a}-$4c$) stereoisomers of 1-aza-3,6-diphosphacycloheptanes were discovered.

Introduction
The development of phosphorus-containing macrocyclic mixed-donor ligands has emerged as an important subject in coordination chemistry, because they provide characteristic chelating sites that are difficult to construct with their acyclic analogues.\(^1\)\(^2\)\(^3\) Such hybrid macrocyclic donors are highly promising for designing reactive and multifunctional transition metal catalysts, as, firstly, the metal center can be supported and stabilized by multidentate macrocyclic platforms, secondly, various coordination properties, such as coordination numbers, oxidation state, geometry of the metal center are available by changing of the components of the heteroatom donors, and thirdly, a conformational mobility of the ligands is controllable by suitable choice of the bridging atoms/groups between donor atoms. The macrocyclic multidentate phosphate ligands as formal analogues of the crown ethers hold promise as incredibly stable ligands for applications requiring robust complexes, such as radioactive metal complexes for use as radiopharmaceuticals,\(^4\) for the stable Ni(II) complexes with direct metal-borohydride coordination as potential hydrogenation catalysts,\(^5\) and Cr(II) complexes as reducing agents for the catalytic production of hydrazine and/or ammonia from nitrogen.\(^6\)

It has been over 35 years since the first macrocyclic phosphate ligands were synthesized and few strategies have been designed for their synthesis. However, macrocyclic phosphate ligands have been difficult to synthesize stereoselectively in a good yield and only a handful of synthetic methods have shown broad applicability in terms of the ring sizes, functional groups, and metal complexes that can be obtained.\(^1\)\(^3\)

The convenient route to macrocyclic polynedentate P-N ligands by the condensation of primary phosphines or secondary bisphosphines with formaldehyde and primary amines or diamines was developed in our laboratory. This method of the design of macrocyclic polyphosphines was based on the principles of covalent self-assembly and was successfully used for the stereoselective synthesis of macrocyclic aminomethylphosphines: 16-, 18-, 20-membered corands and 28-, 36- and 38-membered cyclophanes.\(^7\)\(^8\) The distinctive feature of the covalent self-assembly processes is their ability of the self-correction, when the “incorrect” intermediate is able to decompose into starting compounds due to the reversibility of the reaction. These compounds react further to give more thermodynamically stable “correct” product. The $P\cdot CH_2\cdot N$ fragments of aminomethylphosphines are enough labile for the realizing of self-assembly processes. It was shown that lability of aminomethylphosphines plays a key role for the stereoconversion between RS- and RR/SS- isomers of 1-aza-3,6-diphosphacycloheptanes and 16-membered macrocycles as well as alternative formation of only $RRSS$ or $RRRR/SSSS$ isomer in the row of 16-, 18- and 20-membered cyclic aminomethylphosphines.\(^7\)\(^9\)

The interaction of 1,2-bis(hydroxymethyl)phenylphosphino)ethane with primary aryl- and benzylamines gives only 7-membered 1-aza-3,6-diphosphacycloheptanes as thermodynamically more stable products\(^9\) in contrast to hydroxymethyl derivatives of 1,3-, 1,4- and 1,5-bisphosphines giving 16-, 18- and 20-membered cyclic tetraphosphines.\(^7\) However the formation of 14-membered macrocycle was suggested as an intermediate of interconversion of rac- and meso-isomers of 1-aza-3,6-diphosphacycloheptanes.\(^8\)

Here we reported the synthesis and crystal structure of novel 14-membered aminomethylphosphines and their unique ability to undergo a reversible splitting on to two 7-membered 1-aza-3,6-diphosphacycloheptanes in solutions.

Results and discussion
Synthesis. It has been shown that sufficient basicity of primary amines is one of the key requirements for the realization of the self-assembly during Mannich type condensation. The macrocycles 2_{4-4a} were obtained by Mannich-like condensation of equimolar mixture of racemic RR/SS- and RS-isomers of 1,2-bis(hydroxymethyl)phenylphosphino)ethane with highly basic isopropylamine, ethylamine, and cyclohexylamine respectively in...
DMF (Scheme 1). It should be underlined that less basic aryl- or benzylamines in ethanol gave only 7-membered cycles as a result of analogous condensations.\(^5\)

In all cases, \(^{31}\)P NMR spectra of the reaction mixtures in DMF (after ca. 1 - 2 hours) show three main signals in the region -27 - -37 ppm which were assigned to the macrocyclic corandenes 2a - 4a and to rac- (2b - 4b) and meso- (2c - 4c) isomers of corresponding 1-aza-3,6-diphosphacycloheptanes. However the signals of a few acyclic half-products were registered also. \(^2\)

Scheme 1 Synthesis of macrocycles 2a - 4a.

After the heating of the reaction mixture at 60 - 70 °C and following cooling white crystalline products in the yields of 59%, 26% and 20% for 2a, 3a, and 4a respectively were isolated. The isolated macrocycles 2a - 4a are insoluble in DMF and acetone, but are soluble in benzene, toluene and chloroform. The ESI-MS spectra of these compounds display the picks, the m/z values and isotopic patterns fitted completely with the stoichiometry of macrocycles 2a - 4a. In the \(^1^H\) and \(^3^1^P\) NMR spectra of 2a, 3a, and 4a measured immediately after the dissolution in CD\(_2\)Cl\(_2\) only one set of signals was registered evidencing the formation of only one isomer.

NMR data. Complete structure elucidation of the title compounds was accomplished by a variety of 1D/2D correlation NMR experiments (COSY, HSQC, \(^1^H\)-\(^1^H\)/\(^1^H\)-\(^3^1^N\)/\(^1^H\)-\(^3^1^P\) HMBC).\(^6\) 2D DOSY\(^7\)\(^8\)\(^9\) and 1D DPFGNOE\(^10\) techniques were used to measure self-diffusion coefficients and NOEs, respectively. The efficiency of NMR approach for total macrocyclic tetraphosphines structure elucidation has been demonstrated recently.\(^11\) Related 1D/2D NMR spectra can be obtained in the Electronic Supplementary Information (ESI, Figures S1 - S29).

Chemical structure of the title 14-membered macrocycles can be established practically “directly” through a variety of internuclear NMR connectivities starting from P- and N-substituents (e.g. for 2a, Figure 1). Characteristic NOE’s between CH (i-Pr) and NCH\(^3^1^P\), Me\(^\text{ax}\) (i-Pr) and NCH\(^3^1^P\), Me\(^\text{eq}\) (i-Pr) and NCH\(^3^1^P\) allow unequivocal assignment of in- and out-oriented towards macrocycle methyl groups of isopropyl substituent.\(^12\)

One singlet in \(^3^1^P\) spectra and only one set of signals for each type of protons in \(^1^H\) spectra of 2a - 4a suggest high overall symmetry of their 3D structure, viz. there are four magnetically equivalent fragments that can be superimposed by symmetry operations (Figure 1c). Such high symmetry can be well explained by the fast exchange (in NMR time scale) between two degenerate conformations that occurs through intramolecular rotations around P-CH\(_2\)-N-CH\(_2\)-P bonds with synchronous inversions of both nitrogen’s LP’s (Figure 1c). It is interesting to note that the magnetic environments of each i-Pr’s methyl groups do not changed during this process, e.g. one methyl (in) is always oriented inside while another (out) is always outside in respect to macrocycle cavity. Thus configurations of phosphorus atoms of both P-CH\(_2\)-N-CH\(_2\)-P fragments have to be the same otherwise i-Pr’s methyls would be dynamically equivalent and resonates as single doublet. On the other hand P-CH\(_2\)-CH\(_3\)-P moiety resonates in \(^1^H\) spectra as AA’BB’MM’ spin system with large vicinal spin-spin couplings (\(J_{AB} = \text{ca. 14 Hz}, J_{AX} = \text{ca.}15\) Hz) that suggests trans orientation of two ending phosphorus and opposite directions of their LP’s in respect to the macrocycle plane. Thus, NMR spectra of 2a corresponds to \(S\)\(_\text{P}\)\(_S\)\(_\text{S}\)\(_\text{P}\)\(_R\)\(_\text{P}\)\(_R\)\(_\text{R}\)\(_\text{R}\) isomer with three symmetry C\(_2\) axis (passing through two nitrogens, through middles of CH\(_2\)-CH\(_2\) bonds of P-CH\(_2\)-CH\(_2\)-P moiety and orthogonal to the macrocycle plane, Figure 1c).

Figure 1 \(^1^H\) (a) and \(^3^1^P\) (b) NMR spectra of 2a in CD\(_2\)Cl\(_2\) at T=303K; c) Schematic representation of the macrocycle conformations in exchange and the main \(^1^H\)-\(^1^N\) (blue)/\(^1^H\)-\(^3^1^P\) (red) HMBC correlations.

Figure 2 Molecular structure of 2a.

Figure 3 Conformation of 18-membered (a) and 14-membered (b) macrocycles.

Similarity of NMR characteristics of 2a, 3a and 4a (ESI, Figures S1 – S29) let us to conclude that other macrocycles (3a, 4a) were also isolated as one enantiomeric pair rac- (\(S\)\(_\text{P}\)\(_S\)\(_\text{S}\)\(_\text{P}\)\(_R\)\(_\text{P}\)\(_R\)\(_\text{R}\)\(_\text{R}\)) isomers. The formation of \(S\)\(_\text{P}\)\(_S\)\(_\text{S}\)\(_\text{P}\)\(_R\)\(_\text{P}\)\(_R\)\(_\text{R}\)\(_\text{R}\) isomers obeys the recently formulated rule – “If the phosphorus atoms in the macrocycle are linked by an aliphatic chain consisting of an even number of methylene groups, the \(S\)\(_\text{P}\)\(_S\)\(_\text{S}\)\(_\text{P}\)\(_R\)\(_\text{P}\)\(_R\)\(_\text{R}\) isomer is formed”.\(^9\)

X-Ray Structure. X-ray analysis of the isolated product 2\(_a\) indicates that the \(S\)\(_\text{P}\)\(_S\)\(_\text{S}\)\(_\text{P}\)\(_R\)\(_\text{P}\)\(_R\)\(_\text{R}\) isomer of the 14-membered corand was formed in the course of the reaction (Figure 2).

Two enantiomers of 2\(_a\) being arranged as separate columns, form a true racemic mixture. Conformation of the cycle is similar to that of \(S\)\(_\text{P}\)\(_S\)\(_\text{S}\)\(_\text{P}\)\(_R\)\(_\text{P}\)\(_R\)\(_\text{R}\) isomer of 18-membered 1,10-diaza-3,8,12,17-tetraphosphacyclooctadecane\(^6\) and differs only by the length of hydrocarbon bridge between phosphorus atoms (4.477 Å...
and 6.928 Å for 14- and 18-membered macrocycles respectively) (Figure 3). The P…P-distances between phosphorus atoms bridged by CH₂-N-CH₃ fragment have a similar values (4.738 and 4.525 Å) for 14- and 18-membered macrocycles respectively.

According to Dale’s nomenclature the conformation of the macrocycle 2a can be designated as the non-diamond lattice biangular [77]. In the biangular [77] conformations as well as in the [99] conformations for the 14-membered macrocycle, one half of a macrocycle, -CH₂P(CH₂)₃PCH₂N-, is the rotated analogue (by 2π/2 radians) of the other with the same configurations at the asymmetric phosphorus atoms (SSSS or RRRR) and opposing orientations of their lone pairs of electrons relative to each other. The substituents at the nitrogen atoms in 2a are located on one side of the macrocyclic plane. The nitrogen atoms are trigonal pyramidal (the sum of angles is 335.75°). The phenyl substituents on the phosphorus atoms are located equatorial and alternating relative to macrocyclic plane.

Reversible splitting of 2a – 4a in solutions. The lability of the P-CH₂-N-fragment is a key property causing the self-assembly and stereoconversion processes of the cyclic aminomethylphosphines. Recently were reported the interconversions between the stereoisomers of 1,9-diazaoctahexasyl bicyclo[10.1.1]tetradecanes and rac- and meso-isomers of seven-membered 1-aza-3,7-diphenylphosphacycloheptanes in solutions. The 14-membered heterocycle was supposed to be intermediate of the conversion of seven-membered heterocycles.

It has been shown that the title 14-membered macrocycles (2a – 4a) are not stable in the solution. After one half of hour two additional sets of signals appeared in the NMR spectra (e.g. Figure 4). Intensities of new sets of signals increased with time while the signals ascribed to 14-membered macrocycle diminished. Finally, after ca. 14 days the system changed significantly. P- and 31P spectra (Figures 4a, b) corresponded to the mixture of three compounds with integral intensities as ca. 75 (2b - 4b) : 22 (2c - 4c) : 3 (2a - 4a). The quantity of macrocycles 2a - 4a in the equilibrium mixture is only 2 - 6 %. The isomer 2b - 4b noticeably prevailed in the equilibrium (73 - 83 %), amount of 2c - 4c isomer is 15 - 25 %.

The signals of two new components in 1H and 31P spectra are situated in the same regions and have the same intensity and multiplicity relationships as in described 7-membered heterocycles suggesting that they have chemically close structure. So, it can be well hypothesized that in these cases the 14-membered macrocycles are disassembled onto corresponding half’s to give two molecules of 1-aza-3,6-diphenylphosphacycloheptanes in solution (Figure 4c).

H-13C/H-15N/H-31P HMBC correlation experiments allows unequivocally to ascribe signals in NMR spectra to each of component of the mixture (ESI, Figures S7 – S29).

Indeed, according to 2D DOSY spectra for 2 self-diffusion coefficients (SDC) of new species in solution are ca. equal and notable higher (1.78*10⁻⁹ m²/s) than that for initial 14-membered macrocycle (1.42*10⁻⁹ m²/s) (ESI, Figure S13). Thus with taking into account Einstein-Stocks relationship between SDC and effective molecular volume, it can be figured out that weight (or volume) of new products are ca. two times less than that of initial 14-membered macrocycle. Thus upon these data we can conclude that new signals correspond to the 7-membered heterocycles. Similar relationships for SDC of different isomers were also observed for 3 (ESI, Figure S21).

Unequivocal assignment of rac- and meso-isomers can be done on symmetry consideration. For example, two i-Pr’s of 2 are equivalent in meso-form but they should resonate separately in rac-isomer like in 14-membered macrocycle. Thus in CDCl₃ solution dominates the rac-isomer (δP = -28.7 ppm), the meso-form (δP = -24.8 ppm) being less populated. In similar manner for 3 and 4 equivalence/non-equivalence of N-CH₂-CH₃ and N-cyclohexyl protons were used to differentiate meso- versus rac-isomers.

This assignment is also strongly supported by GIAO 31P chemical shift (CS) data. According to calculations (Table 1) for 2 and 4 macrocycles (2a, 4a) should resonate at higher field while the meso-isomers (2c, 4c) expected to be at lower field than rac-isomers (2b, 4b). In the case of 3 reverse relationship is expected due to slightly different conformational preference around the N-R bond. All this is in full agreement with experimental findings (Table 1).

Table 1. Calculated and experimental 31P CSs.

<table>
<thead>
<tr>
<th>Compound</th>
<th>δcalc / δexp</th>
<th>δcalc / δexp</th>
<th>δcalc / δexp</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-memb.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>-33.5/-31.5</td>
<td>-33.7/-31.5</td>
<td>-33.3/-31.7</td>
</tr>
<tr>
<td>rac (b)</td>
<td>-32.3/-29.0</td>
<td>-43.7/-36.5</td>
<td>-32.3/-30.0</td>
</tr>
<tr>
<td>meso (c)</td>
<td>-22.8/-25.2</td>
<td>-36.9/-33.5</td>
<td>-23.1/-26.2</td>
</tr>
</tbody>
</table>

* Experimental 31P NMR CSs of 2a,4b,c in CDCl₃ at 303 K; † for 3 in rac- and meso-isomers CSs are averaged between two almost isoenergetical conformations around N-R bond.

The NMR monitoring of the interconversion showed that two processes take place: the splitting of the macrocycle onto RR/SS- and RS-isomers of 7-membered heterocycle and the stereoconversion between those isomers (Figure 5).

Figure 4 1H (a) and 31P (b) NMR spectra of 2a, 2b, and 2c (correspondingly colored) in CDCl₃ at T=303 K after ca. 14 days. c) Schematic representation of the macrocycle and structures of the 7-membered isomers. The signals on the spectra are colored respectively.

The signals of two new components in 1H and 31P spectra are situated in the same regions and have the same intensity and multiplicity relationships as in described 7-membered heterocycles suggesting that they have chemically close structure. So, it can be well hypothesized that in these cases the 14-membered macrocycles are disassembled onto corresponding half’s to give two molecules of 1-aza-3,6-diphenylphosphacycloheptanes in solution (Figure 4c).
The rate of both processes is increased by the increase of initial concentration of the macrocycle (from 10 mmol/l to 40 mmol/l, ESI, Tables S5, S6) and temperature (295.5K or 343K).

The equilibrium is established during ca. 30 h in contrast to ca. 340 h for acid free mixtures with the same initial concentration (ESI, Tables S5, S6). Moreover, the presence of 10% of p-toluenesulfonic acid as a proton source accelerates the dissociation and the stereoconversion processes (ESI, Table S7).

Unexpectedly, in spite of prevalence of processes are catalyzed by protons from acid or water traces. So, we suppose, that found interconversion processes are catalyzed by protons from acid or water traces. In contrast to the higher macrocycles the 14-membered aminomethylphosphines undergo the unusual process and primary amines. In contrast to the higher macrocycles the 14-membered aminomethylphosphines undergo the unusual process and show the versatility of Mannich-like condensation of the reversible cycle splitting onto two molecules of 1-aza-3,6-membered heterocycles, whereas the stabilization of seven-membered forms in solution may be caused the back formation of 14-membered heterocycle, whereas the stabilization of seven-membered forms in solution may be caused by the impact of solvent effects and entropic contribution.

Conclusions

In summary, we have demonstrated the effectiveness of the covalent self-assembly approach for the stereoselective synthesis of 14-membered macrocyclic tetrakisphosphines as $S_p S_p S_p S_p R_p R_p R_p R_p$ stereoisomer thereby expanding the row of 16-, 18- and 20-membered macrocyclic aminomethylphosphines and showing the versatility of Mannich-like condensation reaction between a.o-bis(ary phosphino)alkanes, formaldehyde and primary amines. In contrast to the higher macrocycles the 14-membered aminomethylphosphines undergo the unusual process of the reversible cycle splitting onto two molecules of 1-aza-3,6-diphosphacycloheptanes. The splitting ability of 14-membered cycles should be taken into account for further design of transition metal complexes and catalytic active systems on their basis, e.g. catalysts for electrochemical hydrogen transformations.

Acknowledgements

This work was supported by Russian Foundation for Basic Researches (№13-03-00169, 15-43-02292), President’s of RF Grant for the support of leading Scientific schools No 44282014.3 and Programms of Russian Academy of Sciences.

Experimental

All manipulations were carried out with standard high-vacuum and dry-nitrogen techniques. Solvents were dried and degased prior to use and stored under nitrogen atmosphere.

NMR Spectroscopy. All NMR experiments were performed with a Bruker AVANCE-600 spectrometer (14.1 T) equipped with a 5 mm diameter gradient inverse broad band probehead and a pulsed gradient unit capable of producing magnetic field pulse gradients in the z-direction of 53.5 G·cm$^{-1}$. Frequencies are 600.13 MHz in 1H NMR, 242.94 MHz in 31P NMR, 150.90 MHz in 13C NMR, and 60.81 MHz in 15N NMR experiments. For 1H-13C correlations HSQC experiment optimized for $J = 165$ Hz. For 1H-13C long range correlations HMBC experiment optimized for $J = 8$ Hz. For 1H-31P long range correlations HMBC experiment optimized for $J = 6$ Hz. DOSY experiments were performed with ledp3p2s, using stimulated echo sequence and two spoil gradients. NOE experiments were performed with 1D DPPGNOE techniques. Samples (ca. 1 mg) were prepared by dissolving in 0.6 mL of the corresponding solvent (CD$_2$D$_2$99.5% D (Sigma-Aldrich, Germany)) in an inert atmosphere (Ar) and were placed in standard NMR tubes (Norell, USA). Chemical shifts are reported in the δ (ppm) scale relative to the 1H and 13C signals of tetramethylsilane (TMS) (0.00 ppm). 1H and 31P chemical shifts were referenced to the 15N signal of CH$_3$CN (23.5 ppm) and 31P signal of 85% H$_3$PO$_4$ (0.00 ppm), respectively.

The Fourier transform pulsed-gradient spin–echo (FTPGSE) 13-14 experiments were performed by BPP-STE-LED (bipolar pulse pair–stimulated echo–longitudinal eddy current delay) sequence. Data were acquired with a 50.0 or 120.0 ms diffusion delay, with bipolar gradient pulse duration from 2.2 to 6.0 ms (depending on the system under investigation). 1.1 ms spoil gradient pulse (30%) and a 5.0 ms eddy current delay. The bipolar gradient strength was varied incrementally from 0.01 to 0.32 T/m in 16 steps.

Calculations

The quantum chemical calculations were performed on the Gaussian 03 software package. Full geometry optimizations have been carried out within the framework of DFT (PBE1PBE) method using 6-31+G(d) basis sets. As recommended 31P CSs were calculated at the PBE1PBE/6-311G(d,2d,2p) level of theory. 31P CSs were referred at H$_3$PO$_4$. Linear scaling procedure was applied for correcting systematic errors.

The ESI mass spectra were obtained on a Bruker Esquire 3000 Plus. The melting points were determined on a Boetius apparatus and are uncorrected.

The ESI mass spectra were obtained on a Bruker Esquire 3000 Plus. The melting points were determined on a Boetius apparatus and are uncorrected.

Synthesis of starting 1,2-bis(phenylphosphino)ethane was carried by described method. All other reagents were purchased from commercial sources and used as received.

Compound 1 was synthesised by described method from corresponding 1,2-bis(phenylphosphino)ethane and formaldehyde.

1.8-diisopropyl-3,6,10,13-tetraphenyl-1.8-diaza-3.6,10,13-tetraphosphaclotetradecane (2)

To the solution of 1 (from 0.84 g (3.4 mmol) 1,2-bis(phenylphosphino)ethane and 0.20 g (6.7 mmol) paraform) in 5 ml DMF isopropylamine (0.20 g, 3.4 mmol) in 2 ml DMF was added. Reaction mixture was warmed at 50 °C for 7 hours. After cooling the precipitated white crystals were filtered off and washed 2 times with 5 ml of ethanol. Yield: 0.66 g, 59%, mp 159-160 °C. 13H NMR (600.13 MHz; CD$_3$D$_2$ ppm): 7.51 (8 H, br, o-Ph), 7.02 - 7.08 (12 H, m, m, p-Ph), 4.03 (2 H, p, $^{1}J_{HH}$ 6.6, CH$_{2}$CH), 3.65 (4 H, dd, $^{3}J_{HH}$ 12.5, $^{3}J_{PP}$ 4.3, PCH$_2$N$_2$), 2.78 (4 H, dd, $^{3}J_{HH}$ 14.7, $^{3}J_{HH}$ 11.6, PCH$_2$), 2.56 (4 H, dd, $^{3}J_{HH}$ 12.5, $^{3}J_{PP}$ 8.3, PCH$_2$N$_2$), 2.19 (4 H, dd, $^{1}J_{HH}$ 14.7, $^{1}J_{HH}$ 12.2, PCH$_2$), 1.24 (6 H, d, $^{1}J_{HH}$ 6.9, CH$_3$CH - in), 0.73 (6 H, d, $^{1}J_{HH}$ 6.6, CH$_3$CH - out).

13C(1H) NMR (150.90 MHz, CD$_3$D$_2$ ppm): 138.9 (dd, $^{1}J_{CC}$ 24.0, $^{3}J_{CC}$ 5.0, i-Ph), 133.7 (dd, $^{1}J_{CC}$ 12.5, $^{3}J_{CC}$ 9.7, $^{3}J_{CC}$ 11.1, o-Ph), 129.7 (s, m-Ph), 129.5 (s, P-Ph), 57.1 (br, AA’X spin system, $^{1}J_{CC}$ 10.2, $^{3}J_{CC}$ 5.9, $^{3}J_{CC}$ 22.0, $^{3}J_{PP}$ 11.1, PCH$_3$N$_2$), 51.1 (s, CH$_2$), 27.1 (br, AA’X spin system, $^{1}J_{CC}$ -19.9, $^{3}J_{CC}$ 13.2, $^{3}J_{PP}$ 22.0, $^{3}J_{PP}$ 11.1, P-CH$_2$), 22.7 (s, CH$_3$CH - in), 12.7 (s, CH$_3$CH - out).

31P(1H) NMR (242.94 MHz; CD$_3$D$_2$ ppm): -31.3, 15N (60.81
MHz, C_D_{6} ppm): 41.1, 40.3. MS (ESI+), m/z, (Irel): 675 (73 [M+O+H]^+), 681 (73) [M+Na]^+, 697 (100) [M+K]^+. Anal. calc. for C_{38}H_{51}N_{3}P_{3} C; 69.29; H, 7.65; N, 4.25; P, 18.76. Found: C, 69.27; H, 7.67; N, 4.24; P, 18.76.

After 14 days of standing of 2a in C_D_{6}, the signals of dissociation products - rac- (2a) and meso- (2a) isomers of 1-isopropyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane are prevailed.

Rac- isomer of 1-isopropyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane (2a).

^1^H NMR (600.13 MHz, C_D_{6} ppm): 7.45 (4 H, dd, J_{HH} 7.4, J_{PP} 6.7, a-Ph), 7.11 (6 H, t, J_{HH} 7.1, m-Ph), 3.65 - 3.35 (2 H, m, PCH_{2}N), 3.04 (1 H, p, J_{HH} 6.6, CH_{2}CH), 2.98 (2 H, dd, J_{HH} 14.0, J_{PP} 4.2, CH_{2}NCH), 2.04 - 2.25 (4 H, m, PCH_{2}), 0.97 (6 H, dt, J_{HH} 7.1, J_{PP} 2.5, CH_{2}CH_{3}).

^3^P[H] NMR (242.94 MHz; C_D_{6} ppm): -29.0. ^1^N (60.81 MHz, C_D_{6} ppm): 42.3.

Meso- isomer of 1-isopropyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane (2a). ^1^H NMR (600.13 MHz, C_D_{6} ppm): 7.40 (4 H, dd, J_{HH} 7.4, J_{PP} 6.3, a-Ph), 7.11 (6 H, t, J_{HH} 7.1, m-Ph), 3.65 - 3.35 (2 H, m, PCH_{2}N), 3.04 (1 H, p, J_{HH} 6.6, CH_{2}CH), 2.98 (2 H, dd, J_{HH} 14.0, J_{PP} 4.2, CH_{2}NCH), 2.04 - 2.25 (4 H, m, PCH_{2}), 0.97 (6 H, dt, J_{HH} 7.1, J_{PP} 2.5, CH_{2}CH_{3}). ^3^C[H] NMR (150.90 MHz, C_D_{6} ppm): 140.7 (dd, J_{CP} 10.7, J_{CP} 2.9, i-Ph), 133.1 (dd, J_{CP} 9.1, J_{CP} 5.7, o-Ph), 129.4 (m, m-Ph), 129.3 (m, p-Ph), 57.7 (m, AA‘X spin system, J_{PP} 15.1, J_{CP} 10.5, J_{CP} 11.5, PCH_{2}N), 57.4 (t, J_{CP} 3.6, CH_{2}CH), 27.7 (m, AA‘X spin system, J_{PP} 15.9, J_{CP} 14.1, J_{CP} 11.5, PCH_{2}), 20.4 (s, CH_{2}CH).

^3^P[H] NMR (242.94 MHz; C_D_{6} ppm): -29.0. ^1^N (60.81 MHz, C_D_{6} ppm): 42.3.

1,8-diethyl-3,6,10,13-tetraphenyl-1,8-diaza-3,6,10,13-tetraphosphacyclocotetradecane (3)

To the solution of 1 (from 1.1 g (4.5 mmol) bis(phenylphosphino)ethane and 0.27 g (9.0 mmol) paraform) in 5 mol DMF 0.2 M solution of ethylamine in methanol (3.3 ml, 6.6 mmol) was added. Reaction mixture was warmed at 50 °C for 1 hour. After cooling the precipitated white crystals were filtered off and washed twice with 1 ml of ethanol. Yield: 0.33 g, 20%, mp 157-159 °C. ^1^H NMR (600.13 MHz, C_D_{6} ppm): 7.53 (8 H, br, o-Ph), 7.04-7.07 (12 H, m, m-Ph), 3.68 (4 H, dd, J_{HH} 12.4, J_{PP} 5.4, PCH_{2}N), 3.61 (2 H, t, J_{HH} 9.0, 1-H (cHex)), 2.84 (4 H, m, PCH_{2}), 2.68 (4 H, dd, J_{HH} 12.4, J_{PP} 19.5, PCH_{2}N), 2.22 (4 H, m, PCH_{2}), 2.04 (2 H, br, 2-H (cHex)), 1.88 (2 H, br, 3-H (cHex)), 1.74 (2 H, d, J_{HH} 11.6, 2'-H (cHex)), 1.68 (2 H, d, J_{HH} 13.1, 3'-H (cHex)), 1.61 (2 H, d, J_{HH} 12.6, 3'-H (cHex)), 1.47 (4 H, br, 2,4-H (cHex)), 1.21 (2 H, dt, J_{HH} 13.1, J_{PP} 12.4, 3'-H (cHex)); 1.02 (2 H, d, J_{HH} 12.8, J_{PP} 9.3, 4'-H (cHex)), 0.79 (2 H, dt, J_{HH} 12.4, J_{PP} 11.9, 2'-H (cHex)). ^3^C[H] NMR (150.90 MHz, C_D_{6} ppm): 138.9 (s, i-Ph), 133.7 (dd, J_{CP} 10.0, J_{CP} 8.0, a-Ph), 129.6 (s, m-Ph), 129.4 (s, p-Ph), 60.4 (s, C-1), 57.8 (s, PCH_{2}N), 33.4 (s, C-2 (cHex)), 27.6 (s, C-3 (cHex)), 27.5 (s, C-4 (cHex)), 27.1 (br, PCH_{2}), 26.9 (s, C-3' (cHex)), 24.2 (br, C-2’ (cHex)). ^3^P[H] NMR (242.94 MHz; C_D_{6} ppm): -31.5. MS (ESI+), m/z, (Irel): 370 (100 [M+H]^+), 755 (36 [M+O+H]^+). Anal. calc. for C_{38}H_{51}N_{3}P_{3} C; 71.53; H, 7.91; N, 3.79; P, 16.77. Found: C, 71.51; H, 7.92; N, 3.75; P, 16.70.

After 5 days of standing of 3a, in C_D_{6}, the signals of dissociation products - rac- (3a) and meso- (3a) isomers of 1-ethyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane 3 are prevailed.

Rac- isomer of 1-ethyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane (3a). ^1^H NMR (600.13 MHz, C_D_{6} ppm): 7.47 (4 H, br, a-Ph), 7.07-7.14 (6 H, m, p-Ph), 3.87 (2 H, ddd, J_{HH} 13.7, J_{PP} 4.2, J_{CP} 4.2, PCH_{2}N), 3.38 (2 H, d, J_{CP} 13.7, J_{CP} 7.8), 2.52 (1 H, m, 1-H (cHex)), 2.08 - 2.24 (4 H, m, PCH_{2}), 2.00 - 2.08 (1 H, m, 2-H (cHex)), 1.85 - 1.98 (1 H, m, 2'-H (cHex)), 1.57-1.71 (2 H, m, 3', 3'-H (cHex)), 1.45 (1 H, br, 4-H (cHex)), 1.04 - 1.32 (4 H, m, 2', 3', 3'-H (cHex)), 0.90 - 1.02 (1 H, 4-M (cHex)). ^3^C[H] NMR (150.90 MHz, C_D_{6} ppm): 140.6 (dd, J_{CP} 9.7, J_{CP} 4.3, i-Ph), 133.1 (ddd, J_{CP} 18.7, J_{CP} 9.8, J_{CP} 6.2, o-Ph), 129.4 (m, m-Ph), 129.0 (m, p-Ph), 66.0 (s, C-1 (cHex)), 58.1 (m, AA‘X spin system, J_{PP} 14.2, J_{CP} 10.8, J_{CP} 12.9, PCH_{2}N), 31.19 (s, C-2 (cHex)), 31.14 (s, C-2’ (cHex)), 28.0 (m, AA‘X spin system, J_{PP} 14.2, J_{CP} 12.2, J_{CP} 12.9, PCH_{2}).
X-ray crystallography data. The crystals of 2a suitable for X-ray diffraction were hand selected from precipitates that separated from the reaction mixtures. The data of 2a were collected on a Gemini diffractometer (Agilent Technologies) using MoKα radiation (λ = 0.71073 Å) and o-scan rotation. Data reduction was performed with Crysalis-Pro25 including the program SCALE3 ABSPACK for empirical absorption correction. The structure was solved by direct methods (SIR92)23 and the refinement was performed with SHELXL-2014.24 The molecule is located on a special position (C2 axis). All non-hydrogen atoms were refined with anisotropic thermal parameters. A difference-density Fourier map was used to locate all hydrogen atoms in the final stage of the structure refinement. Figure 2 was generated with Diamond.25 CCDC 1060031 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.uk).

Notes and references

27.1 (s, C-4 (cHex)), 26.7 (s, C-3 (cHex)), 26.6 (s, C-3’ (cHex)). 31P[H] NMR (242.94 MHz; CD3(d6) ppm): -30.0.

Meso-isomer of 1-cyclohexyl-3,6-diphenyl-1-aza-3,6-diphosphacycloheptane (4).

5 H NMR (600.13 MHz; CD3(d6) ppm): 7.41 (4 H, br, o-Ph), 7.07-7.14 (6 H, m, p-Ph), 3.45 (2 H, m, PCH2N), 3.05 (2 H, d, 3JHH 14.2, PCH2H), 2.78 (1 H, m, 1-H (cHex)), 2.08 - 2.24 (4 H, m, PCH2), 1.85 – 1.98 (2 H, m, 2-H (cHex)), 1.57-1.71 (2 H, m, 3-H (cHex)), 1.45 (1 H, br, 4-H (cHex)), 1.04 – 1.32 (2 H, m, 3-H (cHex)), 0.90 – 1.02 (1 H, m, 4-H (cHex)). 13C[H] NMR (150.90 MHz, CD3(d6) ppm): 142.1 (dd, 3JCP = 10.7, 3JCP = 6.5, ß-Ph), 132.7 (dd, 3JCP = 8.7, 3JCP = 5.5, o-Ph), 129.4 (m, m-Ph)), 129.0 (m, p-Ph), 64.0 (s, C-1 (cHex)), 57.5 (dd, 3JCP = 8.7, 3JCP = 5.1, PCH2N), 30.8 (s, C-2 (cHex)), 27.0 (s, C-4 (cHex)), 26.5 (s, C-3 (cHex)), 23.4 (m, AA’X spin system, 1JPC = 2.2, 1JPC = 15.2, 1JPP = 20.1, PCH3).

12010.1039/0000000x/1

102010; (c) M.H. Helm, M.P. Stewart, R.M. Bullock, M.L. Helm, J. Am. Chem. Soc., 2013, 135, 6033 - 6046; (b) M.H. Helm, M.P. Stewart, R.M. Bullock, M. Rakowski DuBois, D.L. Dubois,

Dalton Transactions

CrysAlis-Pro: Data collection and data reduction software package, Agilent Technologies

DIAMOND (Version 3.2k): K. Brandenburg, Crystal Impact GbR, Bonn, Germany
14-membered cyclic polyphosphines as only RRRR/SSSS-stereoisomers have been synthesized by the Mannich-like condensation. The unique reversible processes of macrocycles splitting onto corresponding rac- and meso- stereoisomers of 1-aza-3,6-diphosphacycloheptanes were discovered.