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Abstract 

In this Perspective we examine recent theoretical developments in methods for calculating 

the electrostatic properties of charged particles of dielectric materials. Particular attention is 

paid to the phenomenon of like-charge attraction and we investigate the specific conditions 

under which particles carrying the same sign of charge can experience an attractive interac-

tion. Given favourable circumstances, it is shown that even weakly polarisable materials, 

such as oil droplets and polymer particles, can experience like-charge attraction. Emphasis is 

also placed on the numerical accuracy of the multipole approach adopted in many electrostat-

ic solutions and on the importance of establishing strict convergence criteria when addressing 

problems involving particulate materials with high dielectric constants. 

 

Introduction 

Electrostatic interactions between charge particles impact on many natural phenome-

na and human activities. Examples of the former include cloud formation and the behaviour 

of volcanic ash,
1-3

 whilst in the latter category, powder coating,
4
 printing,

5
 food processing,

6
 

Page 1 of 32 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



2 

 

and charge scavenging in coal-fired power stations,
7
 can be included in a long list of applica-

tions where particles are deliberately charged in order to facilitate particular industrial pro-

cesses or operations.
8
 Underpinning all of these examples is the need to developing a quanti-

tative understanding of the electrostatic interactions that exist between charged particles of 

widely varying composition. Early research on this topic, focused primarily on conducting 

spheres, derives from the work of W. Thomson (also known as Lord Kelvin) and was aided 

by comparatively simple boundary conditions and driven by a desire to better understand the 

emerging field of electrostatics.
9
 A complete solution to the interaction between two conduct-

ing spheres did not appear until 1964 when Davis used a bispherical coordinate system to de-

rive an expression for the electrostatic force;
10

 research that has subsequently seen extensive 

application in the field of cloud physics.  The high dielectric constant of water means that a 

conducting sphere solution remains effective to this date.  However, the vast majority of ma-

terials from which charged particles are composed, for example, volcanic ash,
2,3

 cosmic dust 

grains,
11

 printer toner,
5
 food coatings,

6
 colloids,

12
 etc., are not conducting and therefore re-

quire a formalism that is more universally applicable. To this end, a solution to the more dif-

ficult problem of how charged dielectric spheres interact with one another has been sought 

for many years.  

Table 1 presents a list of some of the more recent papers covering the theory of elec-

trostatic interactions between charged particles. As can be seen, a number of the proposed so-

lutions to the dielectric sphere interaction problem have built on the early conducting sphere 

solution and used image charge theory to describe the electrostatic interaction between 

spheres. However, a number of studies have also adopted a multipole approach based on a 

spherical coordinate system, whereby each sphere possesses a defined set of electrostatic 

multipoles, the sum of which describe the total interactive force or energy. An advantage of 

this approach is that it can provide a physical picture of the extent to which the surface charge 
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on both spheres is polarised through a mutual interaction. When reduced to a point charge – 

charged sphere configuration, these theories can provide the classical electrostatic multipole 

terms, i.e. ion – induced dipole, ion – induced quadrupole etc. Very recently, a bispherical ra-

ther than spherical coordinate system has been used to describe the electrostatic interaction 

between a charged dielectric sphere and a planar dielectric surface.
18

 This new approach has 

universal appeal in that it can move smoothly between the solution for a pair of finite-sized 

particles and a pair of planar surfaces (see below), but has the disadvantage of being slower 

to converge than the spherical coordinate solution.  

 

Table 1: A selection of references relevant to recent developments in the theory of electro-

static interactions between charged particles. The list is by no mean comprehensive, but pa-

pers have been selected to demonstrate the breadth of applications.  Additional reference can 

be found in the main text. 

Types of particles Theoretical methods Reference 

Insulating sphere – Conducting 

plane 
Image charge 13 

Dielectric spheres 
Multipole expansion in Legendre polynomials using spheri-

cal coordinates 
14 

Point charge - metallic or dielectric 

sphere  
Image charge / DFT 15 

Conducting ellipsoids Finite element methods 16 

Dielectric sphere - point charge 
Multipole expansion in Legendre polynomials using spheri-

cal coordinates 
17 

Dielectric sphere – dielectric plane 
Multipole expansion in Legendre polynomials using bi-

spherical coordinates  
18 

Dielectric sphere – dielectric plane Image charge 19 

Dielectric sphere - microion (point 

charge) 
Image charge 20 

Dielectric sphere – conducting 

plane 
Image charge 21 

Dielectric spheres Spherical harmonic expansion of surface charge density  22 

Charge spheres in a plasma Screened Coulomb interaction 23 

Dielectric spheres in a dielectric 

medium 
Multipole expansion in spherical harmonics 24 

Dusty plasma Screened monopole and dipole Coulomb interaction  25 

Conducting spheres Charge defined in terms of capacitance coefficients 26 

Conducting spheres Image charge 27 
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4 

 

Dielectric spheres Image charge 28 

Spherical nanoparticles Numerical minimisation of free-energy 29 

Dielectric spheres Legendre polynomial expansion in bispherical coordinates 30 

Dielectric sphere – dielectric plane Image charge 31 

Dielectric sphere – dielectric plane 
Steady state solution of the Poisson−Nernst−Planck  equa-

tions 
32 

 

 For many particulate systems, the particles involved all carry the same sign of charge, 

and one of the most interesting results to emerge from electrostatic calculations is that, under 

certain circumstances, like-charged particles can be attracted to one another;
33

 indeed, charge 

scavenging processes taking place in, for example, clouds and power stations depend on such 

a phenomenon.
1,7

 In this perspective article, we outline some of the recent developments as-

sociated with calculating the electrostatic properties of charged dielectric spheres and in par-

ticular we examine the circumstances under which like-charged particles of dielectric materi-

als can experience an attractive interaction. Due consideration is given to the numerical 

accuracy of the multipole approach adopted in some more recent solutions and also to the 

importance of establishing convergence criteria when addressing problems where the dielec-

tric constants are moderately large.        

 

 

1. Overview of Theory 

 

In 2010 a new theoretical model was proposed for calculating the electrostatic force 

between charged spheres composed from a dielectric material.
14

 The model describes the 

electrostatic interaction between a pair of spheres, with net charges �� and �� (contributed 

solely from the presence of free charge on the surface of each sphere), with radii �� and ��, 

and dielectric constants �� and ��, respectively. The spheres are assumed to be electrically 

non-conducting, where electrical conductivity is defined as the product of carrier mobility 

and charge density. Therefore, non-conducting case implies either the absence of free charge 
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in the system or, if free charge is present, no mobility for the free charge carriers. For a ho-

mogeneous polarisable material with a bulk polarisability described by the dielectric constant, 

Gauss' law states that the volume densities of free charge, polarisation charge, and total 

charge (the sum of free and polarisation charge) are proportional. At the surface of a dielec-

tric sphere, the density of free and total charge can be described by a set of field discontinui-

ties with boundary conditions, which involve dielectric constants from both sides of the sur-

face. For a charged dielectric particle, it is assumed that the free charge is uniformly 

distributed on the surface, which corresponds to the lowest-energy configuration, and remains 

immobile during interaction; the latter assumption is justified by the zero mobility of free car-

riers. This condition also implies an absence of free charge inside the particle, so that only 

charge on the surface needs to be considered. The total surface charge density � on a particle 

can be written as a sum of contributions from the polarisation charge density �� and the free 

charge density ��, i.e. � 	 �� 
 ��, where the polarisation charge varies as a function of the 

sphere-sphere separation. 

 

 

Figure 1: A geometric representation of two charged dielectric spheres interacting in vacuum.
14

 Dielectric con-

stants, charges, radii, and the polar angles of spheres 1 and 2 are denoted as ��, ��, ��, �� and ��,	��, ��, ��, re-

spectively. The centre-to-centre separation is defined as  and the corresponding surface-to-surface separation is 

given by � 	  � �� � ��.  
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6 

 

Figure 1 gives a geometric representation of the problem being addressed. Two dielectric 

spheres are suspended in vacuum, where their dimensionless dielectric constants are defined 

as �� 	 �� ��⁄  (� 	 1,2) and �� is the permittivity of vacuum (�� 	 1).  The charge density 

obeys boundary conditions that are familiar to electrostatic theory:
34,35

   

 

i. Continuity of the tangential component of the electric field as a result of the continui-

ty of the electric potential on the surface of each sphere 

 

�� 	× ���� !�" � ��� !�#$ 	 0 (1) 

 

ii. Discontinuity of the normal component of the electric field due to the presence of a 

total charge on the surface of each sphere. 

 

�� 	 ∙ ���� !�" � ��� !�#$ 	
�
�� (2) 

 

iii. Discontinuity of the normal component of the electric displacement field due to the 

presence of a free charge on the surface of each sphere. 

 

�� 	 ∙ �'�� !�" �'�� !�#$ 	 ���(( (3) 

 

where �� is a unit vector perpendicular to a point of reference on the surface of a sphere, and 

the subscripts ��) and ��*  denote radial positions on the outside and the inside of the surface, 

respectively. The dielectric displacement field '  is related to the electric field �  as ' 	
�����.  
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The electrostatic force due to the presence of a total charge on the surface of each 

sphere is calculated from a generalization of Coulomb's law for point charges and is given by 

 

						+�� 	 ,-.��/0�1-.��/0�1 0� � 0�
|0� � 0�|3 

 

(4) 

where 0�  and 0�  are position vectors at the surface (as shown in figure 1), .��/0�1  and 

.��/0�1 are the corresponding charge elements, and , is the Coulomb's constant. The first 

integral in equation (4) takes into account the charge residing on sphere 1 and the second in-

tegral is the potential generated by the charge residing on sphere 2. The electrostatic force, 

+��, is then evaluated through a Legendre polynomial expansion of the electric potential gen-

erated by the two spheres as they interact.
14

 The total surface charge distribution is deter-

mined as a function of the centre-to-centre separation,  and an integration of the charge 

across the surface yields the following analytical expression for the electrostatic force (further 

details can be found in ref. 14) 

 

+�� 	 � 1,45�,65�,6)� /�� 
 11/7 
 11 
 1/�� � 11���6)3
8

6 �
 (5) 

 

The convention adopted has +�� as negative for an attractive interaction and positive for a re-

pulsive interaction. Dependence of the electrostatic force on the separation  is accounted for 

by the multipole moment coefficients 5�,6 , which describe the mutual polarisation experi-

enced by the interacting spheres as a function of their dielectric constants (�� and ��1, charg-

es (�� and ��) and radii (�� and ��). Equations describing the multipole moments are given 

by 
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8 

 

4:,����,�;6,� 	 5�,6
��6)� 


/�� � 117
/�� 
 117 
 1 4 5�,� /7 
 <1!7!<!

��6
6)�)�

8

� �
 (6) 

and 

4:,����,�;6,� 	 5�,6
��6)� 


/�� � 117
/�� 
 117 
 1 4 5�,� /7 
 <1!7!<!

��6
6)�)�

8

� �
 

 

(7) 

for sphere 1 and 2, respectively. After eliminating 5�,6, equations (6) and (7) and can be com-

bined to yield 5�,>? 
 

5�,>? 	 ��@�;>?,� �
/�� � 11A�

/�� 
 11A� 
 1
���>?)�
>?)� ��@� 


/�� � 11A�
/�� 
 11A� 
 1 

× 4 4 /�� � 11A�
/�� 
 11A� 
 1	

8

>B �

8

>C �

/A� 
 A�1!
A�! A�!

/A� 
 A31!
A�! A3!  

× ��
�>?)����>C)�
>?)�>C)>B)� 5�,>B  

(8) 

 

where ��@� 	 ,�� and ��@� 	 ,��. Taking into account the fact that 5�,� 	 4:,�����,� and 

5�,� 	 4:,�����,�, the electrostatic force can be written as 

 

												+�� 	 , ����� �	�� 445�,6 /�� � 11</< 
 11/�� 
 11< 
 1
8

6 �

8

� �
																																					 /91						 

× /7 
 <1!7!<!
����)�
��)6)3 �	

1
,45�,65�,6)� 	/�� 
 11/7 
 11 
 1/�� � 11���6)3

8

6 �
	 

 

Equation (9) gives a simple and well-behaved solution for the electrostatic force between two 

charged polarisable spheres as a function of their separation, . The first term in the equation 
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is the Coulomb force between two non-polarisable spheres or point charges, separated by a 

distance . The second and third terms in equation (9) account for the contribution polarisa-

tion makes to the overall electrostatic force; these terms are always negative and represent an 

attraction between the spheres that increases in magnitude as a function of dielectric constant. 

The effect of these attractive contributions is to diminish the magnitude of the repulsive Cou-

lomb force, and for certain combinations of ��, �� and ��, like-charged spheres can become 

attracted to one another at short separation. In the limit 7 	 0, the first and second terms in 

equation (9) represent the electrostatic force between a charged polarisable sphere and a non-

polarisable sphere (or a point charge), and if taken a step further with �� 	 0, we obtain a 

well-known classical electrostatic solution for describing the attraction between a neutral po-

larisable sphere and a point charge.
34,35

   

 Although the spherical coordinate solution outlined above has proved very successful 

at accounting for a wide range of experimental data involving pairs of charged particles,
36-38

 

the formalism has been found not to be suitable for applications to particle – planar surface 

interactions. To this end, a new solution using bispherical coordinates to describe the electro-

static interaction between a dielectric, charged particle and a planar dielectric surface was 

proposed in 2014.
18

 This approach has proved to be applicable to charged particles of all di-

mensions, but does converge more slowly than the spherical coordinate solution (see below).  

 

2. Like-charge Attraction 

2.1 Origin 

The attraction between like-charged dielectric particles arises from a mutual polarisa-

tion of surface charge density for certain combinations of radius, charge, and dielectric con-

stant.
33

 Figure 2 shows graphically an example where a specific combination of charge and 

radii can result in an attractive interaction. Qualitatively, the interaction can be divided into 
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10 

 

two regions: a long-range repulsion that is equivalent to the Coulomb force experienced by 

two non-polarisable spheres or point charges, described by the first term in equation (9), and 

a dominant short-range attraction due to mutual polarisation of the spheres, where the second 

and third terms of equation (9) prevail. 

 

Figure 2: The electrostatic force as a function the surface-to-surface separation between two spheres with 

�� 	 �� 	 20, �� 	 20	μm, �� 	 10	μm, �� 	 10 × 103	G and �� 	 20 × 103	G calculated using equation (9). 

Also shown is a charge density map plotted on the surface of each sphere at � 	 1	μm, (� 	  � �� � ��). 

 

For the conditions specified in Figure 2, a calculation has been made of the surface 

charge density as a function of the polar angle �� (Figure 1). A qualitative picture of how the 

charge is distributed across the surface of each sphere is shown in Figure 2 and more detail is 

given in Figure 3. Together these results illustrate how the interaction between two like-

charged particles can lead to a net attraction when the particles are in close proximity. As can 

be seen, the greater surface charge density on the smaller of the two spheres induces an area 

of negative charge on the larger sphere in a region close to the point of contact /�� 	 : �
�� → 0). In turn, the latter induces an area of enhanced area of positive charge on the smaller 

sphere that is again close to the point of contact. The net effect is that, at very short sphere-
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sphere separations, the attraction between these two regions of opposite charge is stronger 

than any Coulomb repulsion between the permanent free charges. However, this effect only 

becomes significant at short separation, and as Figure 2 shows, attraction is rapidly replaced 

by repulsion as � increases.     

 

Figure 3. The total surface charge density as a function of the polar angle calculated for the pair of spheres 

shown in Figure 2 at a surface-to-surface separation of � 	 1	μm. The charge density on sphere 1 is shown by 

solid line and on sphere 2 by dashed line. 

 

Materials where a value of �� 	 20 might be appropriate include, for example, liquid 

droplets composed of compounds that contain either nitrogen or oxygen atoms, e.g. ammonia 

or methanol. It should be noted, however, that the dielectric constant typically describes the 

extent to which a bulk material concentrates electric flux, and when used in the context of a 

very small particle, it may lose that significance and instead take the form of a parameter, 

which reflects the polarisability of a particle. 

 

2.2 The effects of size, charge and dielectric constant of the interacting particles 

This section presents a more detailed investigation into the conditions under which 

like-charge attraction occurs and further analysis of the physical significance of this counter-
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12 

 

intuitive phenomenon is given. To explore the consequences of treating spheres as being 

composed of dielectric materials, we present a series of calculations that examine changes in 

the strength of like-charge attraction depending on both the dielectric constants and separa-

tion between the spheres. Increasing ��  should increase the contribution that polarisability 

makes towards diminishing the effects of Coulomb repulsion between the spheres. For	�� 	
�� 	 1000, the spheres are assumed to be approaching the metallic limit. As Figure 2 would 

suggest, changing the separation between spheres can alter the balance between contributions 

to the force from long-range Coulomb repulsion and short-range attractive polarisation. For 

six different values of 	�� 	 ��, the magnitude of the electrostatic force has been determined 

as a function of charge ratio �� ��⁄  ranging from 0 to 10 and radius ratio �� ��⁄  also ranging 

from 0 to 10. These results are plotted in Figure 4. For the purpose of comparison, analytical 

zero force curves obtained from Lekner’s model,
26

 which describes interactions between con-

ducting spheres, are presented as light blue lines in Figure 4. Analytical zero force curves are 

calculated from the point on the curve in Figure 2 where Coulomb repulsion is cancelled out 

by attractive polarisation interactions. As it can be seen, Lekner’s model agrees almost exact-

ly with results calculated from the dielectric sphere model with �� 	 1000. Broadly speaking 

each of the diagrams shown in Figure 4 can be divided into three regions: (i) when �� ≫
	��	the scale of the attractive interaction is dominated by the ability of the high charge density 

on the smaller particle to polarise the larger particle; this can be achieved even under circum-

stances where the charge ratio �� ��⁄  is also increasing; (ii) as the ratio �� ��⁄  decreases, the 

contribution polarisation makes to the interaction diminishes and the force between particles 

becomes dominated by Coulomb repulsion; (iii) as �� ��⁄  decreases still further, particle po-

larisation again begins to dominant the strength of the interaction, particularly as the ratio 

�� ��⁄  increases. For dielectric particles of any composition, this latter combination of �� ��⁄  

and �� ��⁄  would appear to provide the most favour conditions for a strong attractive interac-
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tion. As Figure 4 shows, the dielectric response of each sphere makes a significant contribu-

tion to the nature of the mutual interaction they experience in close proximity. Even particles 

composed of weakly polarisable materials (�� 	 2, Figure 4a), for example oils, plastics, and 

dust, can be attracted to one another at certain values of size and/or charge ratios; large dif-

ferences in charge can lead to particularly strong attraction. As the dielectric constant in-

creases towards the values appropriate for water droplets,
1
 a very significant fraction of the 

contour plot denotes the presence of an attractive interaction between spheres.  

  

 

Figure 4:  Contour maps of the electrostatic force (in pN) as a function of the charge ratio �� ��⁄  and radius ratio 

�� ��⁄ , for a pair of like-charged spheres separated by a fixed distance of � 	 0.01	μm and with different values 
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14 

 

of the dielectric constant: 	�� 	 �� 	 2 (a), 5 (b), 10 (c), 40 (d), 80 (e) and 1000 (f). The radius of sphere 1 is 

fixed at �� 	 1	μm and charge at �� 	 1	 × 103	G. As the dielectric constant decreases the electrostatic force 

can change from attractive to repulsive as it shifts towards the Coulomb limit of two non-polarisable spheres. 

The convention is that a negative force denotes a net attraction between the particles. 

 

 The next few examples show how the degree of attraction between like-charged 

spheres varies as a function of their separation. For six values of the surface-to-surface sepa-

ration �, the magnitude of the electrostatic force has been determined as a function of the 

�� ��⁄  and �� ��⁄  ratio ranging from 0 to 10. These results are plotted in Figure 5. To better 

illustrate the effect of polarisation, and consequently the attractive component of the force, 

the dielectric constants have been fixed at a value of 	�� 	 �� 	 1000. Analytical zero force 

curves (in blue) obtained from Lekner’s model for conducting spheres are also included.
26
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Figure 5:  Contour maps of the electrostatic force (in pN) as a function of the charge ratio �� ��⁄  and radius 

ratio �� ��⁄ , for a pair of like-charged spheres at various surface-to-surface separations: � 	 5	μm (a), 1	μm (b), 

0.1	μm (c), 0.01	μm (d), 0.001	μm (e) and 0.0001	μm (f). The value of the dielectric constant is 	�� 	 �� 	
1000. The radius of sphere 1 is fixed at �� 	 1	μm and charge at �� 	 1	 × 103	G.  

 

As the results show, there are clearly defined circumstances where like-charged parti-

cles are attracted to one another, even when the separations involved are comparable to their 

size. For example, particles separated by 1 µm could coalesce if they carry the same amount 

of charge, but have a radii ratio of 4:1. Both Figures 4 and 5 show that the attraction between 

particles can become markedly stronger if there is a large disparity in the amount of charge 
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they carry. The latter effect becomes amplified when it is also accompanied by an increase in 

the value of the dielectric constant for the interacting spheres. It is interesting to note that the 

results in Figure 5a would suggest that particles of radius 1 µm and 10 µm, both composed of 

a high dielectric material and carrying a similar amount of charge, would be attracted to one 

another over a distance of 5 µm. Since these effects scale up it is easy to see how physical 

processes, such as charge scavenging,
1,7

 can operate quite readily under conditions where one 

of the particles may have a radius of 1 µm or more. Figures 4 and 5 serve as replacements for 

an equivalent plot given in Ref. 14 as these earlier calculations did not take into account all 

the polarisation terms necessary to obtain fully converged values of the force (see below). 

The good agreement between Lekner’s model for conducting spheres and the dielectric model 

with �� 	 1000 suggests that results from the latter converge to the correct limit when the 

theory is applied to particles with very large dielectric constants.  

As shown in Figures 4 and 5, the repulsive region always passes through a point cor-

responding to �� ��⁄ 	 1 and �� ��⁄ 	 1, i.e. for identical spheres. Since such spheres have 

equivalent electrostatic properties, there exists a balance between the mutual repulsive and 

polarising effects they exert on one other, and as a result the spheres present mirror-

symmetric surface charge distributions, as illustrated in Figure 6. 
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Figure 6. Polarisation surface charge density (a) and total surface charge density (b) as a function of the polar 

angle calculated for a pair of identical spheres with �� 	 �� 	 1000, �� 	 �� 	 1	μm, and �� 	 �� 	 1	 ×
103	G separated by � 	 0.01	μm. The charge density on sphere 1 is shown by solid line and on sphere 2 by 

dashed line. 

 

              The mutual polarisation experienced by two identical interacting spheres results in 

regions of negative and positive polarisation surface charge. However, as Figure 6b shows, 

the total surface charge density, �� 
 ��, is positive everywhere on the surface of the spheres, 

and therefore the overall force between the particles is repulsive. In this particular case, polar-

isation effects merely serve to weaken the Coulomb repulsion that arises from the presence of 

free charge, and so the net electrostatic force is weaker than it would be for the same pair of 

identical spheres but with �� 	 �� 	 1, i.e. for non-polarisable spheres, or equivalently for 

two point-charges with �� 	 �� 	 1	G and separated by 0.01	μm. 

 

3.1. Electrostatic force with respect to system geometry 

Much of the research carried out on pair interactions in the field of electrostatics de-

scribes the interacting body as a point particle, a sphere or a plane. The exact geometry of a 

system consisting of a pair of such interacting objects is dependent upon length scales, name-

ly on the radii of the particles and their surface-to-surface separation. For example, if the sep-

aration between two spheres is much larger than their radii, the system approaches the geo-

metric limit of two point particles. A systematic approach to transformations in length scale 

has recently been proposed in the form of a general geometric representation based on the bi-

spherical coordinate system introduced earlier.
18,39

 The formalism introduces a dimension-

less, scaled surface-to-surface separation parameter �∗ 	 � 2�⁄ , where �  is the surface-to-

surface separation and 2� is the distance between the two inverse points in the bispherical 

coordinate system.
39,40

 For a two-body problem, this approach makes possible a description 
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covering all possible combinations of sphere size and surface-to-surface separation.
39

 The 

scaled surface-to-surface separation parameter approaches the limit �∗ 	 1 if the radii of both 

spheres are much smaller than the actual surface-to-surface distance �, i.e. in the limit of two 

point particles. At the other extreme, the geometric limit of �∗ 	 0 corresponds to either two 

planar surfaces or two interacting spheres with radii that are very much larger than �. Figure 7 

provides a geometric description of how �∗ transforms according to the physical nature of the 

interacting bodies.   

 

 

Figure 7: A geometric representation of two spheres separated by the surface-to-surface separation of � 	
10		μm: �� 	 �� 	 500	m (i); �� 	 5		μm, �� 	 7.5		μm (ii); �� 	 �� 	 0.05		μm (iii). The scaled the surface-

to-surface separation parameter �∗ ranges from 0 to 1 and is shown as a continuum of the values corresponding 

to all possible combinations of sphere size and separation distance (adapted from Ref. 39). 

 

For any given charge ratio �� ��⁄ , the electrostatic force can now be studied as a func-

tion of �∗ with respect to any given geometric configuration. As an example, consider a pair 

of like-charged spheres with radius �� 	 �� 	 1 μm. Let the free charge on sphere 1 be fixed 

at �� 	 1 × 103	G such that the free charge on sphere 2 and the surface-to-surface separation 

account for the only two variables in the system, which can be expressed as the charge ratio 

�� ��⁄  and the scaled surface-to-surface separation �∗. Figure 8 shows how the electrostatic 

force depends on these two parameters, for two cases: (a) �� 	 �� 	 1000; and (b) �� 	
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�� 	 10. For (a), at the limit �∗ 	 0, which can correspond to either two planar surfaces or 

two large spheres in very close proximity, the repulsive force vanishes completely apart from 

when �� ��⁄ ⟶ 1; as the charge ratio approaches unity from either direction, the magnitude 

of the repulsive Coulomb term (see equation (9)) increases gradually until it balances the at-

tractive polarisation terms of the force. However, under all circumstances other than 

�� ��⁄ ⟶ 1, two like-charged equal-sized spheres at the limit of �∗ 	 0 will always be at-

tracted to one another if they are of metallic nature. This result is consistent with Lekner's
26

 

conclusion regarding the behaviour of charged metallic spheres in close proximity. One can 

note a marked difference at the limit of �∗ → 0 for case (b), where the particles have consid-

erably smaller dielectric constants and are therefore less polarisable. The range of �� ��⁄  val-

ues over which the particles will repel each other is much larger than for case (a) and overall, 

the attractive polarisation contributions to the force are smaller, which means that the region 

of repulsion is more pronounced. At the other geometric limit �∗ 	 1 for two point particles, 

the attractive contributions to the total force become increasingly less significant and at some 

point are overtaken by a more pronounced repulsive Coulomb component. Consequently, the 

forces in both case (a) and (b) are dominated by the Coulomb term for two point charges and 

the corresponding contour plots become very similar.  
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Figure 8. Contour map of the electrostatic force (in pN) between a pair of equal-sized, like-charged spheres, 

with dielectric constants (a) 	�� 	 �� 	 1000 and (b) 	�� 	 �� 	 10. The force is plotted as a function of the 

scaled surface-to-surface separation �∗  
39

 and the charge ratio �� ��⁄ , with 	�� 	 �� 	 1	μm  and �� 	 1	 ×
103	G. The regions of attractive and repulsive forces are separated by a thin black solid line, which denotes the 

cases of zero force. 

 

Numerical calculations show that, if the radii of two spheres and their separation are 

all multiplied by an arbitrary factor P, the electrostatic force will change by a factor of 1 P�⁄ . 

This is illustrated in Figures 9a and 9b for plots of the electrostatic force as a function of the 

radius ratio �� ��⁄ , and where the force is shown to have decreased by a factor of 1/100 as the 

various length quantities are increased by a factor of 10. Conversely, if the charges �� and �� 

on two spheres are both multiplied by P, the electrostatic force will change by a factor of P�.  

Figures 10a and 10b show how the force as a function of the charge ratio �� ��⁄  increases by 

a factor of 100 when �� and �� are both multiplied by a factor of 10. These observations sug-

gest a certain degree of generality of the results, in the sense that values for the force can be 

scaled up or down to any desired order of magnitude. For example, in the results presented in 

this paper the values of force, length (radii and separation distances) and charge are given re-

spectively in units of piconewton, micrometer and orders of 103	G.; however, contour maps 
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that are equivalent to those shown in Figures 4, 5 and 8 can be generated to give micro-

newton forces between particles, with radii and separation distances in the millimeter range 

and charges of orders of 10Q	G. 

 

 

Figure 9. Plots of the electrostatic force (pN) as a function of the radius ratio �� ��⁄ . The dielectric constants 

and charges of the spheres are given by �� 	 �� 	 10 and �� 	 �� 	 1	 × 103	G, respectively. For (a), the radi-

us of sphere 1 and the surface-to-surface separation are fixed at �� 	 1	μm and � 	 0.01	μm, while the values 

of these two parameters in (b) are greater by a factor of 10. The force values in (b) are therefore a hundred times 

less than those in (a).    

 

 

Figure 10. Plots of the electrostatic force (pN) as a function of the charge ratio �� ��⁄ . The dielectric con-

stants, radii of the spheres as well as their surface-to-surface separation are given by �� 	 �� 	 10, �� 	 �� 	
10	μm, and � 	 0.01	μm respectively. The charge of sphere 1 is fixed at �� 	 1	 × 103	G and �� 	 10	 × 103 	G 

for (a) and (b), respectively. The force values in (b) are therefore a hundred times greater than those in (a).    
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3.2. Convergence rates 

Since the electrostatic force given by equation (9) is represented as a sum of multipole 

moments, it is instructive to examine how rapidly the series converges. In a number of appli-

cations, particularly when used in conjunction with water droplets, the equivalent point 

charge – sphere series expansion is often truncated after the first two terms.
1
 The conver-

gence tests also provide an opportunity to examine differences between the two solutions pre-

sented using either spherical polar or bispherical coordinates.
14,18

 Figure 11 shows the results 

of calculations, where the number of terms in the multipole expansion required to achieve a 

precision of ten significant figures in the calculated electrostatic force has been explored in 

terms of three variables: surface-to-surface separation, �; radius ratio, �� ��⁄ ; and dielectric 

constant, �� 	 ��. The influence of the charge ratio �� ��⁄  is considered separately in Figure 

12. Since the effects of polarisation are manifested through the multipole terms in equation 

(9), the results in Figures 4 and 5 would suggest that considerable differences might be ex-

pected in the number of terms required to achieve convergence when the ratios of particle 

size and charge are different from unity and/or when there are variations in particle-particle 

separation. Figure 11a shows how convergence depends on the particle-particle separation, 

and as might be expected, the result reflects the distance-dependences of the multipolar terms 

that appear in the series expansion and vary as a combination of inverse powers of  	 �� 

�� 
 � (Equation 9). The first few multipole terms contributing to the force are monopolar, 

dipolar, and quadrupolar in nature, and at sufficiently large distances, namely where the sys-

tem is close to the limit of two point charges, Figure 11a would imply that only the monopole 

term prevails (also see Figure 2). However, as the particle-particle separation decreases there 

is a very evident and rapid increase in the number of terms required to achieve convergence. 

In some respects, the number of terms in the expansion can be considered as an indirect 

measure of the level of induced polarisation taking place between the two interacting spheres. 
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At very large values of � there is virtually no polarisation and therefore a minimum number 

of terms is required; however, close to the touching limit of � 	 0 the degree of induced po-

larisation is very high. As can also be seen, for small values of �, the spherical polar solution 

converges with fewer terms than the bispherical solution.  

 

 

Figure 11. Comparison of the convergence conditions for the electrostatic force, obtained using the spherical po-

lar (○)
14

 and bispherical (□)
18

 solutions, between two charged dielectric particles with �� 	 �� 	 40, �� 	 2	μm 

�� 	 1	μm, �� 	 2	 × 103	G, �� 	 1	 × 103 	G, � 	 0.1	μm: semi-log plots of the dependence of the number of 

terms in the multipole expansion (9) on the surface-to-surface separation (a); on the radius ratio (b); and on the 

dielectric constant (c) and (d). 
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Figure 11b shows how convergence of the multipole series depends on the radius ratio 

�� ��⁄ , and to simplify the problem, the geometric variables �� and � have been fixed and on-

ly �� has been allowed to vary. As can be seen, the number of terms required to achieve con-

vergence increases as the ratio �� ��⁄  moves away from unity in either direction; however, 

for �� ��⁄ > 1 there is a particularly dramatic increase seen in the number of terms required. 

As in the above discussion for Figure 4, the occurrence of like-charge attraction is conditional 

upon either one sphere being large and very polarisable or being very small and carrying a 

high free charge. In the situation where �� ��⁄ ~	1, neither of these conditions is met, and 

therefore the number of terms required to describe the effects of polarisation reaches a mini-

mum. With a progressive decrease in �� the system begins to resemble the point-charge - 

sphere case, where mutual polarisation no longer occurs and the number of terms needed to 

account for the behaviour of (a fixed radius) sphere 1 rapidly reaches an upper limit. In con-

trast, a progressive increase in the radius of sphere 2, such that �� ��⁄ > 1, moves the system 

towards the planar surface - sphere limit. Hence, as �� increases (whilst maintaining fixed 

values for �� and �) the polarisable volume available within sphere 2 increases rapidly, and 

this is reflected in the number of terms required to achieve convergence.  

 A particle in an external electric field has a polarisability that is proportional to 

/�� � 11, and for larger values of the dielectric constant ��, a particle will have a greater de-

gree of freedom to counterbalance an external electric field and so minimize the system's 

electrostatic energy by means of an induced polarisation charge. At the limit of infinite ��, a 

particle will enjoy complete freedom to polarise itself to achieve energy minimization. This is 

analogous to the case of a charged metallic sphere, where its charge is free to redistribute in-

stantaneously in an electric field to achieve energy minimization. Zettergen et al. have shown 

theoretically
15

 that a charged sphere of infinite dielectric constant will achieve the same low-

est-energy charge distribution as a charged metallic sphere, if they are placed in the neigh-
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borhood of a point charge. Figures 11c and 11d show the behaviour of the two mathematical 

solutions in response to changes in the value of the dielectric constant assigned to each parti-

cle. While there is a marked difference between the two cases for relatively small values of 

the dielectric constant, in both cases the number of terms required for convergence approach-

es a constant value for increasing dielectric constant, and it eventually flattens out once the 

charge distribution corresponding to the lowest electrostatic energy is achieved. On the other 

hand, while the difference between Figures 11c and 11d would imply that fewer terms are 

needed in the spherical polar solution to provide an accurate representation of the polarisabil-

ity of a particle, from either solution it is evident that a considerable number of terms is re-

quired to provide an accurate description of the interaction between highly polarisable parti-

cles, such as two water droplets.
1
 As noted earlier, although slower to converge, the strength 

of the bispherical solution lies in the ability to model particle - surface interactions.  

Figure 12 shows how the convergence conditions vary with the ratio �� ��⁄ , where in 

contrast to the previous tests shown in Figure 11, the number of terms in the multipole series 

fluctuates as the charge ratio changes. Although an increase in charge on sphere 2 does in-

crease the degree of polarisation present on sphere 1, the conditions presented in Figure 12 

are such that polarisability of the latter is constrained by a fixed radius. Since polarisation ef-

fects depend on the size of the interacting spheres, the fixed radii (limited area) mean that the 

level of polarisation becomes saturated, even if the spheres continuously acquire more 

charge. The y-axis on Figure 12 is deliberately set to be the same as that for Figure 11b in or-

der to show that response of the multipole expansion to changes in �� ��⁄  is reduced signifi-

cantly from that seen for changes in particle separation, radius and dielectric constant. How-

ever, there are fluctuations in the conditions necessary for series convergence and these can 

be seen on an expanded scale in the insert to Figure 12. In response to changes in �� ��⁄ , 

there is no significant difference between the two mathematical solutions.   
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Figure 12. Semi-log plot of the dependence of the number of terms in the multipole expansion on the charge ra-

tio, �� ��⁄ . The inset shows an expanded y-axis. The remaining parameters were assigned the following values: 

�� 	 �� 	 40, �� 	 2	μm �� 	 1	μm, �� 	 2	 × 103	G, � 	 0.1	μm. Only data points taken from the bispheri-

cal solution are shown. 

 

 

 

Figure 13. Plot of the percentage error in the calculated electrostatic force with respect to the exact value (with a 

precision of ten significant figures) as a function of the number of terms, n in the multipole expansion (Equation 

9). 

Page 26 of 32Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 

As a final contribution to this discussion on convergence of the multipole expansion 

of the electrostatic force, we examine the consequences on the calculated force of neglecting 

higher order terms in the expansion. Two examples are considered using the parameters pre-

sented in the inset of Figure 13. The first example is where �� 	 5 and might be appropriate 

for an interaction between charged oil droplets, and the second example is where �� 	 80 and 

closely corresponds to conditions of water droplet size and charge that match the charge 

scavenging mechanism used to describe the growth of water droplets in clouds.
1
 Figure 13 

shows the percentage error in the calculated force obtained by truncating the terms higher 

than T. For example, if a calculation of the electrostatic force between two water droplets 

separated by 1 µm just used the first 10 terms in the multipole expansion, then the final result 

would be in error by ~ 35 %. To maintain the same percentage error when the surface-to-

surface separation is reduced to 0.1 µm it would require over 20 terms. Even for materials 

with a low dielectric constant, there would appear to be a need for significantly more terms 

than just the usual charge - induced dipole to give a quantitative account of a particle - parti-

cle interaction.     

 

Conclusions 

The development of a theoretical understanding of how charged particles interact with 

one another has a long history, which began in the 1840’s with the seminal work of Kelvin on 

conducting spheres. However, recent advances in science and technology have demonstrated 

the need for a comprehensive theory that can embrace the far broader topic of dielectric parti-

cles. Within this remit are particulate materials and applications ranging from volcanic and 

power station ash through paints and ink jet prints and on to colloidal suspensions of tailor-

made nanoparticles.  
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 The recent contributions
14,18

 to existing solutions to the problem of electrostatic inter-

actions between charged dielectric particles have shown excellent quantitative agreement 

with experimental measurements of the force between charged microspheres suspended in 

non-polar solvents.
37

 Measurements of the repulsive Coulomb force between poly-methyl 

methacrylate spheres suspended in hexadecane, which contains a variable concentration of 

sodium-aerosol-OT acting as a charge control agent, is a relevant example.
41,42

 Under condi-

tions of very low ionic strength, the agreement between experiment
41,42 

and theory
14

 across a 

large data set is excellent. The proposed theoretical solutions
14,18

 also take into account a dy-

namic distribution of surface charge on the interacting particles that can be displaced in re-

sponse to both the strength of the electrostatic interaction and the separation distance. A net 

effect of the surface charge displacement is to reduce the magnitude of the electrostatic repul-

sion experienced by the particles with respect to that determined directly from Coulomb’s 

law. As a result, the interacting particles are able to accommodate more charge than would be 

apparent from a direct fit to the Coulomb law.
37 

With the emergence of appropriate theories has come a better understanding of the 

physics that is responsible for the electrostatic interactions that govern how the dielectric par-

ticles might behave. In particular, it has been shown that the forces responsible for like-

charge attraction between particles depend critically on the polarisabilities of the materials 

involved and that, given the right circumstances, even weakly polarizable spheres, such as oil 

droplets, can exhibit a like-charge attraction that might be strong enough for the droplets to 

coalesce.  

There are additional aspects of the theory that will need to be addressed in the near fu-

ture. What has been outlined above holds only for particles suspended in vacuum. Whilst that 

is sufficient for very many applications, there are equally significant problems associated 

with particles held in a medium. For instance, the introduction of a medium might also need 
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to take into account cases with the presence of an electrolyte, which charged particles may 

need in order to remain in suspension. Current theories covering the behaviour of charged 

particles in a dilute solution of an electrolyte do not support the possibility that like-charged 

particles may be attracted to one another. The implications of such behaviour for electrostati-

cally driven processes in a medium, such as self-assembly, would be of great interest from 

both the scientific and engineering points of view.        
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